This file is indexed.

/usr/share/pyshared/kivy/gesture.py is in python-kivy 1.7.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
'''
Gesture recognition
===================

You can easily use these class to create
new gesture, and compare them::

    from kivy.gesture import Gesture, GestureDatabase

    # Create a gesture
    g = Gesture()
    g.add_stroke(point_list=[(1,1), (3,4), (2,1)])
    g.normalize()

    # Add him to database
    gdb = GestureDatabase()
    gdb.add_gesture(g)

    # And for the next gesture, try to find him !
    g2 = Gesture()
    # ...
    gdb.find(g2)

.. warning::

   you don't really want to start from such an example, this is more to get the
   idea how one would construct gestures dynamically, but you would need a lot
   more points, it's better to record gestures in a file, and reload them to
   compare latter, look into the examples/gestures directory for an example of
   how to do that.
   
'''

__all__ = ('Gesture', 'GestureDatabase', 'GesturePoint', 'GestureStroke')

import pickle
import base64
import zlib
import math
from cStringIO import StringIO

from kivy.vector import Vector


class GestureDatabase(object):
    '''Class to handle a gesture database.'''

    def __init__(self):
        self.db = []

    def add_gesture(self, gesture):
        '''Add a new gesture in database'''
        self.db.append(gesture)

    def find(self, gesture, minscore=0.9, rotation_invariant=True):
        '''Find current gesture in database'''
        if not gesture:
            return

        best = None
        bestscore = minscore
        for g in self.db:
            score = g.get_score(gesture, rotation_invariant)
            if score < bestscore:
                continue
            bestscore = score
            best = g
        if not best:
            return
        return (bestscore, best)

    def gesture_to_str(self, gesture):
        '''Convert a gesture into a unique string'''
        io = StringIO()
        p = pickle.Pickler(io)
        p.dump(gesture)
        data = base64.b64encode(zlib.compress(io.getvalue(), 9))
        return data

    def str_to_gesture(self, data):
        '''Convert a unique string to a gesture'''
        io = StringIO(zlib.decompress(base64.b64decode(data)))
        p = pickle.Unpickler(io)
        gesture = p.load()
        return gesture


class GesturePoint:

    def __init__(self, x, y):
        '''Stores the x,y coordinates of a point in the gesture'''
        self.x = float(x)
        self.y = float(y)

    def scale(self, factor):
        ''' Scales the point by the given factor '''
        self.x *= factor
        self.y *= factor
        return self

    def __repr__(self):
        return 'Mouse_point: %f,%f' % (self.x, self.y)


class GestureStroke:
    ''' Gestures can be made up of multiple strokes '''

    def __init__(self):
        ''' A stroke in the gesture '''
        self.points = list()
        self.screenpoints = list()

    # These return the min and max coordinates of the stroke
    @property
    def max_x(self):
        if len(self.points) == 0:
            return 0
        return max(self.points, key = lambda pt: pt.x).x

    @property
    def min_x(self):
        if len(self.points) == 0:
            return 0
        return min(self.points, key = lambda pt: pt.x).x

    @property
    def max_y(self):
        if len(self.points) == 0:
            return 0
        return max(self.points, key = lambda pt: pt.y).y

    @property
    def min_y(self):
        if len(self.points) == 0:
            return 0
        return min(self.points, key = lambda pt: pt.y).y

    def add_point(self, x, y):
        '''
        add_point(x=x_pos, y=y_pos)
        Adds a point to the stroke
        '''
        self.points.append(GesturePoint(x, y))
        self.screenpoints.append((x, y))

    def scale_stroke(self, scale_factor):
        '''
        scale_stroke(scale_factor=float)
        Scales the stroke down by scale_factor
        '''
        self.points = map(lambda pt: pt.scale(scale_factor), self.points)

    def points_distance(self, point1, point2):
        '''
        points_distance(point1=GesturePoint, point2=GesturePoint)
        Returns the distance between two GesturePoint
        '''
        x = point1.x - point2.x
        y = point1.y - point2.y
        return math.sqrt(x*x + y*y)

    def stroke_length(self, point_list=None):
        '''Finds the length of the stroke. If a point list is given,
           finds the length of that list.
        '''
        if point_list is None:
            point_list = self.points
        gesture_length = 0.0
        if len(point_list) <= 1: # If there is only one point -> no length
            return gesture_length
        for i in xrange(len(point_list)-1):
            gesture_length += self.points_distance(
                point_list[i], point_list[i+1])
        return gesture_length

    def normalize_stroke(self, sample_points = 32):
        '''Normalizes strokes so that every stroke has a standard number of
           points. Returns True if stroke is normalized, False if it can't be
           normalized. sample_points control the resolution of the stroke.
        '''
        # If there is only one point or the length is 0, don't normalize
        if len(self.points) <= 1 or self.stroke_length(self.points) == 0.0:
            return False

        # Calculate how long each point should be in the stroke
        target_stroke_size = self.stroke_length(self.points) / \
                             float(sample_points)
        new_points = list()
        new_points.append(self.points[0])

        # We loop on the points
        prev = self.points[0]
        src_distance = 0.0
        dst_distance = target_stroke_size
        for curr in self.points[1:]:
            d = self.points_distance(prev, curr)
            if d > 0:
                prev = curr
                src_distance = src_distance+d

                # The new point need to be inserted into the
                # segment [prev, curr]
                while dst_distance < src_distance:
                    x_dir = curr.x - prev.x
                    y_dir = curr.y - prev.y
                    ratio = (src_distance-dst_distance)/d
                    to_x = x_dir * ratio + prev.x
                    to_y = y_dir * ratio + prev.y
                    new_points.append(GesturePoint(to_x, to_y))
                    dst_distance = self.stroke_length(self.points) / \
                            float(sample_points) * len(new_points)

        # If this happens, we are into troubles...
        if not len(new_points) == sample_points:
            raise ValueError('Invalid number of strokes points; got '
                             '%d while it should be %d' %
                             (len(new_points), sample_points))

        self.points = new_points
        return True

    def center_stroke(self, offset_x, offset_y):
        '''Centers the stroke by offseting the points'''
        for point in self.points:
            point.x -= offset_x
            point.y -= offset_y


class Gesture:
    '''A python implementation of a gesture recognition algorithm by
    Oleg Dopertchouk: http://www.gamedev.net/reference/articles/article2039.asp

    Implemented by Jeiel Aranal (chemikhazi@gmail.com),
    released into the public domain.
    '''

    # Tolerance for evaluation using the '==' operator
    DEFAULT_TOLERANCE = 0.1

    def __init__(self, tolerance=None):
        '''
        Gesture([tolerance=float])
        Creates a new gesture with an optional matching tolerance value
        '''
        self.width = 0.
        self.height = 0.
        self.gesture_product = 0.
        self.strokes = list()
        if tolerance is None:
            self.tolerance = Gesture.DEFAULT_TOLERANCE
        else:
            self.tolerance = tolerance

    def _scale_gesture(self):
        ''' Scales down the gesture to a unit of 1 '''
        # map() creates a list of min/max coordinates of the strokes
        # in the gesture and min()/max() pulls the lowest/highest value
        min_x = min(map(lambda stroke: stroke.min_x, self.strokes))
        max_x = max(map(lambda stroke: stroke.max_x, self.strokes))
        min_y = min(map(lambda stroke: stroke.min_y, self.strokes))
        max_y = max(map(lambda stroke: stroke.max_y, self.strokes))
        x_len = max_x - min_x
        self.width = x_len
        y_len = max_y - min_y
        self.height = y_len
        scale_factor = max(x_len, y_len)
        if scale_factor <= 0.0:
            return False
        scale_factor = 1.0 / scale_factor
        for stroke in self.strokes:
            stroke.scale_stroke(scale_factor)
        return True

    def _center_gesture(self):
        ''' Centers the Gesture,Point of the gesture '''
        total_x = 0.0
        total_y = 0.0
        total_points = 0

        for stroke in self.strokes:
            # adds up all the points inside the stroke
            stroke_y = sum([pt.y for pt in stroke.points])
            stroke_x = sum([pt.x for pt in stroke.points])
            total_y += stroke_y
            total_x += stroke_x
            total_points += len(stroke.points)
        if total_points == 0:
            return False
        # Average to get the offset
        total_x /= total_points
        total_y /= total_points
        # Apply the offset to the strokes
        for stroke in self.strokes:
            stroke.center_stroke(total_x, total_y)
        return True

    def add_stroke(self, point_list=None):
        '''Adds a stroke to the gesture and returns the Stroke instance.
           Optional point_list argument is a list of the mouse points for
           the stroke.
        '''
        self.strokes.append(GestureStroke())
        if isinstance(point_list, list) or isinstance(point_list, tuple):
            for point in point_list:
                if isinstance(point, GesturePoint):
                    self.strokes[-1].points.append(point)
                elif isinstance(point, list) or isinstance(point, tuple):
                    if len(point) != 2:
                        raise ValueError("Stroke entry must have 2 values max")
                    self.strokes[-1].add_point(point[0], point[1])
                else:
                    raise TypeError("The point list should either be " + \
                        " tuples of x and y or a list of GesturePoint objects")
        elif point_list is not None:
            raise ValueError("point_list should be a tuple/list")
        return self.strokes[-1]

    def normalize(self, stroke_samples=32):
        '''Runs the gesture normalization algorithm and calculates the dot
           product with self
        '''
        if not self._scale_gesture() or not self._center_gesture():
            self.gesture_product = False
            return False
        for stroke in self.strokes:
            stroke.normalize_stroke(stroke_samples)
        self.gesture_product = self.dot_product(self)

    def get_rigid_rotation(self, dstpts):
        '''
        Extract the rotation to apply to a group of points to minimize the
        distance to a second group of points. The two groups of points are
        assumed to be centered. This is a simple version that just pick
        an angle based on the first point of the gesture.
        '''
        if len(self.strokes) < 1 or len(self.strokes[0].points) < 1:
            return 0
        if len(dstpts.strokes) < 1 or len(dstpts.strokes[0].points) < 1:
            return 0
        p = dstpts.strokes[0].points[0]
        target = Vector([p.x, p.y])
        source = Vector([p.x, p.y])
        return source.angle(target)

    def dot_product(self, comparison_gesture):
        ''' Calculates the dot product of the gesture with another gesture '''
        if len(comparison_gesture.strokes) != len(self.strokes):
            return -1
        if getattr(comparison_gesture, 'gesture_product', True) is False or \
           getattr(self, 'gesture_product', True) is False:
            return -1
        dot_product = 0.0
        for stroke_index, (my_stroke, cmp_stroke) in enumerate(
                zip(self.strokes, comparison_gesture.strokes)):
            for pt_index, (my_point, cmp_point) in enumerate(
                    zip(my_stroke.points, cmp_stroke.points)):
                dot_product += my_point.x * cmp_point.x +\
                               my_point.y * cmp_point.y
        return dot_product

    def rotate(self, angle):
        g = Gesture()
        for stroke in self.strokes:
            tmp = []
            for j in stroke.points:
                v = Vector([j.x, j.y]).rotate(angle)
                tmp.append(v)
            g.add_stroke(tmp)
        g.gesture_product = g.dot_product(g)
        return g

    def get_score(self, comparison_gesture, rotation_invariant=True):
        ''' Returns the matching score of the gesture against another gesture
        '''
        if isinstance(comparison_gesture, Gesture):
            if rotation_invariant:
                # get orientation
                angle = self.get_rigid_rotation(comparison_gesture)

                # rotate the gesture to be in the same frame.
                comparison_gesture = comparison_gesture.rotate(angle)

            # this is the normal "orientation" code.
            score = self.dot_product(comparison_gesture)
            if score <= 0:
                return score
            score /= math.sqrt(
                    self.gesture_product * comparison_gesture.gesture_product)
            return score

    def __eq__(self, comparison_gesture):
        ''' Allows easy comparisons between gesture instances '''
        if isinstance(comparison_gesture, Gesture):
            # If the gestures don't have the same number of strokes, its
            # definitely not the same gesture
            score = self.get_score(comparison_gesture)
            if (score > (1.0 - self.tolerance) and
                score < (1.0 + self.tolerance)):
                return True
            else:
                return False
        else:
            return NotImplemented

    def __ne__(self, comparison_gesture):
        result = self.__eq__(comparison_gesture)
        if result is NotImplemented:
            return result
        else:
            return not result

    def __lt__(self, comparison_gesture):
        raise TypeError("Gesture cannot be evaluated with <")

    def __gt__(self, comparison_gesture):
        raise TypeError("Gesture cannot be evaluated with >")

    def __le__(self, comparison_gesture):
        raise TypeError("Gesture cannot be evaluated with <=")

    def __ge__(self, comparison_gesture):
        raise TypeError("Gesture cannot be evaluated with >=")