/usr/share/pyshared/kivy/gesture.py is in python-kivy 1.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | '''
Gesture recognition
===================
You can easily use these class to create
new gesture, and compare them::
from kivy.gesture import Gesture, GestureDatabase
# Create a gesture
g = Gesture()
g.add_stroke(point_list=[(1,1), (3,4), (2,1)])
g.normalize()
# Add him to database
gdb = GestureDatabase()
gdb.add_gesture(g)
# And for the next gesture, try to find him !
g2 = Gesture()
# ...
gdb.find(g2)
.. warning::
you don't really want to start from such an example, this is more to get the
idea how one would construct gestures dynamically, but you would need a lot
more points, it's better to record gestures in a file, and reload them to
compare latter, look into the examples/gestures directory for an example of
how to do that.
'''
__all__ = ('Gesture', 'GestureDatabase', 'GesturePoint', 'GestureStroke')
import pickle
import base64
import zlib
import math
from cStringIO import StringIO
from kivy.vector import Vector
class GestureDatabase(object):
'''Class to handle a gesture database.'''
def __init__(self):
self.db = []
def add_gesture(self, gesture):
'''Add a new gesture in database'''
self.db.append(gesture)
def find(self, gesture, minscore=0.9, rotation_invariant=True):
'''Find current gesture in database'''
if not gesture:
return
best = None
bestscore = minscore
for g in self.db:
score = g.get_score(gesture, rotation_invariant)
if score < bestscore:
continue
bestscore = score
best = g
if not best:
return
return (bestscore, best)
def gesture_to_str(self, gesture):
'''Convert a gesture into a unique string'''
io = StringIO()
p = pickle.Pickler(io)
p.dump(gesture)
data = base64.b64encode(zlib.compress(io.getvalue(), 9))
return data
def str_to_gesture(self, data):
'''Convert a unique string to a gesture'''
io = StringIO(zlib.decompress(base64.b64decode(data)))
p = pickle.Unpickler(io)
gesture = p.load()
return gesture
class GesturePoint:
def __init__(self, x, y):
'''Stores the x,y coordinates of a point in the gesture'''
self.x = float(x)
self.y = float(y)
def scale(self, factor):
''' Scales the point by the given factor '''
self.x *= factor
self.y *= factor
return self
def __repr__(self):
return 'Mouse_point: %f,%f' % (self.x, self.y)
class GestureStroke:
''' Gestures can be made up of multiple strokes '''
def __init__(self):
''' A stroke in the gesture '''
self.points = list()
self.screenpoints = list()
# These return the min and max coordinates of the stroke
@property
def max_x(self):
if len(self.points) == 0:
return 0
return max(self.points, key = lambda pt: pt.x).x
@property
def min_x(self):
if len(self.points) == 0:
return 0
return min(self.points, key = lambda pt: pt.x).x
@property
def max_y(self):
if len(self.points) == 0:
return 0
return max(self.points, key = lambda pt: pt.y).y
@property
def min_y(self):
if len(self.points) == 0:
return 0
return min(self.points, key = lambda pt: pt.y).y
def add_point(self, x, y):
'''
add_point(x=x_pos, y=y_pos)
Adds a point to the stroke
'''
self.points.append(GesturePoint(x, y))
self.screenpoints.append((x, y))
def scale_stroke(self, scale_factor):
'''
scale_stroke(scale_factor=float)
Scales the stroke down by scale_factor
'''
self.points = map(lambda pt: pt.scale(scale_factor), self.points)
def points_distance(self, point1, point2):
'''
points_distance(point1=GesturePoint, point2=GesturePoint)
Returns the distance between two GesturePoint
'''
x = point1.x - point2.x
y = point1.y - point2.y
return math.sqrt(x*x + y*y)
def stroke_length(self, point_list=None):
'''Finds the length of the stroke. If a point list is given,
finds the length of that list.
'''
if point_list is None:
point_list = self.points
gesture_length = 0.0
if len(point_list) <= 1: # If there is only one point -> no length
return gesture_length
for i in xrange(len(point_list)-1):
gesture_length += self.points_distance(
point_list[i], point_list[i+1])
return gesture_length
def normalize_stroke(self, sample_points = 32):
'''Normalizes strokes so that every stroke has a standard number of
points. Returns True if stroke is normalized, False if it can't be
normalized. sample_points control the resolution of the stroke.
'''
# If there is only one point or the length is 0, don't normalize
if len(self.points) <= 1 or self.stroke_length(self.points) == 0.0:
return False
# Calculate how long each point should be in the stroke
target_stroke_size = self.stroke_length(self.points) / \
float(sample_points)
new_points = list()
new_points.append(self.points[0])
# We loop on the points
prev = self.points[0]
src_distance = 0.0
dst_distance = target_stroke_size
for curr in self.points[1:]:
d = self.points_distance(prev, curr)
if d > 0:
prev = curr
src_distance = src_distance+d
# The new point need to be inserted into the
# segment [prev, curr]
while dst_distance < src_distance:
x_dir = curr.x - prev.x
y_dir = curr.y - prev.y
ratio = (src_distance-dst_distance)/d
to_x = x_dir * ratio + prev.x
to_y = y_dir * ratio + prev.y
new_points.append(GesturePoint(to_x, to_y))
dst_distance = self.stroke_length(self.points) / \
float(sample_points) * len(new_points)
# If this happens, we are into troubles...
if not len(new_points) == sample_points:
raise ValueError('Invalid number of strokes points; got '
'%d while it should be %d' %
(len(new_points), sample_points))
self.points = new_points
return True
def center_stroke(self, offset_x, offset_y):
'''Centers the stroke by offseting the points'''
for point in self.points:
point.x -= offset_x
point.y -= offset_y
class Gesture:
'''A python implementation of a gesture recognition algorithm by
Oleg Dopertchouk: http://www.gamedev.net/reference/articles/article2039.asp
Implemented by Jeiel Aranal (chemikhazi@gmail.com),
released into the public domain.
'''
# Tolerance for evaluation using the '==' operator
DEFAULT_TOLERANCE = 0.1
def __init__(self, tolerance=None):
'''
Gesture([tolerance=float])
Creates a new gesture with an optional matching tolerance value
'''
self.width = 0.
self.height = 0.
self.gesture_product = 0.
self.strokes = list()
if tolerance is None:
self.tolerance = Gesture.DEFAULT_TOLERANCE
else:
self.tolerance = tolerance
def _scale_gesture(self):
''' Scales down the gesture to a unit of 1 '''
# map() creates a list of min/max coordinates of the strokes
# in the gesture and min()/max() pulls the lowest/highest value
min_x = min(map(lambda stroke: stroke.min_x, self.strokes))
max_x = max(map(lambda stroke: stroke.max_x, self.strokes))
min_y = min(map(lambda stroke: stroke.min_y, self.strokes))
max_y = max(map(lambda stroke: stroke.max_y, self.strokes))
x_len = max_x - min_x
self.width = x_len
y_len = max_y - min_y
self.height = y_len
scale_factor = max(x_len, y_len)
if scale_factor <= 0.0:
return False
scale_factor = 1.0 / scale_factor
for stroke in self.strokes:
stroke.scale_stroke(scale_factor)
return True
def _center_gesture(self):
''' Centers the Gesture,Point of the gesture '''
total_x = 0.0
total_y = 0.0
total_points = 0
for stroke in self.strokes:
# adds up all the points inside the stroke
stroke_y = sum([pt.y for pt in stroke.points])
stroke_x = sum([pt.x for pt in stroke.points])
total_y += stroke_y
total_x += stroke_x
total_points += len(stroke.points)
if total_points == 0:
return False
# Average to get the offset
total_x /= total_points
total_y /= total_points
# Apply the offset to the strokes
for stroke in self.strokes:
stroke.center_stroke(total_x, total_y)
return True
def add_stroke(self, point_list=None):
'''Adds a stroke to the gesture and returns the Stroke instance.
Optional point_list argument is a list of the mouse points for
the stroke.
'''
self.strokes.append(GestureStroke())
if isinstance(point_list, list) or isinstance(point_list, tuple):
for point in point_list:
if isinstance(point, GesturePoint):
self.strokes[-1].points.append(point)
elif isinstance(point, list) or isinstance(point, tuple):
if len(point) != 2:
raise ValueError("Stroke entry must have 2 values max")
self.strokes[-1].add_point(point[0], point[1])
else:
raise TypeError("The point list should either be " + \
" tuples of x and y or a list of GesturePoint objects")
elif point_list is not None:
raise ValueError("point_list should be a tuple/list")
return self.strokes[-1]
def normalize(self, stroke_samples=32):
'''Runs the gesture normalization algorithm and calculates the dot
product with self
'''
if not self._scale_gesture() or not self._center_gesture():
self.gesture_product = False
return False
for stroke in self.strokes:
stroke.normalize_stroke(stroke_samples)
self.gesture_product = self.dot_product(self)
def get_rigid_rotation(self, dstpts):
'''
Extract the rotation to apply to a group of points to minimize the
distance to a second group of points. The two groups of points are
assumed to be centered. This is a simple version that just pick
an angle based on the first point of the gesture.
'''
if len(self.strokes) < 1 or len(self.strokes[0].points) < 1:
return 0
if len(dstpts.strokes) < 1 or len(dstpts.strokes[0].points) < 1:
return 0
p = dstpts.strokes[0].points[0]
target = Vector([p.x, p.y])
source = Vector([p.x, p.y])
return source.angle(target)
def dot_product(self, comparison_gesture):
''' Calculates the dot product of the gesture with another gesture '''
if len(comparison_gesture.strokes) != len(self.strokes):
return -1
if getattr(comparison_gesture, 'gesture_product', True) is False or \
getattr(self, 'gesture_product', True) is False:
return -1
dot_product = 0.0
for stroke_index, (my_stroke, cmp_stroke) in enumerate(
zip(self.strokes, comparison_gesture.strokes)):
for pt_index, (my_point, cmp_point) in enumerate(
zip(my_stroke.points, cmp_stroke.points)):
dot_product += my_point.x * cmp_point.x +\
my_point.y * cmp_point.y
return dot_product
def rotate(self, angle):
g = Gesture()
for stroke in self.strokes:
tmp = []
for j in stroke.points:
v = Vector([j.x, j.y]).rotate(angle)
tmp.append(v)
g.add_stroke(tmp)
g.gesture_product = g.dot_product(g)
return g
def get_score(self, comparison_gesture, rotation_invariant=True):
''' Returns the matching score of the gesture against another gesture
'''
if isinstance(comparison_gesture, Gesture):
if rotation_invariant:
# get orientation
angle = self.get_rigid_rotation(comparison_gesture)
# rotate the gesture to be in the same frame.
comparison_gesture = comparison_gesture.rotate(angle)
# this is the normal "orientation" code.
score = self.dot_product(comparison_gesture)
if score <= 0:
return score
score /= math.sqrt(
self.gesture_product * comparison_gesture.gesture_product)
return score
def __eq__(self, comparison_gesture):
''' Allows easy comparisons between gesture instances '''
if isinstance(comparison_gesture, Gesture):
# If the gestures don't have the same number of strokes, its
# definitely not the same gesture
score = self.get_score(comparison_gesture)
if (score > (1.0 - self.tolerance) and
score < (1.0 + self.tolerance)):
return True
else:
return False
else:
return NotImplemented
def __ne__(self, comparison_gesture):
result = self.__eq__(comparison_gesture)
if result is NotImplemented:
return result
else:
return not result
def __lt__(self, comparison_gesture):
raise TypeError("Gesture cannot be evaluated with <")
def __gt__(self, comparison_gesture):
raise TypeError("Gesture cannot be evaluated with >")
def __le__(self, comparison_gesture):
raise TypeError("Gesture cannot be evaluated with <=")
def __ge__(self, comparison_gesture):
raise TypeError("Gesture cannot be evaluated with >=")
|