This file is indexed.

/usr/share/pyshared/igraph/statistics.py is in python-igraph 0.6.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# vim:ts=4:sw=4:sts=4:et
# -*- coding: utf-8 -*-
"""
Statistics related stuff in igraph
"""

__license__ = u"""\
Copyright (C) 2006-2012  Tamas Nepusz <ntamas@gmail.com>
Pázmány Péter sétány 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA 
02110-1301 USA
"""

import math

__all__ = ["FittedPowerLaw", "Histogram", "RunningMean", "mean", "median", \
        "percentile", "quantile", "power_law_fit"]


class FittedPowerLaw(object):
    """Result of fitting a power-law to a vector of samples

    Example:

        >>> result = power_law_fit([1, 2, 3, 4, 5, 6], return_alpha_only=False)
        >>> result                   # doctest:+ELLIPSIS
        FittedPowerLaw(continuous=False, alpha=2.425828..., xmin=3.0, L=-7.54633..., D=0.2138..., p=0.99311...)
        >>> print result             # doctest:+ELLIPSIS
        Fitted power-law distribution on discrete data
        <BLANKLINE>
        Exponent (alpha)  = 2.425828
        Cutoff (xmin)     = 3.000000
        <BLANKLINE>
        Log-likelihood    = -7.546337
        <BLANKLINE>
        H0: data was drawn from the fitted distribution
        <BLANKLINE>
        KS test statistic = 0.213817
        p-value           = 0.993111
        <BLANKLINE>
        H0 could not be rejected at significance level 0.05
        >>> result.alpha             # doctest:+ELLIPSIS
        2.425828...
        >>> result.xmin
        3.0
        >>> result.continuous
        False
    """

    def __init__(self, continuous, alpha, xmin, L, D, p):
        self.continuous = continuous
        self.xmin = xmin
        self.alpha = alpha
        self.L = L
        self.D = D
        self.p = p

    def __repr__(self):
        return "%s(continuous=%r, alpha=%r, xmin=%r, L=%r, D=%r, p=%r)" % \
                (self.__class__.__name__, self.continuous, self.alpha, \
                self.xmin, self.L, self.D, self.p)

    def __str__(self):
        return self.summary(significance=0.05)

    def summary(self, significance=0.05):
        """Returns the summary of the power law fit.

        @param significance: the significance level of the Kolmogorov-Smirnov test
          used to decide whether the input data could have come from the fitted
          distribution
        @return: the summary as a string
        """
        result = ["Fitted power-law distribution on %s data" % \
                ("discrete", "continuous")[bool(self.continuous)]]
        result.append("")
        result.append("Exponent (alpha)  = %f" % self.alpha)
        result.append("Cutoff (xmin)     = %f" % self.xmin)
        result.append("")
        result.append("Log-likelihood    = %f" % self.L)
        result.append("")
        result.append("H0: data was drawn from the fitted distribution")
        result.append("")
        result.append("KS test statistic = %f" % self.D)
        result.append("p-value           = %f" % self.p)
        result.append("")
        if self.p < significance:
            result.append("H0 rejected at significance level %g" \
                    % significance)
        else:
            result.append("H0 could not be rejected at significance "\
                    "level %g" % significance)

        return "\n".join(result)


class Histogram(object):
    """Generic histogram class for real numbers
    
    Example:
        
        >>> h = Histogram(5)     # Initializing, bin width = 5
        >>> h << [2,3,2,7,8,5,5,0,7,9]     # Adding more items
        >>> print h
        N = 10, mean +- sd: 4.8000 +- 2.9740
        [ 0,  5): **** (4)
        [ 5, 10): ****** (6)
    """

    def __init__(self, bin_width = 1, data = None):
        """Initializes the histogram with the given data set.

        @param bin_width: the bin width of the histogram.
        @param data: the data set to be used. Must contain real numbers.
        """
        self._bin_width = float(bin_width)
        self._bins = None
        self._min, self._max = None, None
        self._running_mean = RunningMean()
        self.clear()

        if data:
            self.add_many(data)

    def _get_bin(self, num, create = False):
        """Returns the bin index corresponding to the given number.

        @param num: the number for which the bin is being sought
        @param create: whether to create a new bin if no bin exists yet.
        @return: the index of the bin or C{None} if no bin exists yet and
          {create} is C{False}."""
        if len(self._bins) == 0:
            if not create:
                result = None
            else: 
                self._min = int(num/self._bin_width)*self._bin_width
                self._max = self._min+self._bin_width
                self._bins = [0]
                result = 0
            return result

        if num >= self._min:
            binidx = int((num-self._min)/self._bin_width)
            if binidx < len(self._bins):
                return binidx
            if not create:
                return None
            extra_bins = binidx-len(self._bins)+1
            self._bins.extend([0]*extra_bins)
            self._max = self._min + len(self._bins)*self._bin_width
            return binidx

        if not create:
            return None

        extra_bins = int(math.ceil((self._min-num)/self._bin_width))
        self._bins[0:0] = [0]*extra_bins
        self._min -= extra_bins*self._bin_width
        self._max = self._min + len(self._bins)*self._bin_width
        return 0

    @property
    def n(self):
        """Returns the number of elements in the histogram"""
        return len(self._running_mean)

    @property
    def mean(self):
        """Returns the mean of the elements in the histogram"""
        return self._running_mean.mean

    # pylint: disable-msg=C0103
    @property
    def sd(self):
        """Returns the standard deviation of the elements in
        the histogram"""
        return self._running_mean.sd

    @property
    def var(self):
        """Returns the variance of the elements in the histogram"""
        return self._running_mean.var

    def add(self, num, repeat=1):
        """Adds a single number to the histogram.
        
        @param num: the number to be added
        @param repeat: number of repeated additions
        """
        num = float(num)
        binidx = self._get_bin(num, True)
        self._bins[binidx] += repeat 
        self._running_mean.add(num, repeat)

    def add_many(self, data):
        """Adds a single number or the elements of an iterable to the histogram.

        @param data: the data to be added"""
        try:
            iterator = iter(data)
        except TypeError:
            iterator = iter([data])
        for x in iterator:
            self.add(x)
    __lshift__ = add_many

    def clear(self):
        """Clears the collected data"""
        self._bins = []
        self._min, self._max = None, None
        self._running_mean = RunningMean()

    def bins(self):
        """Generator returning the bins of the histogram in increasing order
        
        @return: a tuple with the following elements: left bound, right bound,
          number of elements in the bin"""
        x = self._min
        for elem in self._bins:
            yield (x, x+self._bin_width, elem)
            x += self._bin_width

    def __plot__(self, context, bbox, _, **kwds):
        """Plotting support"""
        from igraph.drawing.coord import DescartesCoordinateSystem
        coord_system = DescartesCoordinateSystem(context, bbox, \
            (kwds.get("min", self._min), 0, \
             kwds.get("max", self._max), kwds.get("max_value", max(self._bins))
            ))

        # Draw the boxes
        context.set_line_width(1)
        context.set_source_rgb(1., 0., 0.)
        x = self._min
        for value in self._bins:
            top_left_x, top_left_y = coord_system.local_to_context(x, value)
            x += self._bin_width
            bottom_right_x, bottom_right_y = coord_system.local_to_context(x, 0)
            context.rectangle(top_left_x, top_left_y, \
                              bottom_right_x - top_left_x, \
                              bottom_right_y - top_left_y)
            context.fill()

        # Draw the axes
        coord_system.draw()

    def to_string(self, max_width=78, show_bars=True, show_counts=True):
        """Returns the string representation of the histogram.

        @param max_width: the maximal width of each line of the string
          This value may not be obeyed if it is too small.
        @param show_bars: specify whether the histogram bars should be shown
        @param show_counts: specify whether the histogram counts should be
          shown. If both I{show_bars} and I{show_counts} are C{False},
          only a general descriptive statistics (number of elements, mean and
          standard deviation) is shown.
        """

        if self._min is None or self._max is None:
            return "N = 0"

        # Determine how many decimal digits should we use
        if int(self._min) == self._min and int(self._bin_width) == self._bin_width:
            number_format = "%d"
        else:
            number_format = "%.3f"
        num_length = max(len(number_format % self._min), \
                         len(number_format % self._max))
        number_format = "%" + str(num_length) + number_format[1:]
        format_string = "[%s, %s): %%s" % (number_format, number_format)

        # Calculate the scale of the bars on the histogram
        if show_bars:
            maxval = max(self._bins)
            if show_counts:
                maxval_length = len(str(maxval))
                scale = maxval // (max_width-2*num_length-maxval_length-9)
            else:
                scale = maxval // (max_width-2*num_length-6)
            scale = max(scale, 1)

        result = ["N = %d, mean +- sd: %.4f +- %.4f" % \
            (self.n, self.mean, self.sd)]

        if show_bars:
            # Print the bars
            if scale > 1:
                result.append("Each * represents %d items" % scale)
            if show_counts:
                format_string += " (%d)"
                for left, right, cnt in self.bins():
                    result.append(format_string % (left, right, '*'*(cnt//scale), cnt))
            else:
                for left, right, cnt in self.bins():
                    result.append(format_string % (left, right, '*'*(cnt//scale)))
        elif show_counts:
            # Print the counts only
            for left, right, cnt in self.bins():
                result.append(format_string % (left, right, cnt))

        return "\n".join(result)

    def __str__(self):
        return self.to_string()



class RunningMean(object):
    """Running mean calculator.
    
    This class can be used to calculate the mean of elements from a
    list, tuple, iterable or any other data source. The mean is
    calculated on the fly without explicitly summing the values,
    so it can be used for data sets with arbitrary item count. Also
    capable of returning the standard deviation (also calculated on
    the fly)
    """

    # pylint: disable-msg=C0103
    def __init__(self, items=None, n=0.0, mean=0.0, sd=0.0):
        """RunningMean(items=None, n=0.0, mean=0.0, sd=0.0)
        
        Initializes the running mean calculator.
        
        There are two possible ways to initialize the calculator.
        First, one can provide an iterable of items; alternatively,
        one can specify the number of items, the mean and the
        standard deviation if we want to continue an interrupted
        calculation.

        @param items: the items that are used to initialize the
          running mean calcuator. If C{items} is given, C{n},
          C{mean} and C{sd} must be zeros.
        @param n: the initial number of elements already processed.
          If this is given, C{items} must be C{None}.
        @param mean: the initial mean. If this is given, C{items}
          must be C{None}.
        @param sd: the initial standard deviation. If this is given,
          C{items} must be C{None}."""
        if items is not None:
            if n != 0 or mean != 0 or sd != 0:
                raise ValueError("n, mean and sd must be zeros if items is not None")
            self.clear()
            self.add_many(items)
        else:
            self._nitems = float(n)
            self._mean = float(mean)
            if n > 1:
                self._sqdiff = float(sd) ** 2 * float(n-1)
                self._sd = float(sd)
            else:
                self._sqdiff = 0.0
                self._sd = 0.0
        
    def add(self, value, repeat=1):
        """RunningMean.add(value, repeat=1)
        
        Adds the given value to the elements from which we calculate
        the mean and the standard deviation.

        @param value: the element to be added
        @param repeat: number of repeated additions
        """
        repeat = int(repeat)
        self._nitems += repeat
        delta = value - self._mean
        self._mean += (repeat*delta / self._nitems)
        self._sqdiff += (repeat*delta) * (value - self._mean)
        if self._nitems > 1:
            self._sd = (self._sqdiff / (self._nitems-1)) ** 0.5

    def add_many(self, values):
        """RunningMean.add(values)
        
        Adds the values in the given iterable to the elements from
        which we calculate the mean. Can also accept a single number.
        The left shift (C{<<}) operator is aliased to this function,
        so you can use it to add elements as well:
            
          >>> rm=RunningMean()
          >>> rm << [1,2,3,4] 
          >>> rm.result               # doctest:+ELLIPSIS
          (2.5, 1.290994...)
        
        @param values: the element(s) to be added
        @type values: iterable"""
        try:
            iterator = iter(values)
        except TypeError:
            iterator = iter([values])
        for value in iterator:
            self.add(value)

    def clear(self):
        """Resets the running mean calculator."""
        self._nitems, self._mean = 0.0, 0.0
        self._sqdiff, self._sd = 0.0, 0.0

    @property
    def result(self):
        """Returns the current mean and standard deviation as a tuple"""
        return self._mean, self._sd

    @property
    def mean(self):
        """Returns the current mean"""
        return self._mean

    @property
    def sd(self):
        """Returns the current standard deviation"""
        return self._sd

    @property
    def var(self):
        """Returns the current variation"""
        return self._sd ** 2

    def __repr__(self):
        return "%s(n=%r, mean=%r, sd=%r)" % \
                (self.__class__.__name__, int(self._nitems),
                        self._mean, self._sd)

    def __str__(self):
        return "Running mean (N=%d, %f +- %f)" % \
            (self._nitems, self._mean, self._sd)
    
    __lshift__ = add_many
    
    def __float__(self):
        return float(self._mean)

    def __int__(self):
        return int(self._mean)

    def __long__(self):
        return long(self._mean)

    def __complex__(self):
        return complex(self._mean)

    def __len__(self):
        return self._nitems


def mean(xs):
    """Returns the mean of an iterable.

    Example:

        >>> mean([1, 4, 7, 11])
        5.75

    @param xs: an iterable yielding numbers.
    @return: the mean of the numbers provided by the iterable.

    @see: RunningMean() if you also need the variance or the standard deviation
    """
    return RunningMean(xs).mean

def median(xs, sort=True):
    """Returns the median of an unsorted or sorted numeric vector.

    @param xs: the vector itself.
    @param sort: whether to sort the vector. If you know that the vector is
      sorted already, pass C{False} here.
    @return: the median, which will always be a float, even if the vector
      contained integers originally.
    """
    if sort:
        xs = sorted(xs)

    mid = int(len(xs) / 2)
    if 2 * mid == len(xs):
        return float(xs[mid-1] + xs[mid]) / 2
    else:
        return float(xs[mid])

def percentile(xs, p=(25, 50, 75), sort=True):
    """Returns the pth percentile of an unsorted or sorted numeric vector.

    This is equivalent to calling quantile(xs, p/100.0); see L{quantile}
    for more details on the calculation.

    Example:

        >>> round(percentile([15, 20, 40, 35, 50], 40), 2)
        26.0
        >>> for perc in percentile([15, 20, 40, 35, 50], (0, 25, 50, 75, 100)):
        ...     print "%.2f" % perc
        ...
        15.00
        17.50
        35.00
        45.00
        50.00

    @param xs: the vector itself.
    @param p: the percentile we are looking for. It may also be a list if you
      want to calculate multiple quantiles with a single call. The default
      value calculates the 25th, 50th and 75th percentile.
    @param sort: whether to sort the vector. If you know that the vector is
      sorted already, pass C{False} here.
    @return: the pth percentile, which will always be a float, even if the vector
      contained integers originally. If p is a list, the result will also be a
      list containing the percentiles for each item in the list.
    """
    if hasattr(p, "__iter__"):
        return quantile(xs, (x/100.0 for x in p), sort)
    return quantile(xs, p/100.0, sort)

def power_law_fit(data, xmin=None, method="auto", return_alpha_only=True):
    """Fitting a power-law distribution to empirical data

    @param data: the data to fit, a list containing integer values
    @param xmin: the lower bound for fitting the power-law. If C{None},
      the optimal xmin value will be estimated as well. Zero means that
      the smallest possible xmin value will be used.
    @param method: the fitting method to use. The following methods are
      implemented so far:

        - C{continuous}, C{hill}: exact maximum likelihood estimation
          when the input data comes from a continuous scale. This is
          known as the Hill estimator. The statistical error of
          this estimator is M{(alpha-1) / sqrt(n)}, where alpha is the
          estimated exponent and M{n} is the number of data points above
          M{xmin}. The estimator is known to exhibit a small finite
          sample-size bias of order M{O(n^-1)}, which is small when
          M{n > 100}. igraph will try to compensate for the finite sample
          size if n is small.

        - C{discrete}: exact maximum likelihood estimation when the
          input comes from a discrete scale (see Clauset et al among the
          references).

        - C{auto}: exact maximum likelihood estimation where the continuous
          method is used if the input vector contains at least one fractional
          value and the discrete method is used if the input vector contains
          integers only.

    @param return_alpha_only: whether to return the fitted exponent only.
      When this argument is C{True}, the function will return the fitted power-law
      exponent only. When C{False}, the function will return a L{FittedPowerLaw}
      object with much more details. The default value is C{True} for the time
      being for sake of compatibility with earlier releases, but it will be changed
      to C{False} from igraph 0.7 onwards.

    @return: the fitted exponent or a L{FittedPowerLaw} object, depending on the
      value of C{return_alpha_only}.
    
    @newfield ref: Reference
    @ref: MEJ Newman: Power laws, Pareto distributions and Zipf's law.
      Contemporary Physics 46, 323-351 (2005)
    @ref: A Clauset, CR Shalizi, MEJ Newman: Power-law distributions
      in empirical data. E-print (2007). arXiv:0706.1062"""
    from igraph._igraph import _power_law_fit

    if xmin is None or xmin < 0:
        xmin = -1

    method = method.lower()
    if method not in ("continuous", "hill", "discrete", "auto"):
        raise ValueError("unknown method: %s" % method)

    force_continuous = method in ("continuous", "hill")
    fit = FittedPowerLaw(*_power_law_fit(data, xmin, force_continuous))
    if return_alpha_only:
        from warnings import warn
        warn("power_law_fit will return a FittedPowerLaw object from igraph "\
                "0.7 onwards. Better prepare for that by setting return_alpha_only "\
                "to False when calling power_law_fit()", PendingDeprecationWarning,
                stacklevel=3)
        return fit.alpha
    else:
        return fit

def quantile(xs, q=(0.25, 0.5, 0.75), sort=True):
    """Returns the qth quantile of an unsorted or sorted numeric vector.

    There are a number of different ways to calculate the sample quantile. The
    method implemented by igraph is the one recommended by NIST. First we
    calculate a rank n as q(N+1), where N is the number of items in xs, then we
    split n into its integer component k and decimal component d. If k <= 1,
    we return the first element; if k >= N, we return the last element,
    otherwise we return the linear interpolation between xs[k-1] and xs[k]
    using a factor d.

    Example:

        >>> round(quantile([15, 20, 40, 35, 50], 0.4), 2)
        26.0

    @param xs: the vector itself.
    @param q: the quantile we are looking for. It may also be a list if you
      want to calculate multiple quantiles with a single call. The default
      value calculates the 25th, 50th and 75th percentile.
    @param sort: whether to sort the vector. If you know that the vector is
      sorted already, pass C{False} here.
    @return: the qth quantile, which will always be a float, even if the vector
      contained integers originally. If q is a list, the result will also be a
      list containing the quantiles for each item in the list.
    """
    if not xs:
        raise ValueError("xs must not be empty")

    if sort:
        xs = sorted(xs)

    if hasattr(q, "__iter__"):
        qs = q
        return_single = False
    else:
        qs = [q]
        return_single = True

    result = []
    for q in qs:
        if q < 0 or q > 1:
            raise ValueError("q must be between 0 and 1")
        n = float(q) * (len(xs)+1)
        k, d = int(n), n-int(n)
        if k >= len(xs):
            result.append(xs[-1])
        elif k < 1:
            result.append(xs[0])
        else:
            result.append((1-d) * xs[k-1] + d * xs[k])
    if return_single:
        result = result[0]
    return result

def sd(xs):
    """Returns the standard deviation of an iterable.

    Example:

        >>> sd([1, 4, 7, 11])       #doctest:+ELLIPSIS
        4.2720...

    @param xs: an iterable yielding numbers.
    @return: the standard deviation of the numbers provided by the iterable.

    @see: RunningMean() if you also need the mean
    """
    return RunningMean(xs).sd

def var(xs):
    """Returns the variance of an iterable.

    Example:

        >>> var([1, 4, 8, 11])            #doctest:+ELLIPSIS
        19.333333...

    @param xs: an iterable yielding numbers.
    @return: the variance of the numbers provided by the iterable.

    @see: RunningMean() if you also need the mean
    """
    return RunningMean(xs).var