/usr/share/pyshared/igraph/layout.py is in python-igraph 0.6.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | # vim:ts=4:sw=4:sts=4:et
# -*- coding: utf-8 -*-
"""
Layout-related code in the IGraph library.
This package contains the implementation of the L{Layout} object.
"""
from itertools import izip
from math import sin, cos, pi
from igraph.drawing.utils import BoundingBox
from igraph.statistics import RunningMean
__license__ = u"""\
Copyright (C) 2006-2012 Tamás Nepusz <ntamas@gmail.com>
Pázmány Péter sétány 1/a, 1117 Budapest, Hungary
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
"""
class Layout(object):
"""Represents the layout of a graph.
A layout is practically a list of coordinates in an n-dimensional
space. This class is generic in the sense that it can store coordinates
in any n-dimensional space.
Layout objects are not associated directly with a graph. This is deliberate:
there were times when I worked with almost identical copies of the same
graph, the only difference was that they had different colors assigned to
the vertices. It was particularly convenient for me to use the same layout
for all of them, especially when I made figures for a paper. However,
C{igraph} will of course refuse to draw a graph with a layout that has
less coordinates than the node count of the graph.
Layouts behave exactly like lists when they are accessed using the item
index operator (C{[...]}). They can even be iterated through. Items
returned by the index operator are only copies of the coordinates,
but the stored coordinates can be modified by directly assigning to
an index.
>>> layout = Layout([(0, 1), (0, 2)])
>>> coords = layout[1]
>>> print coords
[0, 2]
>>> coords = (0, 3)
>>> print layout[1]
[0, 2]
>>> layout[1] = coords
>>> print layout[1]
[0, 3]
"""
def __init__(self, coords=None, dim=None):
"""Constructor.
@param coords: the coordinates to be stored in the layout.
@param dim: the number of dimensions. If C{None}, the number of
dimensions is determined automatically from the length of the first
item of the coordinate list. If there are no entries in the coordinate
list, the default will be 2. Generally, this should be given if the
length of the coordinate list is zero, otherwise it should be left as
is.
"""
if coords:
self._coords = [list(coord) for coord in coords]
else:
self._coords = []
if dim is None:
if len(self._coords) == 0:
self._dim = 2
else:
self._dim = len(self._coords[0])
else:
self._dim = int(dim)
for row in self._coords:
if len(row) != self._dim:
raise ValueError("all items in the coordinate list "+
"must have a length of %d" % self._dim)
def __len__(self):
return len(self._coords)
def __getitem__(self, idx):
return self._coords[idx]
def __setitem__(self, idx, value):
if len(value) != self._dim:
raise ValueError("assigned item must have %d elements" % self._dim)
self._coords[idx] = list(value)
def __delitem__(self, idx):
del self._coords[idx]
def __copy__(self):
return self.__class__(self.coords, self.dim)
def __repr__(self):
if not self.coords:
vertex_count = "no vertices"
elif len(self.coords) == 1:
vertex_count = "1 vertex"
else:
vertex_count = "%d vertices" % len(self.coords)
if self.dim == 1:
dim_count = "1 dimension"
else:
dim_count = "%d dimensions" % self.dim
return "<%s with %s and %s>" % (self.__class__.__name__,
vertex_count, dim_count)
@property
def dim(self):
"""Returns the number of dimensions"""
return self._dim
@property
def coords(self):
"""The coordinates as a list of lists"""
return [row[:] for row in self._coords]
def append(self, value):
"""Appends a new point to the layout"""
if len(value) < self._dim:
raise ValueError("appended item must have %d elements" % self._dim)
self._coords.append([float(coord) for coord in value[0:self._dim]])
def mirror(self, dim):
"""Mirrors the layout along the given dimension(s)
@param dim: the list of dimensions or a single dimension
"""
if isinstance(dim, int):
dim = [dim]
else:
dim = [int(x) for x in dim]
for current_dim in dim:
for row in self._coords:
row[current_dim] *= -1
def rotate(self, angle, dim1=0, dim2=1, **kwds):
"""Rotates the layout by the given degrees on the plane defined by
the given two dimensions.
@param angle: the angle of the rotation, specified in degrees.
@param dim1: the first axis of the plane of the rotation.
@param dim2: the second axis of the plane of the rotation.
@keyword origin: the origin of the rotation. If not specified, the
origin will be the origin of the coordinate system.
"""
origin = list(kwds.get("origin", [0.]*self._dim))
if len(origin) != self._dim:
raise ValueError("origin must have %d dimensions" % self._dim)
radian = angle * pi / 180.
cos_alpha, sin_alpha = cos(radian), sin(radian)
for idx, row in enumerate(self._coords):
x, y = row[dim1] - origin[dim1], row[dim2] - origin[dim2]
row[dim1] = cos_alpha*x - sin_alpha*y + origin[dim1]
row[dim2] = sin_alpha*x + cos_alpha*y + origin[dim2]
def scale(self, *args, **kwds):
"""Scales the layout.
Scaling parameters can be provided either through the C{scale} keyword
argument or through plain unnamed arguments. If a single integer or
float is given, it is interpreted as a uniform multiplier to be applied
on all dimensions. If it is a list or tuple, its length must be equal to
the number of dimensions in the layout, and each element must be an
integer or float describing the scaling coefficient in one of the
dimensions.
@keyword scale: scaling coefficients (integer, float, list or tuple)
@keyword origin: the origin of scaling (this point will stay in place).
Optional, defaults to the origin of the coordinate system being used.
"""
origin = list(kwds.get("origin", [0.]*self._dim))
if len(origin) != self._dim:
raise ValueError("origin must have %d dimensions" % self._dim)
scaling = kwds.get("scale") or args
if isinstance(scaling, (int, float)):
scaling = [scaling]
if len(scaling) == 0:
raise ValueError("scaling factor must be given")
elif len(scaling) == 1:
if type(scaling[0]) == int or type(scaling[0]) == float:
scaling = scaling*self._dim
else:
scaling = scaling[0]
if len(scaling) != self._dim:
raise ValueError("scaling factor list must have %d elements" \
% self._dim)
for idx, row in enumerate(self._coords):
self._coords[idx] = [(row[d]-origin[d])*scaling[d]+origin[d] \
for d in xrange(self._dim)]
def translate(self, *args, **kwds):
"""Translates the layout.
The translation vector can be provided either through the C{v} keyword
argument or through plain unnamed arguments. If unnamed arguments are
used, the vector can be supplied as a single list (or tuple) or just as
a series of arguments. In all cases, the translation vector must have
the same number of dimensions as the layout.
@keyword v: the translation vector
"""
v = kwds.get("v") or args
if len(v) == 0:
raise ValueError("translation vector must be given")
elif len(v) == 1 and type(v[0]) != int and type(v[0]) != float:
v = v[0]
if len(v) != self._dim:
raise ValueError("translation vector must have %d dimensions" \
% self._dim)
for idx, row in enumerate(self._coords):
self._coords[idx] = [row[d]+v[d] for d in xrange(self._dim)]
def to_radial(self, min_angle = 100, max_angle = 80, \
min_radius=0.0, max_radius=1.0):
"""Converts a planar layout to a radial one
This method applies only to 2D layouts. The X coordinate of the
layout is transformed to an angle, with min(x) corresponding to
the parameter called I{min_angle} and max(y) corresponding to
I{max_angle}. Angles are given in degrees, zero degree corresponds
to the direction pointing upwards. The Y coordinate is
interpreted as a radius, with min(y) belonging to the minimum and
max(y) to the maximum radius given in the arguments.
This is not a fully generic polar coordinate transformation, but
it is fairly useful in creating radial tree layouts from ordinary
top-down ones (that's why the Y coordinate belongs to the radius).
It can also be used in conjunction with the Fruchterman-Reingold
layout algorithm via its I{miny} and I{maxy} parameters (see
L{Graph.layout_fruchterman_reingold}) to produce radial layouts
where the radius belongs to some property of the vertices.
@param min_angle: the angle corresponding to the minimum X value
@param max_angle: the angle corresponding to the maximum X value
@param min_radius: the radius corresponding to the minimum Y value
@param max_radius: the radius corresponding to the maximum Y value
"""
if self._dim != 2:
raise TypeError("implemented only for 2D layouts")
bbox = self.bounding_box()
while min_angle > max_angle:
max_angle += 360
while min_angle > 360:
min_angle -= 360
max_angle -= 360
while min_angle < 0:
min_angle += 360
max_angle += 360
ratio_x = (max_angle - min_angle) / bbox.width
ratio_x *= pi / 180.
min_angle *= pi / 180.
ratio_y = (max_radius - min_radius) / bbox.height
for idx, (x, y) in enumerate(self._coords):
alpha = (x-bbox.left) * ratio_x + min_angle
radius = (y-bbox.top) * ratio_y + min_radius
self._coords[idx] = [cos(alpha)*radius, -sin(alpha)*radius]
def transform(self, function, *args, **kwds):
"""Performs an arbitrary transformation on the layout
Additional positional and keyword arguments are passed intact to
the given function.
@param function: a function which receives the coordinates as a
tuple and returns the transformed tuple.
"""
self._coords = [list(function(tuple(row), *args, **kwds)) \
for row in self._coords]
def centroid(self):
"""Returns the centroid of the layout.
The centroid of the layout is the arithmetic mean of the points in
the layout.
@return: the centroid as a list of floats"""
centroid = [RunningMean() for _ in xrange(self._dim)]
for row in self._coords:
for dim in xrange(self._dim):
centroid[dim].add(row[dim])
return [rm.mean for rm in centroid]
def boundaries(self, border=0):
"""Returns the boundaries of the layout.
The boundaries are the minimum and maximum coordinates along all
dimensions.
@param border: this value gets subtracted from the minimum bounds
and gets added to the maximum bounds before returning the coordinates
of the box. Defaults to zero.
@return: the minimum and maximum coordinates along all dimensions,
in a tuple containing two lists, one for the minimum coordinates,
the other one for the maximum.
"""
mins, maxs = [], []
for dim in xrange(self._dim):
col = [row[dim] for row in self._coords]
mins.append(min(col)-border)
maxs.append(max(col)+border)
return mins, maxs
def bounding_box(self, border=0):
"""Returns the bounding box of the layout.
The bounding box of the layout is the smallest box enclosing all the
points in the layout.
@param border: this value gets subtracted from the minimum bounds
and gets added to the maximum bounds before returning the coordinates
of the box. Defaults to zero.
@return: the coordinates of the lower left and the upper right corner
of the box. "Lower left" means the minimum coordinates and "upper right"
means the maximum. These are encapsulated in a L{BoundingBox} object.
"""
if self._dim != 2:
raise ValueError("Layout.boundary_box() supports 2D layouts only")
(x0, y0), (x1, y1) = self.boundaries(border)
return BoundingBox(x0, y0, x1, y1)
def center(self, *args, **kwds):
"""Centers the layout around the given point.
The point itself can be supplied as multiple unnamed arguments, as a
simple unnamed list or as a keyword argument. This operation moves
the centroid of the layout to the given point. If no point is supplied,
defaults to the origin of the coordinate system.
@keyword p: the point where the centroid of the layout will be after
the operation."""
center = kwds.get("p") or args
if len(center) == 0:
center = [0.] * self._dim
elif len(center) == 1 and type(center[0]) != int \
and type(center[0]) != float:
center = center[0]
if len(center) != self._dim:
raise ValueError("the given point must have %d dimensions" \
% self._dim)
centroid = self.centroid()
vec = [center[d]-centroid[d] for d in xrange(self._dim)]
self.translate(vec)
def copy(self):
"""Creates an exact copy of the layout."""
return self.__copy__()
def fit_into(self, bbox, keep_aspect_ratio=True):
"""Fits the layout into the given bounding box.
The layout will be modified in-place.
@param bbox: the bounding box in which to fit the layout. If the
dimension of the layout is d, it can either be a d-tuple (defining
the sizes of the box), a 2d-tuple (defining the coordinates of the
top left and the bottom right point of the box), or a L{BoundingBox}
object (for 2D layouts only).
@param keep_aspect_ratio: whether to keep the aspect ratio of the current
layout. If C{False}, the layout will be rescaled to fit exactly into
the bounding box. If C{True}, the original aspect ratio of the layout
will be kept and it will be centered within the bounding box.
"""
if isinstance(bbox, BoundingBox):
if self._dim != 2:
raise TypeError("bounding boxes work for 2D layouts only")
corner, target_sizes = [bbox.left, bbox.top], [bbox.width, bbox.height]
elif len(bbox) == self._dim:
corner, target_sizes = [0.] * self._dim, list(bbox)
elif len(bbox) == 2 * self._dim:
corner, opposite_corner = bbox[0:self._dim], bbox[self._dim:]
for i in xrange(self._dim):
if corner[i] > opposite_corner[i]:
corner[i], opposite_corner[i] = opposite_corner[i], corner[i]
target_sizes = [max_val-min_val \
for min_val, max_val in izip(corner, opposite_corner)]
mins, maxs = self.boundaries()
sizes = [max_val - min_val for min_val, max_val in izip(mins, maxs)]
for i, size in enumerate(sizes):
if size == 0:
sizes[i] = 2
mins[i] -= 1
maxs[i] += 1
ratios = [float(target_size) / current_size \
for current_size, target_size in izip(sizes, target_sizes)]
if keep_aspect_ratio:
min_ratio = min(ratios)
ratios = [min_ratio] * self._dim
translations = []
for i in xrange(self._dim):
trans = (target_sizes[i] - ratios[i] * sizes[i]) / 2.
trans -= mins[i] * ratios[i] - corner[i]
translations.append(trans)
self.scale(*ratios)
self.translate(*translations)
|