/usr/share/pyshared/igraph/statistics.py is in python-igraph 0.6.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 | # vim:ts=4:sw=4:sts=4:et
# -*- coding: utf-8 -*-
"""
Statistics related stuff in igraph
"""
__license__ = u"""\
Copyright (C) 2006-2012 Tamas Nepusz <ntamas@gmail.com>
Pázmány Péter sétány 1/a, 1117 Budapest, Hungary
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
"""
import math
__all__ = ["FittedPowerLaw", "Histogram", "RunningMean", "mean", "median", \
"percentile", "quantile", "power_law_fit"]
class FittedPowerLaw(object):
"""Result of fitting a power-law to a vector of samples
Example:
>>> result = power_law_fit([1, 2, 3, 4, 5, 6], return_alpha_only=False)
>>> result # doctest:+ELLIPSIS
FittedPowerLaw(continuous=False, alpha=2.425828..., xmin=3.0, L=-7.54633..., D=0.2138..., p=0.99311...)
>>> print result # doctest:+ELLIPSIS
Fitted power-law distribution on discrete data
<BLANKLINE>
Exponent (alpha) = 2.425828
Cutoff (xmin) = 3.000000
<BLANKLINE>
Log-likelihood = -7.546337
<BLANKLINE>
H0: data was drawn from the fitted distribution
<BLANKLINE>
KS test statistic = 0.213817
p-value = 0.993111
<BLANKLINE>
H0 could not be rejected at significance level 0.05
>>> result.alpha # doctest:+ELLIPSIS
2.425828...
>>> result.xmin
3.0
>>> result.continuous
False
"""
def __init__(self, continuous, alpha, xmin, L, D, p):
self.continuous = continuous
self.xmin = xmin
self.alpha = alpha
self.L = L
self.D = D
self.p = p
def __repr__(self):
return "%s(continuous=%r, alpha=%r, xmin=%r, L=%r, D=%r, p=%r)" % \
(self.__class__.__name__, self.continuous, self.alpha, \
self.xmin, self.L, self.D, self.p)
def __str__(self):
return self.summary(significance=0.05)
def summary(self, significance=0.05):
"""Returns the summary of the power law fit.
@param significance: the significance level of the Kolmogorov-Smirnov test
used to decide whether the input data could have come from the fitted
distribution
@return: the summary as a string
"""
result = ["Fitted power-law distribution on %s data" % \
("discrete", "continuous")[bool(self.continuous)]]
result.append("")
result.append("Exponent (alpha) = %f" % self.alpha)
result.append("Cutoff (xmin) = %f" % self.xmin)
result.append("")
result.append("Log-likelihood = %f" % self.L)
result.append("")
result.append("H0: data was drawn from the fitted distribution")
result.append("")
result.append("KS test statistic = %f" % self.D)
result.append("p-value = %f" % self.p)
result.append("")
if self.p < significance:
result.append("H0 rejected at significance level %g" \
% significance)
else:
result.append("H0 could not be rejected at significance "\
"level %g" % significance)
return "\n".join(result)
class Histogram(object):
"""Generic histogram class for real numbers
Example:
>>> h = Histogram(5) # Initializing, bin width = 5
>>> h << [2,3,2,7,8,5,5,0,7,9] # Adding more items
>>> print h
N = 10, mean +- sd: 4.8000 +- 2.9740
[ 0, 5): **** (4)
[ 5, 10): ****** (6)
"""
def __init__(self, bin_width = 1, data = None):
"""Initializes the histogram with the given data set.
@param bin_width: the bin width of the histogram.
@param data: the data set to be used. Must contain real numbers.
"""
self._bin_width = float(bin_width)
self._bins = None
self._min, self._max = None, None
self._running_mean = RunningMean()
self.clear()
if data:
self.add_many(data)
def _get_bin(self, num, create = False):
"""Returns the bin index corresponding to the given number.
@param num: the number for which the bin is being sought
@param create: whether to create a new bin if no bin exists yet.
@return: the index of the bin or C{None} if no bin exists yet and
{create} is C{False}."""
if len(self._bins) == 0:
if not create:
result = None
else:
self._min = int(num/self._bin_width)*self._bin_width
self._max = self._min+self._bin_width
self._bins = [0]
result = 0
return result
if num >= self._min:
binidx = int((num-self._min)/self._bin_width)
if binidx < len(self._bins):
return binidx
if not create:
return None
extra_bins = binidx-len(self._bins)+1
self._bins.extend([0]*extra_bins)
self._max = self._min + len(self._bins)*self._bin_width
return binidx
if not create:
return None
extra_bins = int(math.ceil((self._min-num)/self._bin_width))
self._bins[0:0] = [0]*extra_bins
self._min -= extra_bins*self._bin_width
self._max = self._min + len(self._bins)*self._bin_width
return 0
@property
def n(self):
"""Returns the number of elements in the histogram"""
return len(self._running_mean)
@property
def mean(self):
"""Returns the mean of the elements in the histogram"""
return self._running_mean.mean
# pylint: disable-msg=C0103
@property
def sd(self):
"""Returns the standard deviation of the elements in
the histogram"""
return self._running_mean.sd
@property
def var(self):
"""Returns the variance of the elements in the histogram"""
return self._running_mean.var
def add(self, num, repeat=1):
"""Adds a single number to the histogram.
@param num: the number to be added
@param repeat: number of repeated additions
"""
num = float(num)
binidx = self._get_bin(num, True)
self._bins[binidx] += repeat
self._running_mean.add(num, repeat)
def add_many(self, data):
"""Adds a single number or the elements of an iterable to the histogram.
@param data: the data to be added"""
try:
iterator = iter(data)
except TypeError:
iterator = iter([data])
for x in iterator:
self.add(x)
__lshift__ = add_many
def clear(self):
"""Clears the collected data"""
self._bins = []
self._min, self._max = None, None
self._running_mean = RunningMean()
def bins(self):
"""Generator returning the bins of the histogram in increasing order
@return: a tuple with the following elements: left bound, right bound,
number of elements in the bin"""
x = self._min
for elem in self._bins:
yield (x, x+self._bin_width, elem)
x += self._bin_width
def __plot__(self, context, bbox, _, **kwds):
"""Plotting support"""
from igraph.drawing.coord import DescartesCoordinateSystem
coord_system = DescartesCoordinateSystem(context, bbox, \
(kwds.get("min", self._min), 0, \
kwds.get("max", self._max), kwds.get("max_value", max(self._bins))
))
# Draw the boxes
context.set_line_width(1)
context.set_source_rgb(1., 0., 0.)
x = self._min
for value in self._bins:
top_left_x, top_left_y = coord_system.local_to_context(x, value)
x += self._bin_width
bottom_right_x, bottom_right_y = coord_system.local_to_context(x, 0)
context.rectangle(top_left_x, top_left_y, \
bottom_right_x - top_left_x, \
bottom_right_y - top_left_y)
context.fill()
# Draw the axes
coord_system.draw()
def to_string(self, max_width=78, show_bars=True, show_counts=True):
"""Returns the string representation of the histogram.
@param max_width: the maximal width of each line of the string
This value may not be obeyed if it is too small.
@param show_bars: specify whether the histogram bars should be shown
@param show_counts: specify whether the histogram counts should be
shown. If both I{show_bars} and I{show_counts} are C{False},
only a general descriptive statistics (number of elements, mean and
standard deviation) is shown.
"""
if self._min is None or self._max is None:
return "N = 0"
# Determine how many decimal digits should we use
if int(self._min) == self._min and int(self._bin_width) == self._bin_width:
number_format = "%d"
else:
number_format = "%.3f"
num_length = max(len(number_format % self._min), \
len(number_format % self._max))
number_format = "%" + str(num_length) + number_format[1:]
format_string = "[%s, %s): %%s" % (number_format, number_format)
# Calculate the scale of the bars on the histogram
if show_bars:
maxval = max(self._bins)
if show_counts:
maxval_length = len(str(maxval))
scale = maxval // (max_width-2*num_length-maxval_length-9)
else:
scale = maxval // (max_width-2*num_length-6)
scale = max(scale, 1)
result = ["N = %d, mean +- sd: %.4f +- %.4f" % \
(self.n, self.mean, self.sd)]
if show_bars:
# Print the bars
if scale > 1:
result.append("Each * represents %d items" % scale)
if show_counts:
format_string += " (%d)"
for left, right, cnt in self.bins():
result.append(format_string % (left, right, '*'*(cnt//scale), cnt))
else:
for left, right, cnt in self.bins():
result.append(format_string % (left, right, '*'*(cnt//scale)))
elif show_counts:
# Print the counts only
for left, right, cnt in self.bins():
result.append(format_string % (left, right, cnt))
return "\n".join(result)
def __str__(self):
return self.to_string()
class RunningMean(object):
"""Running mean calculator.
This class can be used to calculate the mean of elements from a
list, tuple, iterable or any other data source. The mean is
calculated on the fly without explicitly summing the values,
so it can be used for data sets with arbitrary item count. Also
capable of returning the standard deviation (also calculated on
the fly)
"""
# pylint: disable-msg=C0103
def __init__(self, items=None, n=0.0, mean=0.0, sd=0.0):
"""RunningMean(items=None, n=0.0, mean=0.0, sd=0.0)
Initializes the running mean calculator.
There are two possible ways to initialize the calculator.
First, one can provide an iterable of items; alternatively,
one can specify the number of items, the mean and the
standard deviation if we want to continue an interrupted
calculation.
@param items: the items that are used to initialize the
running mean calcuator. If C{items} is given, C{n},
C{mean} and C{sd} must be zeros.
@param n: the initial number of elements already processed.
If this is given, C{items} must be C{None}.
@param mean: the initial mean. If this is given, C{items}
must be C{None}.
@param sd: the initial standard deviation. If this is given,
C{items} must be C{None}."""
if items is not None:
if n != 0 or mean != 0 or sd != 0:
raise ValueError("n, mean and sd must be zeros if items is not None")
self.clear()
self.add_many(items)
else:
self._nitems = float(n)
self._mean = float(mean)
if n > 1:
self._sqdiff = float(sd) ** 2 * float(n-1)
self._sd = float(sd)
else:
self._sqdiff = 0.0
self._sd = 0.0
def add(self, value, repeat=1):
"""RunningMean.add(value, repeat=1)
Adds the given value to the elements from which we calculate
the mean and the standard deviation.
@param value: the element to be added
@param repeat: number of repeated additions
"""
repeat = int(repeat)
self._nitems += repeat
delta = value - self._mean
self._mean += (repeat*delta / self._nitems)
self._sqdiff += (repeat*delta) * (value - self._mean)
if self._nitems > 1:
self._sd = (self._sqdiff / (self._nitems-1)) ** 0.5
def add_many(self, values):
"""RunningMean.add(values)
Adds the values in the given iterable to the elements from
which we calculate the mean. Can also accept a single number.
The left shift (C{<<}) operator is aliased to this function,
so you can use it to add elements as well:
>>> rm=RunningMean()
>>> rm << [1,2,3,4]
>>> rm.result # doctest:+ELLIPSIS
(2.5, 1.290994...)
@param values: the element(s) to be added
@type values: iterable"""
try:
iterator = iter(values)
except TypeError:
iterator = iter([values])
for value in iterator:
self.add(value)
def clear(self):
"""Resets the running mean calculator."""
self._nitems, self._mean = 0.0, 0.0
self._sqdiff, self._sd = 0.0, 0.0
@property
def result(self):
"""Returns the current mean and standard deviation as a tuple"""
return self._mean, self._sd
@property
def mean(self):
"""Returns the current mean"""
return self._mean
@property
def sd(self):
"""Returns the current standard deviation"""
return self._sd
@property
def var(self):
"""Returns the current variation"""
return self._sd ** 2
def __repr__(self):
return "%s(n=%r, mean=%r, sd=%r)" % \
(self.__class__.__name__, int(self._nitems),
self._mean, self._sd)
def __str__(self):
return "Running mean (N=%d, %f +- %f)" % \
(self._nitems, self._mean, self._sd)
__lshift__ = add_many
def __float__(self):
return float(self._mean)
def __int__(self):
return int(self._mean)
def __long__(self):
return long(self._mean)
def __complex__(self):
return complex(self._mean)
def __len__(self):
return self._nitems
def mean(xs):
"""Returns the mean of an iterable.
Example:
>>> mean([1, 4, 7, 11])
5.75
@param xs: an iterable yielding numbers.
@return: the mean of the numbers provided by the iterable.
@see: RunningMean() if you also need the variance or the standard deviation
"""
return RunningMean(xs).mean
def median(xs, sort=True):
"""Returns the median of an unsorted or sorted numeric vector.
@param xs: the vector itself.
@param sort: whether to sort the vector. If you know that the vector is
sorted already, pass C{False} here.
@return: the median, which will always be a float, even if the vector
contained integers originally.
"""
if sort:
xs = sorted(xs)
mid = int(len(xs) / 2)
if 2 * mid == len(xs):
return float(xs[mid-1] + xs[mid]) / 2
else:
return float(xs[mid])
def percentile(xs, p=(25, 50, 75), sort=True):
"""Returns the pth percentile of an unsorted or sorted numeric vector.
This is equivalent to calling quantile(xs, p/100.0); see L{quantile}
for more details on the calculation.
Example:
>>> round(percentile([15, 20, 40, 35, 50], 40), 2)
26.0
>>> for perc in percentile([15, 20, 40, 35, 50], (0, 25, 50, 75, 100)):
... print "%.2f" % perc
...
15.00
17.50
35.00
45.00
50.00
@param xs: the vector itself.
@param p: the percentile we are looking for. It may also be a list if you
want to calculate multiple quantiles with a single call. The default
value calculates the 25th, 50th and 75th percentile.
@param sort: whether to sort the vector. If you know that the vector is
sorted already, pass C{False} here.
@return: the pth percentile, which will always be a float, even if the vector
contained integers originally. If p is a list, the result will also be a
list containing the percentiles for each item in the list.
"""
if hasattr(p, "__iter__"):
return quantile(xs, (x/100.0 for x in p), sort)
return quantile(xs, p/100.0, sort)
def power_law_fit(data, xmin=None, method="auto", return_alpha_only=True):
"""Fitting a power-law distribution to empirical data
@param data: the data to fit, a list containing integer values
@param xmin: the lower bound for fitting the power-law. If C{None},
the optimal xmin value will be estimated as well. Zero means that
the smallest possible xmin value will be used.
@param method: the fitting method to use. The following methods are
implemented so far:
- C{continuous}, C{hill}: exact maximum likelihood estimation
when the input data comes from a continuous scale. This is
known as the Hill estimator. The statistical error of
this estimator is M{(alpha-1) / sqrt(n)}, where alpha is the
estimated exponent and M{n} is the number of data points above
M{xmin}. The estimator is known to exhibit a small finite
sample-size bias of order M{O(n^-1)}, which is small when
M{n > 100}. igraph will try to compensate for the finite sample
size if n is small.
- C{discrete}: exact maximum likelihood estimation when the
input comes from a discrete scale (see Clauset et al among the
references).
- C{auto}: exact maximum likelihood estimation where the continuous
method is used if the input vector contains at least one fractional
value and the discrete method is used if the input vector contains
integers only.
@param return_alpha_only: whether to return the fitted exponent only.
When this argument is C{True}, the function will return the fitted power-law
exponent only. When C{False}, the function will return a L{FittedPowerLaw}
object with much more details. The default value is C{True} for the time
being for sake of compatibility with earlier releases, but it will be changed
to C{False} from igraph 0.7 onwards.
@return: the fitted exponent or a L{FittedPowerLaw} object, depending on the
value of C{return_alpha_only}.
@newfield ref: Reference
@ref: MEJ Newman: Power laws, Pareto distributions and Zipf's law.
Contemporary Physics 46, 323-351 (2005)
@ref: A Clauset, CR Shalizi, MEJ Newman: Power-law distributions
in empirical data. E-print (2007). arXiv:0706.1062"""
from igraph._igraph import _power_law_fit
if xmin is None or xmin < 0:
xmin = -1
method = method.lower()
if method not in ("continuous", "hill", "discrete", "auto"):
raise ValueError("unknown method: %s" % method)
force_continuous = method in ("continuous", "hill")
fit = FittedPowerLaw(*_power_law_fit(data, xmin, force_continuous))
if return_alpha_only:
from warnings import warn
warn("power_law_fit will return a FittedPowerLaw object from igraph "\
"0.7 onwards. Better prepare for that by setting return_alpha_only "\
"to False when calling power_law_fit()", PendingDeprecationWarning,
stacklevel=3)
return fit.alpha
else:
return fit
def quantile(xs, q=(0.25, 0.5, 0.75), sort=True):
"""Returns the qth quantile of an unsorted or sorted numeric vector.
There are a number of different ways to calculate the sample quantile. The
method implemented by igraph is the one recommended by NIST. First we
calculate a rank n as q(N+1), where N is the number of items in xs, then we
split n into its integer component k and decimal component d. If k <= 1,
we return the first element; if k >= N, we return the last element,
otherwise we return the linear interpolation between xs[k-1] and xs[k]
using a factor d.
Example:
>>> round(quantile([15, 20, 40, 35, 50], 0.4), 2)
26.0
@param xs: the vector itself.
@param q: the quantile we are looking for. It may also be a list if you
want to calculate multiple quantiles with a single call. The default
value calculates the 25th, 50th and 75th percentile.
@param sort: whether to sort the vector. If you know that the vector is
sorted already, pass C{False} here.
@return: the qth quantile, which will always be a float, even if the vector
contained integers originally. If q is a list, the result will also be a
list containing the quantiles for each item in the list.
"""
if not xs:
raise ValueError("xs must not be empty")
if sort:
xs = sorted(xs)
if hasattr(q, "__iter__"):
qs = q
return_single = False
else:
qs = [q]
return_single = True
result = []
for q in qs:
if q < 0 or q > 1:
raise ValueError("q must be between 0 and 1")
n = float(q) * (len(xs)+1)
k, d = int(n), n-int(n)
if k >= len(xs):
result.append(xs[-1])
elif k < 1:
result.append(xs[0])
else:
result.append((1-d) * xs[k-1] + d * xs[k])
if return_single:
result = result[0]
return result
def sd(xs):
"""Returns the standard deviation of an iterable.
Example:
>>> sd([1, 4, 7, 11]) #doctest:+ELLIPSIS
4.2720...
@param xs: an iterable yielding numbers.
@return: the standard deviation of the numbers provided by the iterable.
@see: RunningMean() if you also need the mean
"""
return RunningMean(xs).sd
def var(xs):
"""Returns the variance of an iterable.
Example:
>>> var([1, 4, 8, 11]) #doctest:+ELLIPSIS
19.333333...
@param xs: an iterable yielding numbers.
@return: the variance of the numbers provided by the iterable.
@see: RunningMean() if you also need the mean
"""
return RunningMean(xs).var
|