/usr/share/pyshared/matplotlib/axes.py is in python-matplotlib 1.3.1-1ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 | from __future__ import division, print_function
import math
import warnings
from operator import itemgetter
import itertools
import numpy as np
from numpy import ma
import matplotlib
rcParams = matplotlib.rcParams
import matplotlib.artist as martist
from matplotlib.artist import allow_rasterization
import matplotlib.axis as maxis
import matplotlib.cbook as cbook
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.contour as mcontour
import matplotlib.dates as _ # <-registers a date unit converter
from matplotlib import docstring
import matplotlib.font_manager as font_manager
import matplotlib.image as mimage
import matplotlib.legend as mlegend
import matplotlib.lines as mlines
import matplotlib.markers as mmarkers
import matplotlib.mlab as mlab
import matplotlib.path as mpath
import matplotlib.patches as mpatches
import matplotlib.spines as mspines
import matplotlib.quiver as mquiver
import matplotlib.scale as mscale
import matplotlib.stackplot as mstack
import matplotlib.streamplot as mstream
import matplotlib.table as mtable
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
import matplotlib.tri as mtri
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
iterable = cbook.iterable
is_string_like = cbook.is_string_like
is_sequence_of_strings = cbook.is_sequence_of_strings
def _string_to_bool(s):
if not is_string_like(s):
return s
if s == 'on':
return True
if s == 'off':
return False
raise ValueError("string argument must be either 'on' or 'off'")
def _process_plot_format(fmt):
"""
Process a MATLAB style color/line style format string. Return a
(*linestyle*, *color*) tuple as a result of the processing. Default
values are ('-', 'b'). Example format strings include:
* 'ko': black circles
* '.b': blue dots
* 'r--': red dashed lines
.. seealso::
:func:`~matplotlib.Line2D.lineStyles` and
:func:`~matplotlib.pyplot.colors`
for all possible styles and color format string.
"""
linestyle = None
marker = None
color = None
# Is fmt just a colorspec?
try:
color = mcolors.colorConverter.to_rgb(fmt)
# We need to differentiate grayscale '1.0' from tri_down marker '1'
try:
fmtint = str(int(fmt))
except ValueError:
return linestyle, marker, color # Yes
else:
if fmt != fmtint:
# user definitely doesn't want tri_down marker
return linestyle, marker, color # Yes
else:
# ignore converted color
color = None
except ValueError:
pass # No, not just a color.
# handle the multi char special cases and strip them from the
# string
if fmt.find('--') >= 0:
linestyle = '--'
fmt = fmt.replace('--', '')
if fmt.find('-.') >= 0:
linestyle = '-.'
fmt = fmt.replace('-.', '')
if fmt.find(' ') >= 0:
linestyle = 'None'
fmt = fmt.replace(' ', '')
chars = [c for c in fmt]
for c in chars:
if c in mlines.lineStyles:
if linestyle is not None:
raise ValueError(
'Illegal format string "%s"; two linestyle symbols' % fmt)
linestyle = c
elif c in mlines.lineMarkers:
if marker is not None:
raise ValueError(
'Illegal format string "%s"; two marker symbols' % fmt)
marker = c
elif c in mcolors.colorConverter.colors:
if color is not None:
raise ValueError(
'Illegal format string "%s"; two color symbols' % fmt)
color = c
else:
raise ValueError(
'Unrecognized character %c in format string' % c)
if linestyle is None and marker is None:
linestyle = rcParams['lines.linestyle']
if linestyle is None:
linestyle = 'None'
if marker is None:
marker = 'None'
return linestyle, marker, color
class _process_plot_var_args(object):
"""
Process variable length arguments to the plot command, so that
plot commands like the following are supported::
plot(t, s)
plot(t1, s1, t2, s2)
plot(t1, s1, 'ko', t2, s2)
plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3)
an arbitrary number of *x*, *y*, *fmt* are allowed
"""
def __init__(self, axes, command='plot'):
self.axes = axes
self.command = command
self.set_color_cycle()
def __getstate__(self):
# note: it is not possible to pickle a itertools.cycle instance
return {'axes': self.axes, 'command': self.command}
def __setstate__(self, state):
self.__dict__ = state.copy()
self.set_color_cycle()
def set_color_cycle(self, clist=None):
if clist is None:
clist = rcParams['axes.color_cycle']
self.color_cycle = itertools.cycle(clist)
def __call__(self, *args, **kwargs):
if self.axes.xaxis is not None and self.axes.yaxis is not None:
xunits = kwargs.pop('xunits', self.axes.xaxis.units)
if self.axes.name == 'polar':
xunits = kwargs.pop('thetaunits', xunits)
yunits = kwargs.pop('yunits', self.axes.yaxis.units)
if self.axes.name == 'polar':
yunits = kwargs.pop('runits', yunits)
if xunits != self.axes.xaxis.units:
self.axes.xaxis.set_units(xunits)
if yunits != self.axes.yaxis.units:
self.axes.yaxis.set_units(yunits)
ret = self._grab_next_args(*args, **kwargs)
return ret
def set_lineprops(self, line, **kwargs):
assert self.command == 'plot', 'set_lineprops only works with "plot"'
for key, val in kwargs.items():
funcName = "set_%s" % key
if not hasattr(line, funcName):
raise TypeError('There is no line property "%s"' % key)
func = getattr(line, funcName)
func(val)
def set_patchprops(self, fill_poly, **kwargs):
assert self.command == 'fill', 'set_patchprops only works with "fill"'
for key, val in kwargs.items():
funcName = "set_%s" % key
if not hasattr(fill_poly, funcName):
raise TypeError('There is no patch property "%s"' % key)
func = getattr(fill_poly, funcName)
func(val)
def _xy_from_xy(self, x, y):
if self.axes.xaxis is not None and self.axes.yaxis is not None:
bx = self.axes.xaxis.update_units(x)
by = self.axes.yaxis.update_units(y)
if self.command != 'plot':
# the Line2D class can handle unitized data, with
# support for post hoc unit changes etc. Other mpl
# artists, eg Polygon which _process_plot_var_args
# also serves on calls to fill, cannot. So this is a
# hack to say: if you are not "plot", which is
# creating Line2D, then convert the data now to
# floats. If you are plot, pass the raw data through
# to Line2D which will handle the conversion. So
# polygons will not support post hoc conversions of
# the unit type since they are not storing the orig
# data. Hopefully we can rationalize this at a later
# date - JDH
if bx:
x = self.axes.convert_xunits(x)
if by:
y = self.axes.convert_yunits(y)
x = np.atleast_1d(x) # like asanyarray, but converts scalar to array
y = np.atleast_1d(y)
if x.shape[0] != y.shape[0]:
raise ValueError("x and y must have same first dimension")
if x.ndim > 2 or y.ndim > 2:
raise ValueError("x and y can be no greater than 2-D")
if x.ndim == 1:
x = x[:, np.newaxis]
if y.ndim == 1:
y = y[:, np.newaxis]
return x, y
def _makeline(self, x, y, kw, kwargs):
kw = kw.copy() # Don't modify the original kw.
if not 'color' in kw and not 'color' in kwargs.keys():
kw['color'] = self.color_cycle.next()
# (can't use setdefault because it always evaluates
# its second argument)
seg = mlines.Line2D(x, y,
axes=self.axes,
**kw
)
self.set_lineprops(seg, **kwargs)
return seg
def _makefill(self, x, y, kw, kwargs):
try:
facecolor = kw['color']
except KeyError:
facecolor = self.color_cycle.next()
seg = mpatches.Polygon(np.hstack((x[:, np.newaxis],
y[:, np.newaxis])),
facecolor=facecolor,
fill=True,
closed=kw['closed'])
self.set_patchprops(seg, **kwargs)
return seg
def _plot_args(self, tup, kwargs):
ret = []
if len(tup) > 1 and is_string_like(tup[-1]):
linestyle, marker, color = _process_plot_format(tup[-1])
tup = tup[:-1]
elif len(tup) == 3:
raise ValueError('third arg must be a format string')
else:
linestyle, marker, color = None, None, None
kw = {}
for k, v in zip(('linestyle', 'marker', 'color'),
(linestyle, marker, color)):
if v is not None:
kw[k] = v
y = np.atleast_1d(tup[-1])
if len(tup) == 2:
x = np.atleast_1d(tup[0])
else:
x = np.arange(y.shape[0], dtype=float)
x, y = self._xy_from_xy(x, y)
if self.command == 'plot':
func = self._makeline
else:
kw['closed'] = kwargs.get('closed', True)
func = self._makefill
ncx, ncy = x.shape[1], y.shape[1]
for j in xrange(max(ncx, ncy)):
seg = func(x[:, j % ncx], y[:, j % ncy], kw, kwargs)
ret.append(seg)
return ret
def _grab_next_args(self, *args, **kwargs):
remaining = args
while 1:
if len(remaining) == 0:
return
if len(remaining) <= 3:
for seg in self._plot_args(remaining, kwargs):
yield seg
return
if is_string_like(remaining[2]):
isplit = 3
else:
isplit = 2
for seg in self._plot_args(remaining[:isplit], kwargs):
yield seg
remaining = remaining[isplit:]
class Axes(martist.Artist):
"""
The :class:`Axes` contains most of the figure elements:
:class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`,
:class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`,
:class:`~matplotlib.patches.Polygon`, etc., and sets the
coordinate system.
The :class:`Axes` instance supports callbacks through a callbacks
attribute which is a :class:`~matplotlib.cbook.CallbackRegistry`
instance. The events you can connect to are 'xlim_changed' and
'ylim_changed' and the callback will be called with func(*ax*)
where *ax* is the :class:`Axes` instance.
"""
name = "rectilinear"
_shared_x_axes = cbook.Grouper()
_shared_y_axes = cbook.Grouper()
def __str__(self):
return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds)
def __init__(self, fig, rect,
axisbg=None, # defaults to rc axes.facecolor
frameon=True,
sharex=None, # use Axes instance's xaxis info
sharey=None, # use Axes instance's yaxis info
label='',
xscale=None,
yscale=None,
**kwargs
):
"""
Build an :class:`Axes` instance in
:class:`~matplotlib.figure.Figure` *fig* with
*rect=[left, bottom, width, height]* in
:class:`~matplotlib.figure.Figure` coordinates
Optional keyword arguments:
================ =========================================
Keyword Description
================ =========================================
*adjustable* [ 'box' | 'datalim' | 'box-forced']
*alpha* float: the alpha transparency (can be None)
*anchor* [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N',
'NW', 'W' ]
*aspect* [ 'auto' | 'equal' | aspect_ratio ]
*autoscale_on* [ *True* | *False* ] whether or not to
autoscale the *viewlim*
*axis_bgcolor* any matplotlib color, see
:func:`~matplotlib.pyplot.colors`
*axisbelow* draw the grids and ticks below the other
artists
*cursor_props* a (*float*, *color*) tuple
*figure* a :class:`~matplotlib.figure.Figure`
instance
*frame_on* a boolean - draw the axes frame
*label* the axes label
*navigate* [ *True* | *False* ]
*navigate_mode* [ 'PAN' | 'ZOOM' | None ] the navigation
toolbar button status
*position* [left, bottom, width, height] in
class:`~matplotlib.figure.Figure` coords
*sharex* an class:`~matplotlib.axes.Axes` instance
to share the x-axis with
*sharey* an class:`~matplotlib.axes.Axes` instance
to share the y-axis with
*title* the title string
*visible* [ *True* | *False* ] whether the axes is
visible
*xlabel* the xlabel
*xlim* (*xmin*, *xmax*) view limits
*xscale* [%(scale)s]
*xticklabels* sequence of strings
*xticks* sequence of floats
*ylabel* the ylabel strings
*ylim* (*ymin*, *ymax*) view limits
*yscale* [%(scale)s]
*yticklabels* sequence of strings
*yticks* sequence of floats
================ =========================================
""" % {'scale': ' | '.join(
[repr(x) for x in mscale.get_scale_names()])}
martist.Artist.__init__(self)
if isinstance(rect, mtransforms.Bbox):
self._position = rect
else:
self._position = mtransforms.Bbox.from_bounds(*rect)
self._originalPosition = self._position.frozen()
self.set_axes(self)
self.set_aspect('auto')
self._adjustable = 'box'
self.set_anchor('C')
self._sharex = sharex
self._sharey = sharey
if sharex is not None:
self._shared_x_axes.join(self, sharex)
if sharex._adjustable == 'box':
sharex._adjustable = 'datalim'
#warnings.warn(
# 'shared axes: "adjustable" is being changed to "datalim"')
self._adjustable = 'datalim'
if sharey is not None:
self._shared_y_axes.join(self, sharey)
if sharey._adjustable == 'box':
sharey._adjustable = 'datalim'
#warnings.warn(
# 'shared axes: "adjustable" is being changed to "datalim"')
self._adjustable = 'datalim'
self.set_label(label)
self.set_figure(fig)
self.set_axes_locator(kwargs.get("axes_locator", None))
self.spines = self._gen_axes_spines()
# this call may differ for non-sep axes, eg polar
self._init_axis()
if axisbg is None:
axisbg = rcParams['axes.facecolor']
self._axisbg = axisbg
self._frameon = frameon
self._axisbelow = rcParams['axes.axisbelow']
self._rasterization_zorder = None
self._hold = rcParams['axes.hold']
self._connected = {} # a dict from events to (id, func)
self.cla()
# funcs used to format x and y - fall back on major formatters
self.fmt_xdata = None
self.fmt_ydata = None
self.set_cursor_props((1, 'k')) # set the cursor properties for axes
self._cachedRenderer = None
self.set_navigate(True)
self.set_navigate_mode(None)
if xscale:
self.set_xscale(xscale)
if yscale:
self.set_yscale(yscale)
if len(kwargs):
martist.setp(self, **kwargs)
if self.xaxis is not None:
self._xcid = self.xaxis.callbacks.connect('units finalize',
self.relim)
if self.yaxis is not None:
self._ycid = self.yaxis.callbacks.connect('units finalize',
self.relim)
def __setstate__(self, state):
self.__dict__ = state
# put the _remove_method back on all artists contained within the axes
for container_name in ['lines', 'collections', 'tables', 'patches',
'texts', 'images']:
container = getattr(self, container_name)
for artist in container:
artist._remove_method = container.remove
def get_window_extent(self, *args, **kwargs):
"""
get the axes bounding box in display space; *args* and
*kwargs* are empty
"""
return self.bbox
def _init_axis(self):
"move this out of __init__ because non-separable axes don't use it"
self.xaxis = maxis.XAxis(self)
self.spines['bottom'].register_axis(self.xaxis)
self.spines['top'].register_axis(self.xaxis)
self.yaxis = maxis.YAxis(self)
self.spines['left'].register_axis(self.yaxis)
self.spines['right'].register_axis(self.yaxis)
self._update_transScale()
def set_figure(self, fig):
"""
Set the class:`~matplotlib.axes.Axes` figure
accepts a class:`~matplotlib.figure.Figure` instance
"""
martist.Artist.set_figure(self, fig)
self.bbox = mtransforms.TransformedBbox(self._position,
fig.transFigure)
# these will be updated later as data is added
self.dataLim = mtransforms.Bbox.null()
self.viewLim = mtransforms.Bbox.unit()
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
self._set_lim_and_transforms()
def _set_lim_and_transforms(self):
"""
set the *dataLim* and *viewLim*
:class:`~matplotlib.transforms.Bbox` attributes and the
*transScale*, *transData*, *transLimits* and *transAxes*
transformations.
.. note::
This method is primarily used by rectilinear projections
of the :class:`~matplotlib.axes.Axes` class, and is meant
to be overridden by new kinds of projection axes that need
different transformations and limits. (See
:class:`~matplotlib.projections.polar.PolarAxes` for an
example.
"""
self.transAxes = mtransforms.BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor.
# It is assumed that this part will have non-linear components
# (e.g., for a log scale).
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
# An affine transformation on the data, generally to limit the
# range of the axes
self.transLimits = mtransforms.BboxTransformFrom(
mtransforms.TransformedBbox(self.viewLim, self.transScale))
# The parentheses are important for efficiency here -- they
# group the last two (which are usually affines) separately
# from the first (which, with log-scaling can be non-affine).
self.transData = self.transScale + (self.transLimits + self.transAxes)
self._xaxis_transform = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
self._yaxis_transform = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
def get_xaxis_transform(self, which='grid'):
"""
Get the transformation used for drawing x-axis labels, ticks
and gridlines. The x-direction is in data coordinates and the
y-direction is in axis coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
if which == 'grid':
return self._xaxis_transform
elif which == 'tick1':
# for cartesian projection, this is bottom spine
return self.spines['bottom'].get_spine_transform()
elif which == 'tick2':
# for cartesian projection, this is top spine
return self.spines['top'].get_spine_transform()
else:
raise ValueError('unknown value for which')
def get_xaxis_text1_transform(self, pad_points):
"""
Get the transformation used for drawing x-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in data coordinates
and the y-direction is in axis coordinates. Returns a
3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self.get_xaxis_transform(which='tick1') +
mtransforms.ScaledTranslation(0, -1 * pad_points / 72.0,
self.figure.dpi_scale_trans),
"top", "center")
def get_xaxis_text2_transform(self, pad_points):
"""
Get the transformation used for drawing the secondary x-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in data
coordinates and the y-direction is in axis coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self.get_xaxis_transform(which='tick2') +
mtransforms.ScaledTranslation(0, pad_points / 72.0,
self.figure.dpi_scale_trans),
"bottom", "center")
def get_yaxis_transform(self, which='grid'):
"""
Get the transformation used for drawing y-axis labels, ticks
and gridlines. The x-direction is in axis coordinates and the
y-direction is in data coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
if which == 'grid':
return self._yaxis_transform
elif which == 'tick1':
# for cartesian projection, this is bottom spine
return self.spines['left'].get_spine_transform()
elif which == 'tick2':
# for cartesian projection, this is top spine
return self.spines['right'].get_spine_transform()
else:
raise ValueError('unknown value for which')
def get_yaxis_text1_transform(self, pad_points):
"""
Get the transformation used for drawing y-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in axis coordinates
and the y-direction is in data coordinates. Returns a 3-tuple
of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self.get_yaxis_transform(which='tick1') +
mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0,
self.figure.dpi_scale_trans),
"center", "right")
def get_yaxis_text2_transform(self, pad_points):
"""
Get the transformation used for drawing the secondary y-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in axis
coordinates and the y-direction is in data coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self.get_yaxis_transform(which='tick2') +
mtransforms.ScaledTranslation(pad_points / 72.0, 0,
self.figure.dpi_scale_trans),
"center", "left")
def _update_transScale(self):
self.transScale.set(
mtransforms.blended_transform_factory(
self.xaxis.get_transform(), self.yaxis.get_transform()))
if hasattr(self, "lines"):
for line in self.lines:
try:
line._transformed_path.invalidate()
except AttributeError:
pass
def get_position(self, original=False):
'Return the a copy of the axes rectangle as a Bbox'
if original:
return self._originalPosition.frozen()
else:
return self._position.frozen()
def set_position(self, pos, which='both'):
"""
Set the axes position with::
pos = [left, bottom, width, height]
in relative 0,1 coords, or *pos* can be a
:class:`~matplotlib.transforms.Bbox`
There are two position variables: one which is ultimately
used, but which may be modified by :meth:`apply_aspect`, and a
second which is the starting point for :meth:`apply_aspect`.
Optional keyword arguments:
*which*
========== ====================
value description
========== ====================
'active' to change the first
'original' to change the second
'both' to change both
========== ====================
"""
if not isinstance(pos, mtransforms.BboxBase):
pos = mtransforms.Bbox.from_bounds(*pos)
if which in ('both', 'active'):
self._position.set(pos)
if which in ('both', 'original'):
self._originalPosition.set(pos)
def reset_position(self):
"""Make the original position the active position"""
pos = self.get_position(original=True)
self.set_position(pos, which='active')
def set_axes_locator(self, locator):
"""
set axes_locator
ACCEPT: a callable object which takes an axes instance and renderer and
returns a bbox.
"""
self._axes_locator = locator
def get_axes_locator(self):
"""
return axes_locator
"""
return self._axes_locator
def _set_artist_props(self, a):
"""set the boilerplate props for artists added to axes"""
a.set_figure(self.figure)
if not a.is_transform_set():
a.set_transform(self.transData)
a.set_axes(self)
def _gen_axes_patch(self):
"""
Returns the patch used to draw the background of the axes. It
is also used as the clipping path for any data elements on the
axes.
In the standard axes, this is a rectangle, but in other
projections it may not be.
.. note::
Intended to be overridden by new projection types.
"""
return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0)
def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'):
"""
Returns a dict whose keys are spine names and values are
Line2D or Patch instances. Each element is used to draw a
spine of the axes.
In the standard axes, this is a single line segment, but in
other projections it may not be.
.. note::
Intended to be overridden by new projection types.
"""
return {
'left': mspines.Spine.linear_spine(self, 'left'),
'right': mspines.Spine.linear_spine(self, 'right'),
'bottom': mspines.Spine.linear_spine(self, 'bottom'),
'top': mspines.Spine.linear_spine(self, 'top'), }
def cla(self):
"""Clear the current axes."""
# Note: this is called by Axes.__init__()
self.xaxis.cla()
self.yaxis.cla()
for name, spine in self.spines.iteritems():
spine.cla()
self.ignore_existing_data_limits = True
self.callbacks = cbook.CallbackRegistry()
if self._sharex is not None:
# major and minor are class instances with
# locator and formatter attributes
self.xaxis.major = self._sharex.xaxis.major
self.xaxis.minor = self._sharex.xaxis.minor
x0, x1 = self._sharex.get_xlim()
self.set_xlim(x0, x1, emit=False, auto=None)
# Save the current formatter/locator so we don't lose it
majf = self._sharex.xaxis.get_major_formatter()
minf = self._sharex.xaxis.get_minor_formatter()
majl = self._sharex.xaxis.get_major_locator()
minl = self._sharex.xaxis.get_minor_locator()
# This overwrites the current formatter/locator
self.xaxis._set_scale(self._sharex.xaxis.get_scale())
# Reset the formatter/locator
self.xaxis.set_major_formatter(majf)
self.xaxis.set_minor_formatter(minf)
self.xaxis.set_major_locator(majl)
self.xaxis.set_minor_locator(minl)
else:
self.xaxis._set_scale('linear')
if self._sharey is not None:
self.yaxis.major = self._sharey.yaxis.major
self.yaxis.minor = self._sharey.yaxis.minor
y0, y1 = self._sharey.get_ylim()
self.set_ylim(y0, y1, emit=False, auto=None)
# Save the current formatter/locator so we don't lose it
majf = self._sharey.yaxis.get_major_formatter()
minf = self._sharey.yaxis.get_minor_formatter()
majl = self._sharey.yaxis.get_major_locator()
minl = self._sharey.yaxis.get_minor_locator()
# This overwrites the current formatter/locator
self.yaxis._set_scale(self._sharey.yaxis.get_scale())
# Reset the formatter/locator
self.yaxis.set_major_formatter(majf)
self.yaxis.set_minor_formatter(minf)
self.yaxis.set_major_locator(majl)
self.yaxis.set_minor_locator(minl)
else:
self.yaxis._set_scale('linear')
self._autoscaleXon = True
self._autoscaleYon = True
self._xmargin = rcParams['axes.xmargin']
self._ymargin = rcParams['axes.ymargin']
self._tight = False
self._update_transScale() # needed?
self._get_lines = _process_plot_var_args(self)
self._get_patches_for_fill = _process_plot_var_args(self, 'fill')
self._gridOn = rcParams['axes.grid']
self.lines = []
self.patches = []
self.texts = []
self.tables = []
self.artists = []
self.images = []
self._current_image = None # strictly for pyplot via _sci, _gci
self.legend_ = None
self.collections = [] # collection.Collection instances
self.containers = []
self.grid(self._gridOn)
props = font_manager.FontProperties(size=rcParams['axes.titlesize'])
self.titleOffsetTrans = mtransforms.ScaledTranslation(
0.0, 5.0 / 72.0, self.figure.dpi_scale_trans)
self.title = mtext.Text(
x=0.5, y=1.0, text='',
fontproperties=props,
verticalalignment='baseline',
horizontalalignment='center',
)
self._left_title = mtext.Text(
x=0.0, y=1.0, text='',
fontproperties=props,
verticalalignment='baseline',
horizontalalignment='left', )
self._right_title = mtext.Text(
x=1.0, y=1.0, text='',
fontproperties=props,
verticalalignment='baseline',
horizontalalignment='right',
)
for _title in (self.title, self._left_title, self._right_title):
_title.set_transform(self.transAxes + self.titleOffsetTrans)
_title.set_clip_box(None)
self._set_artist_props(_title)
# the patch draws the background of the axes. we want this to
# be below the other artists; the axesPatch name is
# deprecated. We use the frame to draw the edges so we are
# setting the edgecolor to None
self.patch = self.axesPatch = self._gen_axes_patch()
self.patch.set_figure(self.figure)
self.patch.set_facecolor(self._axisbg)
self.patch.set_edgecolor('None')
self.patch.set_linewidth(0)
self.patch.set_transform(self.transAxes)
self.axison = True
self.xaxis.set_clip_path(self.patch)
self.yaxis.set_clip_path(self.patch)
self._shared_x_axes.clean()
self._shared_y_axes.clean()
def clear(self):
"""clear the axes"""
self.cla()
def set_color_cycle(self, clist):
"""
Set the color cycle for any future plot commands on this Axes.
*clist* is a list of mpl color specifiers.
"""
self._get_lines.set_color_cycle(clist)
self._get_patches_for_fill.set_color_cycle(clist)
def ishold(self):
"""return the HOLD status of the axes"""
return self._hold
def hold(self, b=None):
"""
Call signature::
hold(b=None)
Set the hold state. If *hold* is *None* (default), toggle the
*hold* state. Else set the *hold* state to boolean value *b*.
Examples::
# toggle hold
hold()
# turn hold on
hold(True)
# turn hold off
hold(False)
When hold is *True*, subsequent plot commands will be added to
the current axes. When hold is *False*, the current axes and
figure will be cleared on the next plot command
"""
if b is None:
self._hold = not self._hold
else:
self._hold = b
def get_aspect(self):
return self._aspect
def set_aspect(self, aspect, adjustable=None, anchor=None):
"""
*aspect*
======== ================================================
value description
======== ================================================
'auto' automatic; fill position rectangle with data
'normal' same as 'auto'; deprecated
'equal' same scaling from data to plot units for x and y
num a circle will be stretched such that the height
is num times the width. aspect=1 is the same as
aspect='equal'.
======== ================================================
*adjustable*
============ =====================================
value description
============ =====================================
'box' change physical size of axes
'datalim' change xlim or ylim
'box-forced' same as 'box', but axes can be shared
============ =====================================
'box' does not allow axes sharing, as this can cause
unintended side effect. For cases when sharing axes is
fine, use 'box-forced'.
*anchor*
===== =====================
value description
===== =====================
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.
===== =====================
.. deprecated:: 1.2
the option 'normal' for aspect is deprecated. Use 'auto' instead.
"""
if aspect == 'normal':
cbook.warn_deprecated(
'1.2', name='normal', alternative='auto', obj_type='aspect')
self._aspect = 'auto'
elif aspect in ('equal', 'auto'):
self._aspect = aspect
else:
self._aspect = float(aspect) # raise ValueError if necessary
if adjustable is not None:
self.set_adjustable(adjustable)
if anchor is not None:
self.set_anchor(anchor)
def get_adjustable(self):
return self._adjustable
def set_adjustable(self, adjustable):
"""
ACCEPTS: [ 'box' | 'datalim' | 'box-forced']
"""
if adjustable in ('box', 'datalim', 'box-forced'):
if self in self._shared_x_axes or self in self._shared_y_axes:
if adjustable == 'box':
raise ValueError(
'adjustable must be "datalim" for shared axes')
self._adjustable = adjustable
else:
raise ValueError('argument must be "box", or "datalim"')
def get_anchor(self):
return self._anchor
def set_anchor(self, anchor):
"""
*anchor*
===== ============
value description
===== ============
'C' Center
'SW' bottom left
'S' bottom
'SE' bottom right
'E' right
'NE' top right
'N' top
'NW' top left
'W' left
===== ============
"""
if anchor in mtransforms.Bbox.coefs.keys() or len(anchor) == 2:
self._anchor = anchor
else:
raise ValueError('argument must be among %s' %
', '.join(mtransforms.Bbox.coefs.keys()))
def get_data_ratio(self):
"""
Returns the aspect ratio of the raw data.
This method is intended to be overridden by new projection
types.
"""
xmin, xmax = self.get_xbound()
ymin, ymax = self.get_ybound()
xsize = max(math.fabs(xmax - xmin), 1e-30)
ysize = max(math.fabs(ymax - ymin), 1e-30)
return ysize / xsize
def get_data_ratio_log(self):
"""
Returns the aspect ratio of the raw data in log scale.
Will be used when both axis scales are in log.
"""
xmin, xmax = self.get_xbound()
ymin, ymax = self.get_ybound()
xsize = max(math.fabs(math.log10(xmax) - math.log10(xmin)), 1e-30)
ysize = max(math.fabs(math.log10(ymax) - math.log10(ymin)), 1e-30)
return ysize / xsize
def apply_aspect(self, position=None):
"""
Use :meth:`_aspect` and :meth:`_adjustable` to modify the
axes box or the view limits.
"""
if position is None:
position = self.get_position(original=True)
aspect = self.get_aspect()
if self.name != 'polar':
xscale, yscale = self.get_xscale(), self.get_yscale()
if xscale == "linear" and yscale == "linear":
aspect_scale_mode = "linear"
elif xscale == "log" and yscale == "log":
aspect_scale_mode = "log"
elif ((xscale == "linear" and yscale == "log") or
(xscale == "log" and yscale == "linear")):
if aspect is not "auto":
warnings.warn(
'aspect is not supported for Axes with xscale=%s, '
'yscale=%s' % (xscale, yscale))
aspect = "auto"
else: # some custom projections have their own scales.
pass
else:
aspect_scale_mode = "linear"
if aspect == 'auto':
self.set_position(position, which='active')
return
if aspect == 'equal':
A = 1
else:
A = aspect
#Ensure at drawing time that any Axes involved in axis-sharing
# does not have its position changed.
if self in self._shared_x_axes or self in self._shared_y_axes:
if self._adjustable == 'box':
self._adjustable = 'datalim'
warnings.warn(
'shared axes: "adjustable" is being changed to "datalim"')
figW, figH = self.get_figure().get_size_inches()
fig_aspect = figH / figW
if self._adjustable in ['box', 'box-forced']:
if aspect_scale_mode == "log":
box_aspect = A * self.get_data_ratio_log()
else:
box_aspect = A * self.get_data_ratio()
pb = position.frozen()
pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
self.set_position(pb1.anchored(self.get_anchor(), pb), 'active')
return
# reset active to original in case it had been changed
# by prior use of 'box'
self.set_position(position, which='active')
xmin, xmax = self.get_xbound()
ymin, ymax = self.get_ybound()
if aspect_scale_mode == "log":
xmin, xmax = math.log10(xmin), math.log10(xmax)
ymin, ymax = math.log10(ymin), math.log10(ymax)
xsize = max(math.fabs(xmax - xmin), 1e-30)
ysize = max(math.fabs(ymax - ymin), 1e-30)
l, b, w, h = position.bounds
box_aspect = fig_aspect * (h / w)
data_ratio = box_aspect / A
y_expander = (data_ratio * xsize / ysize - 1.0)
#print 'y_expander', y_expander
# If y_expander > 0, the dy/dx viewLim ratio needs to increase
if abs(y_expander) < 0.005:
#print 'good enough already'
return
if aspect_scale_mode == "log":
dL = self.dataLim
dL_width = math.log10(dL.x1) - math.log10(dL.x0)
dL_height = math.log10(dL.y1) - math.log10(dL.y0)
xr = 1.05 * dL_width
yr = 1.05 * dL_height
else:
dL = self.dataLim
xr = 1.05 * dL.width
yr = 1.05 * dL.height
xmarg = xsize - xr
ymarg = ysize - yr
Ysize = data_ratio * xsize
Xsize = ysize / data_ratio
Xmarg = Xsize - xr
Ymarg = Ysize - yr
xm = 0 # Setting these targets to, e.g., 0.05*xr does not seem to
# help.
ym = 0
#print 'xmin, xmax, ymin, ymax', xmin, xmax, ymin, ymax
#print 'xsize, Xsize, ysize, Ysize', xsize, Xsize, ysize, Ysize
changex = (self in self._shared_y_axes
and self not in self._shared_x_axes)
changey = (self in self._shared_x_axes
and self not in self._shared_y_axes)
if changex and changey:
warnings.warn("adjustable='datalim' cannot work with shared "
"x and y axes")
return
if changex:
adjust_y = False
else:
#print 'xmarg, ymarg, Xmarg, Ymarg', xmarg, ymarg, Xmarg, Ymarg
if xmarg > xm and ymarg > ym:
adjy = ((Ymarg > 0 and y_expander < 0)
or (Xmarg < 0 and y_expander > 0))
else:
adjy = y_expander > 0
#print 'y_expander, adjy', y_expander, adjy
adjust_y = changey or adjy # (Ymarg > xmarg)
if adjust_y:
yc = 0.5 * (ymin + ymax)
y0 = yc - Ysize / 2.0
y1 = yc + Ysize / 2.0
if aspect_scale_mode == "log":
self.set_ybound((10. ** y0, 10. ** y1))
else:
self.set_ybound((y0, y1))
#print 'New y0, y1:', y0, y1
#print 'New ysize, ysize/xsize', y1-y0, (y1-y0)/xsize
else:
xc = 0.5 * (xmin + xmax)
x0 = xc - Xsize / 2.0
x1 = xc + Xsize / 2.0
if aspect_scale_mode == "log":
self.set_xbound((10. ** x0, 10. ** x1))
else:
self.set_xbound((x0, x1))
#print 'New x0, x1:', x0, x1
#print 'New xsize, ysize/xsize', x1-x0, ysize/(x1-x0)
def axis(self, *v, **kwargs):
"""
Convenience method for manipulating the x and y view limits
and the aspect ratio of the plot. For details, see
:func:`~matplotlib.pyplot.axis`.
*kwargs* are passed on to :meth:`set_xlim` and
:meth:`set_ylim`
"""
if len(v) == 0 and len(kwargs) == 0:
xmin, xmax = self.get_xlim()
ymin, ymax = self.get_ylim()
return xmin, xmax, ymin, ymax
if len(v) == 1 and is_string_like(v[0]):
s = v[0].lower()
if s == 'on':
self.set_axis_on()
elif s == 'off':
self.set_axis_off()
elif s in ('equal', 'tight', 'scaled', 'normal', 'auto', 'image'):
self.set_autoscale_on(True)
self.set_aspect('auto')
self.autoscale_view(tight=False)
# self.apply_aspect()
if s == 'equal':
self.set_aspect('equal', adjustable='datalim')
elif s == 'scaled':
self.set_aspect('equal', adjustable='box', anchor='C')
self.set_autoscale_on(False) # Req. by Mark Bakker
elif s == 'tight':
self.autoscale_view(tight=True)
self.set_autoscale_on(False)
elif s == 'image':
self.autoscale_view(tight=True)
self.set_autoscale_on(False)
self.set_aspect('equal', adjustable='box', anchor='C')
else:
raise ValueError('Unrecognized string %s to axis; '
'try on or off' % s)
xmin, xmax = self.get_xlim()
ymin, ymax = self.get_ylim()
return xmin, xmax, ymin, ymax
emit = kwargs.get('emit', True)
try:
v[0]
except IndexError:
xmin = kwargs.get('xmin', None)
xmax = kwargs.get('xmax', None)
auto = False # turn off autoscaling, unless...
if xmin is None and xmax is None:
auto = None # leave autoscaling state alone
xmin, xmax = self.set_xlim(xmin, xmax, emit=emit, auto=auto)
ymin = kwargs.get('ymin', None)
ymax = kwargs.get('ymax', None)
auto = False # turn off autoscaling, unless...
if ymin is None and ymax is None:
auto = None # leave autoscaling state alone
ymin, ymax = self.set_ylim(ymin, ymax, emit=emit, auto=auto)
return xmin, xmax, ymin, ymax
v = v[0]
if len(v) != 4:
raise ValueError('v must contain [xmin xmax ymin ymax]')
self.set_xlim([v[0], v[1]], emit=emit, auto=False)
self.set_ylim([v[2], v[3]], emit=emit, auto=False)
return v
def get_legend(self):
"""
Return the legend.Legend instance, or None if no legend is defined
"""
return self.legend_
def get_images(self):
"""return a list of Axes images contained by the Axes"""
return cbook.silent_list('AxesImage', self.images)
def get_lines(self):
"""Return a list of lines contained by the Axes"""
return cbook.silent_list('Line2D', self.lines)
def get_xaxis(self):
"""Return the XAxis instance"""
return self.xaxis
def get_xgridlines(self):
"""Get the x grid lines as a list of Line2D instances"""
return cbook.silent_list('Line2D xgridline',
self.xaxis.get_gridlines())
def get_xticklines(self):
"""Get the xtick lines as a list of Line2D instances"""
return cbook.silent_list('Text xtickline',
self.xaxis.get_ticklines())
def get_yaxis(self):
"""Return the YAxis instance"""
return self.yaxis
def get_ygridlines(self):
"""Get the y grid lines as a list of Line2D instances"""
return cbook.silent_list('Line2D ygridline',
self.yaxis.get_gridlines())
def get_yticklines(self):
"""Get the ytick lines as a list of Line2D instances"""
return cbook.silent_list('Line2D ytickline',
self.yaxis.get_ticklines())
#### Adding and tracking artists
def _sci(self, im):
"""
helper for :func:`~matplotlib.pyplot.sci`;
do not use elsewhere.
"""
if isinstance(im, matplotlib.contour.ContourSet):
if im.collections[0] not in self.collections:
raise ValueError(
"ContourSet must be in current Axes")
elif im not in self.images and im not in self.collections:
raise ValueError(
"Argument must be an image, collection, or ContourSet in "
"this Axes")
self._current_image = im
def _gci(self):
"""
Helper for :func:`~matplotlib.pyplot.gci`;
do not use elsewhere.
"""
return self._current_image
def has_data(self):
"""
Return *True* if any artists have been added to axes.
This should not be used to determine whether the *dataLim*
need to be updated, and may not actually be useful for
anything.
"""
return (
len(self.collections) +
len(self.images) +
len(self.lines) +
len(self.patches)) > 0
def add_artist(self, a):
"""
Add any :class:`~matplotlib.artist.Artist` to the axes.
Returns the artist.
"""
a.set_axes(self)
self.artists.append(a)
self._set_artist_props(a)
a.set_clip_path(self.patch)
a._remove_method = lambda h: self.artists.remove(h)
return a
def add_collection(self, collection, autolim=True):
"""
Add a :class:`~matplotlib.collections.Collection` instance
to the axes.
Returns the collection.
"""
label = collection.get_label()
if not label:
collection.set_label('_collection%d' % len(self.collections))
self.collections.append(collection)
self._set_artist_props(collection)
if collection.get_clip_path() is None:
collection.set_clip_path(self.patch)
if (autolim and
collection._paths is not None and
len(collection._paths) and
len(collection._offsets)):
self.update_datalim(collection.get_datalim(self.transData))
collection._remove_method = lambda h: self.collections.remove(h)
return collection
def add_line(self, line):
"""
Add a :class:`~matplotlib.lines.Line2D` to the list of plot
lines
Returns the line.
"""
self._set_artist_props(line)
if line.get_clip_path() is None:
line.set_clip_path(self.patch)
self._update_line_limits(line)
if not line.get_label():
line.set_label('_line%d' % len(self.lines))
self.lines.append(line)
line._remove_method = lambda h: self.lines.remove(h)
return line
def _update_line_limits(self, line):
"""
Figures out the data limit of the given line, updating self.dataLim.
"""
path = line.get_path()
if path.vertices.size == 0:
return
line_trans = line.get_transform()
if line_trans == self.transData:
data_path = path
elif any(line_trans.contains_branch_seperately(self.transData)):
# identify the transform to go from line's coordinates
# to data coordinates
trans_to_data = line_trans - self.transData
# if transData is affine we can use the cached non-affine component
# of line's path. (since the non-affine part of line_trans is
# entirely encapsulated in trans_to_data).
if self.transData.is_affine:
line_trans_path = line._get_transformed_path()
na_path, _ = line_trans_path.get_transformed_path_and_affine()
data_path = trans_to_data.transform_path_affine(na_path)
else:
data_path = trans_to_data.transform_path(path)
else:
# for backwards compatibility we update the dataLim with the
# coordinate range of the given path, even though the coordinate
# systems are completely different. This may occur in situations
# such as when ax.transAxes is passed through for absolute
# positioning.
data_path = path
if data_path.vertices.size > 0:
updatex, updatey = line_trans.contains_branch_seperately(
self.transData
)
self.dataLim.update_from_path(data_path,
self.ignore_existing_data_limits,
updatex=updatex,
updatey=updatey)
self.ignore_existing_data_limits = False
def add_patch(self, p):
"""
Add a :class:`~matplotlib.patches.Patch` *p* to the list of
axes patches; the clipbox will be set to the Axes clipping
box. If the transform is not set, it will be set to
:attr:`transData`.
Returns the patch.
"""
self._set_artist_props(p)
if p.get_clip_path() is None:
p.set_clip_path(self.patch)
self._update_patch_limits(p)
self.patches.append(p)
p._remove_method = lambda h: self.patches.remove(h)
return p
def _update_patch_limits(self, patch):
"""update the data limits for patch *p*"""
# hist can add zero height Rectangles, which is useful to keep
# the bins, counts and patches lined up, but it throws off log
# scaling. We'll ignore rects with zero height or width in
# the auto-scaling
# cannot check for '==0' since unitized data may not compare to zero
if (isinstance(patch, mpatches.Rectangle) and
((not patch.get_width()) or (not patch.get_height()))):
return
vertices = patch.get_path().vertices
if vertices.size > 0:
xys = patch.get_patch_transform().transform(vertices)
if patch.get_data_transform() != self.transData:
patch_to_data = (patch.get_data_transform() -
self.transData)
xys = patch_to_data.transform(xys)
updatex, updatey = patch.get_transform().\
contains_branch_seperately(self.transData)
self.update_datalim(xys, updatex=updatex,
updatey=updatey)
def add_table(self, tab):
"""
Add a :class:`~matplotlib.tables.Table` instance to the
list of axes tables
Returns the table.
"""
self._set_artist_props(tab)
self.tables.append(tab)
tab.set_clip_path(self.patch)
tab._remove_method = lambda h: self.tables.remove(h)
return tab
def add_container(self, container):
"""
Add a :class:`~matplotlib.container.Container` instance
to the axes.
Returns the collection.
"""
label = container.get_label()
if not label:
container.set_label('_container%d' % len(self.containers))
self.containers.append(container)
container.set_remove_method(lambda h: self.containers.remove(h))
return container
def relim(self):
"""
Recompute the data limits based on current artists.
At present, :class:`~matplotlib.collections.Collection`
instances are not supported.
"""
# Collections are deliberately not supported (yet); see
# the TODO note in artists.py.
self.dataLim.ignore(True)
self.dataLim.set_points(mtransforms.Bbox.null().get_points())
self.ignore_existing_data_limits = True
for line in self.lines:
self._update_line_limits(line)
for p in self.patches:
self._update_patch_limits(p)
def update_datalim(self, xys, updatex=True, updatey=True):
"""
Update the data lim bbox with seq of xy tups or equiv. 2-D array
"""
# if no data is set currently, the bbox will ignore its
# limits and set the bound to be the bounds of the xydata.
# Otherwise, it will compute the bounds of it's current data
# and the data in xydata
if iterable(xys) and not len(xys):
return
if not ma.isMaskedArray(xys):
xys = np.asarray(xys)
self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits,
updatex=updatex, updatey=updatey)
self.ignore_existing_data_limits = False
def update_datalim_numerix(self, x, y):
"""
Update the data lim bbox with seq of xy tups
"""
# if no data is set currently, the bbox will ignore it's
# limits and set the bound to be the bounds of the xydata.
# Otherwise, it will compute the bounds of it's current data
# and the data in xydata
if iterable(x) and not len(x):
return
self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits)
self.ignore_existing_data_limits = False
def update_datalim_bounds(self, bounds):
"""
Update the datalim to include the given
:class:`~matplotlib.transforms.Bbox` *bounds*
"""
self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds]))
def _process_unit_info(self, xdata=None, ydata=None, kwargs=None):
"""Look for unit *kwargs* and update the axis instances as necessary"""
if self.xaxis is None or self.yaxis is None:
return
#print 'processing', self.get_geometry()
if xdata is not None:
# we only need to update if there is nothing set yet.
if not self.xaxis.have_units():
self.xaxis.update_units(xdata)
#print '\tset from xdata', self.xaxis.units
if ydata is not None:
# we only need to update if there is nothing set yet.
if not self.yaxis.have_units():
self.yaxis.update_units(ydata)
#print '\tset from ydata', self.yaxis.units
# process kwargs 2nd since these will override default units
if kwargs is not None:
xunits = kwargs.pop('xunits', self.xaxis.units)
if self.name == 'polar':
xunits = kwargs.pop('thetaunits', xunits)
if xunits != self.xaxis.units:
#print '\tkw setting xunits', xunits
self.xaxis.set_units(xunits)
# If the units being set imply a different converter,
# we need to update.
if xdata is not None:
self.xaxis.update_units(xdata)
yunits = kwargs.pop('yunits', self.yaxis.units)
if self.name == 'polar':
yunits = kwargs.pop('runits', yunits)
if yunits != self.yaxis.units:
#print '\tkw setting yunits', yunits
self.yaxis.set_units(yunits)
# If the units being set imply a different converter,
# we need to update.
if ydata is not None:
self.yaxis.update_units(ydata)
def in_axes(self, mouseevent):
"""
Return *True* if the given *mouseevent* (in display coords)
is in the Axes
"""
return self.patch.contains(mouseevent)[0]
def get_autoscale_on(self):
"""
Get whether autoscaling is applied for both axes on plot commands
"""
return self._autoscaleXon and self._autoscaleYon
def get_autoscalex_on(self):
"""
Get whether autoscaling for the x-axis is applied on plot commands
"""
return self._autoscaleXon
def get_autoscaley_on(self):
"""
Get whether autoscaling for the y-axis is applied on plot commands
"""
return self._autoscaleYon
def set_autoscale_on(self, b):
"""
Set whether autoscaling is applied on plot commands
accepts: [ *True* | *False* ]
"""
self._autoscaleXon = b
self._autoscaleYon = b
def set_autoscalex_on(self, b):
"""
Set whether autoscaling for the x-axis is applied on plot commands
accepts: [ *True* | *False* ]
"""
self._autoscaleXon = b
def set_autoscaley_on(self, b):
"""
Set whether autoscaling for the y-axis is applied on plot commands
accepts: [ *True* | *False* ]
"""
self._autoscaleYon = b
def set_xmargin(self, m):
"""
Set padding of X data limits prior to autoscaling.
*m* times the data interval will be added to each
end of that interval before it is used in autoscaling.
accepts: float in range 0 to 1
"""
if m < 0 or m > 1:
raise ValueError("margin must be in range 0 to 1")
self._xmargin = m
def set_ymargin(self, m):
"""
Set padding of Y data limits prior to autoscaling.
*m* times the data interval will be added to each
end of that interval before it is used in autoscaling.
accepts: float in range 0 to 1
"""
if m < 0 or m > 1:
raise ValueError("margin must be in range 0 to 1")
self._ymargin = m
def margins(self, *args, **kw):
"""
Set or retrieve autoscaling margins.
signatures::
margins()
returns xmargin, ymargin
::
margins(margin)
margins(xmargin, ymargin)
margins(x=xmargin, y=ymargin)
margins(..., tight=False)
All three forms above set the xmargin and ymargin parameters.
All keyword parameters are optional. A single argument
specifies both xmargin and ymargin. The *tight* parameter
is passed to :meth:`autoscale_view`, which is executed after
a margin is changed; the default here is *True*, on the
assumption that when margins are specified, no additional
padding to match tick marks is usually desired. Setting
*tight* to *None* will preserve the previous setting.
Specifying any margin changes only the autoscaling; for example,
if *xmargin* is not None, then *xmargin* times the X data
interval will be added to each end of that interval before
it is used in autoscaling.
"""
if not args and not kw:
return self._xmargin, self._ymargin
tight = kw.pop('tight', True)
mx = kw.pop('x', None)
my = kw.pop('y', None)
if len(args) == 1:
mx = my = args[0]
elif len(args) == 2:
mx, my = args
else:
raise ValueError("more than two arguments were supplied")
if mx is not None:
self.set_xmargin(mx)
if my is not None:
self.set_ymargin(my)
scalex = (mx is not None)
scaley = (my is not None)
self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley)
def set_rasterization_zorder(self, z):
"""
Set zorder value below which artists will be rasterized. Set
to `None` to disable rasterizing of artists below a particular
zorder.
"""
self._rasterization_zorder = z
def get_rasterization_zorder(self):
"""
Get zorder value below which artists will be rasterized
"""
return self._rasterization_zorder
def autoscale(self, enable=True, axis='both', tight=None):
"""
Autoscale the axis view to the data (toggle).
Convenience method for simple axis view autoscaling.
It turns autoscaling on or off, and then,
if autoscaling for either axis is on, it performs
the autoscaling on the specified axis or axes.
*enable*: [True | False | None]
True (default) turns autoscaling on, False turns it off.
None leaves the autoscaling state unchanged.
*axis*: ['x' | 'y' | 'both']
which axis to operate on; default is 'both'
*tight*: [True | False | None]
If True, set view limits to data limits;
if False, let the locator and margins expand the view limits;
if None, use tight scaling if the only artist is an image,
otherwise treat *tight* as False.
The *tight* setting is retained for future autoscaling
until it is explicitly changed.
Returns None.
"""
if enable is None:
scalex = True
scaley = True
else:
scalex = False
scaley = False
if axis in ['x', 'both']:
self._autoscaleXon = bool(enable)
scalex = self._autoscaleXon
if axis in ['y', 'both']:
self._autoscaleYon = bool(enable)
scaley = self._autoscaleYon
self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley)
def autoscale_view(self, tight=None, scalex=True, scaley=True):
"""
Autoscale the view limits using the data limits. You can
selectively autoscale only a single axis, eg, the xaxis by
setting *scaley* to *False*. The autoscaling preserves any
axis direction reversal that has already been done.
The data limits are not updated automatically when artist data are
changed after the artist has been added to an Axes instance. In that
case, use :meth:`matplotlib.axes.Axes.relim` prior to calling
autoscale_view.
"""
if tight is None:
# if image data only just use the datalim
_tight = self._tight or (len(self.images) > 0 and
len(self.lines) == 0 and
len(self.patches) == 0)
else:
_tight = self._tight = bool(tight)
if scalex and self._autoscaleXon:
xshared = self._shared_x_axes.get_siblings(self)
dl = [ax.dataLim for ax in xshared]
bb = mtransforms.BboxBase.union(dl)
x0, x1 = bb.intervalx
xlocator = self.xaxis.get_major_locator()
try:
# e.g., DateLocator has its own nonsingular()
x0, x1 = xlocator.nonsingular(x0, x1)
except AttributeError:
# Default nonsingular for, e.g., MaxNLocator
x0, x1 = mtransforms.nonsingular(x0, x1, increasing=False,
expander=0.05)
if self._xmargin > 0:
delta = (x1 - x0) * self._xmargin
x0 -= delta
x1 += delta
if not _tight:
x0, x1 = xlocator.view_limits(x0, x1)
self.set_xbound(x0, x1)
if scaley and self._autoscaleYon:
yshared = self._shared_y_axes.get_siblings(self)
dl = [ax.dataLim for ax in yshared]
bb = mtransforms.BboxBase.union(dl)
y0, y1 = bb.intervaly
ylocator = self.yaxis.get_major_locator()
try:
y0, y1 = ylocator.nonsingular(y0, y1)
except AttributeError:
y0, y1 = mtransforms.nonsingular(y0, y1, increasing=False,
expander=0.05)
if self._ymargin > 0:
delta = (y1 - y0) * self._ymargin
y0 -= delta
y1 += delta
if not _tight:
y0, y1 = ylocator.view_limits(y0, y1)
self.set_ybound(y0, y1)
#### Drawing
@allow_rasterization
def draw(self, renderer=None, inframe=False):
"""Draw everything (plot lines, axes, labels)"""
if renderer is None:
renderer = self._cachedRenderer
if renderer is None:
raise RuntimeError('No renderer defined')
if not self.get_visible():
return
renderer.open_group('axes')
locator = self.get_axes_locator()
if locator:
pos = locator(self, renderer)
self.apply_aspect(pos)
else:
self.apply_aspect()
artists = []
artists.extend(self.collections)
artists.extend(self.patches)
artists.extend(self.lines)
artists.extend(self.texts)
artists.extend(self.artists)
if self.axison and not inframe:
if self._axisbelow:
self.xaxis.set_zorder(0.5)
self.yaxis.set_zorder(0.5)
else:
self.xaxis.set_zorder(2.5)
self.yaxis.set_zorder(2.5)
artists.extend([self.xaxis, self.yaxis])
if not inframe:
artists.append(self.title)
artists.append(self._left_title)
artists.append(self._right_title)
artists.extend(self.tables)
if self.legend_ is not None:
artists.append(self.legend_)
# the frame draws the edges around the axes patch -- we
# decouple these so the patch can be in the background and the
# frame in the foreground.
if self.axison and self._frameon:
artists.extend(self.spines.itervalues())
if self.figure.canvas.is_saving():
dsu = [(a.zorder, a) for a in artists]
else:
dsu = [(a.zorder, a) for a in artists
if not a.get_animated()]
# add images to dsu if the backend support compositing.
# otherwise, does the manaul compositing without adding images to dsu.
if len(self.images) <= 1 or renderer.option_image_nocomposite():
dsu.extend([(im.zorder, im) for im in self.images])
_do_composite = False
else:
_do_composite = True
dsu.sort(key=itemgetter(0))
# rasterize artists with negative zorder
# if the minimum zorder is negative, start rasterization
rasterization_zorder = self._rasterization_zorder
if (rasterization_zorder is not None and
len(dsu) > 0 and dsu[0][0] < rasterization_zorder):
renderer.start_rasterizing()
dsu_rasterized = [l for l in dsu if l[0] < rasterization_zorder]
dsu = [l for l in dsu if l[0] >= rasterization_zorder]
else:
dsu_rasterized = []
# the patch draws the background rectangle -- the frame below
# will draw the edges
if self.axison and self._frameon:
self.patch.draw(renderer)
if _do_composite:
# make a composite image blending alpha
# list of (mimage.Image, ox, oy)
zorder_images = [(im.zorder, im) for im in self.images
if im.get_visible()]
zorder_images.sort(key=lambda x: x[0])
mag = renderer.get_image_magnification()
ims = [(im.make_image(mag), 0, 0, im.get_alpha()) for z, im in zorder_images]
l, b, r, t = self.bbox.extents
width = mag * ((round(r) + 0.5) - (round(l) - 0.5))
height = mag * ((round(t) + 0.5) - (round(b) - 0.5))
im = mimage.from_images(height,
width,
ims)
im.is_grayscale = False
l, b, w, h = self.bbox.bounds
# composite images need special args so they will not
# respect z-order for now
gc = renderer.new_gc()
gc.set_clip_rectangle(self.bbox)
gc.set_clip_path(mtransforms.TransformedPath(
self.patch.get_path(),
self.patch.get_transform()))
renderer.draw_image(gc, round(l), round(b), im)
gc.restore()
if dsu_rasterized:
for zorder, a in dsu_rasterized:
a.draw(renderer)
renderer.stop_rasterizing()
for zorder, a in dsu:
a.draw(renderer)
renderer.close_group('axes')
self._cachedRenderer = renderer
def draw_artist(self, a):
"""
This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
"""
assert self._cachedRenderer is not None
a.draw(self._cachedRenderer)
def redraw_in_frame(self):
"""
This method can only be used after an initial draw which
caches the renderer. It is used to efficiently update Axes
data (axis ticks, labels, etc are not updated)
"""
assert self._cachedRenderer is not None
self.draw(self._cachedRenderer, inframe=True)
def get_renderer_cache(self):
return self._cachedRenderer
#### Axes rectangle characteristics
def get_frame_on(self):
"""
Get whether the axes rectangle patch is drawn
"""
return self._frameon
def set_frame_on(self, b):
"""
Set whether the axes rectangle patch is drawn
ACCEPTS: [ *True* | *False* ]
"""
self._frameon = b
def get_axisbelow(self):
"""
Get whether axis below is true or not
"""
return self._axisbelow
def set_axisbelow(self, b):
"""
Set whether the axis ticks and gridlines are above or below most
artists
ACCEPTS: [ *True* | *False* ]
"""
self._axisbelow = b
@docstring.dedent_interpd
def grid(self, b=None, which='major', axis='both', **kwargs):
"""
Turn the axes grids on or off.
Call signature::
grid(self, b=None, which='major', axis='both', **kwargs)
Set the axes grids on or off; *b* is a boolean. (For MATLAB
compatibility, *b* may also be a string, 'on' or 'off'.)
If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If
*kwargs* are supplied, it is assumed that you want a grid and *b*
is thus set to *True*.
*which* can be 'major' (default), 'minor', or 'both' to control
whether major tick grids, minor tick grids, or both are affected.
*axis* can be 'both' (default), 'x', or 'y' to control which
set of gridlines are drawn.
*kwargs* are used to set the grid line properties, eg::
ax.grid(color='r', linestyle='-', linewidth=2)
Valid :class:`~matplotlib.lines.Line2D` kwargs are
%(Line2D)s
"""
if len(kwargs):
b = True
b = _string_to_bool(b)
if axis == 'x' or axis == 'both':
self.xaxis.grid(b, which=which, **kwargs)
if axis == 'y' or axis == 'both':
self.yaxis.grid(b, which=which, **kwargs)
def ticklabel_format(self, **kwargs):
"""
Change the `~matplotlib.ticker.ScalarFormatter` used by
default for linear axes.
Optional keyword arguments:
============ =========================================
Keyword Description
============ =========================================
*style* [ 'sci' (or 'scientific') | 'plain' ]
plain turns off scientific notation
*scilimits* (m, n), pair of integers; if *style*
is 'sci', scientific notation will
be used for numbers outside the range
10`m`:sup: to 10`n`:sup:.
Use (0,0) to include all numbers.
*useOffset* [True | False | offset]; if True,
the offset will be calculated as needed;
if False, no offset will be used; if a
numeric offset is specified, it will be
used.
*axis* [ 'x' | 'y' | 'both' ]
*useLocale* If True, format the number according to
the current locale. This affects things
such as the character used for the
decimal separator. If False, use
C-style (English) formatting. The
default setting is controlled by the
axes.formatter.use_locale rcparam.
============ =========================================
Only the major ticks are affected.
If the method is called when the
:class:`~matplotlib.ticker.ScalarFormatter` is not the
:class:`~matplotlib.ticker.Formatter` being used, an
:exc:`AttributeError` will be raised.
"""
style = kwargs.pop('style', '').lower()
scilimits = kwargs.pop('scilimits', None)
useOffset = kwargs.pop('useOffset', None)
useLocale = kwargs.pop('useLocale', None)
axis = kwargs.pop('axis', 'both').lower()
if scilimits is not None:
try:
m, n = scilimits
m + n + 1 # check that both are numbers
except (ValueError, TypeError):
raise ValueError("scilimits must be a sequence of 2 integers")
if style[:3] == 'sci':
sb = True
elif style in ['plain', 'comma']:
sb = False
if style == 'plain':
cb = False
else:
cb = True
raise NotImplementedError("comma style remains to be added")
elif style == '':
sb = None
else:
raise ValueError("%s is not a valid style value")
try:
if sb is not None:
if axis == 'both' or axis == 'x':
self.xaxis.major.formatter.set_scientific(sb)
if axis == 'both' or axis == 'y':
self.yaxis.major.formatter.set_scientific(sb)
if scilimits is not None:
if axis == 'both' or axis == 'x':
self.xaxis.major.formatter.set_powerlimits(scilimits)
if axis == 'both' or axis == 'y':
self.yaxis.major.formatter.set_powerlimits(scilimits)
if useOffset is not None:
if axis == 'both' or axis == 'x':
self.xaxis.major.formatter.set_useOffset(useOffset)
if axis == 'both' or axis == 'y':
self.yaxis.major.formatter.set_useOffset(useOffset)
if useLocale is not None:
if axis == 'both' or axis == 'x':
self.xaxis.major.formatter.set_useLocale(useLocale)
if axis == 'both' or axis == 'y':
self.yaxis.major.formatter.set_useLocale(useLocale)
except AttributeError:
raise AttributeError(
"This method only works with the ScalarFormatter.")
def locator_params(self, axis='both', tight=None, **kwargs):
"""
Control behavior of tick locators.
Keyword arguments:
*axis*
['x' | 'y' | 'both'] Axis on which to operate;
default is 'both'.
*tight*
[True | False | None] Parameter passed to :meth:`autoscale_view`.
Default is None, for no change.
Remaining keyword arguments are passed to directly to the
:meth:`~matplotlib.ticker.MaxNLocator.set_params` method.
Typically one might want to reduce the maximum number
of ticks and use tight bounds when plotting small
subplots, for example::
ax.locator_params(tight=True, nbins=4)
Because the locator is involved in autoscaling,
:meth:`autoscale_view` is called automatically after
the parameters are changed.
This presently works only for the
:class:`~matplotlib.ticker.MaxNLocator` used
by default on linear axes, but it may be generalized.
"""
_x = axis in ['x', 'both']
_y = axis in ['y', 'both']
if _x:
self.xaxis.get_major_locator().set_params(**kwargs)
if _y:
self.yaxis.get_major_locator().set_params(**kwargs)
self.autoscale_view(tight=tight, scalex=_x, scaley=_y)
def tick_params(self, axis='both', **kwargs):
"""
Change the appearance of ticks and tick labels.
Keyword arguments:
*axis* : ['x' | 'y' | 'both']
Axis on which to operate; default is 'both'.
*reset* : [True | False]
If *True*, set all parameters to defaults
before processing other keyword arguments. Default is
*False*.
*which* : ['major' | 'minor' | 'both']
Default is 'major'; apply arguments to *which* ticks.
*direction* : ['in' | 'out' | 'inout']
Puts ticks inside the axes, outside the axes, or both.
*length*
Tick length in points.
*width*
Tick width in points.
*color*
Tick color; accepts any mpl color spec.
*pad*
Distance in points between tick and label.
*labelsize*
Tick label font size in points or as a string (e.g., 'large').
*labelcolor*
Tick label color; mpl color spec.
*colors*
Changes the tick color and the label color to the same value:
mpl color spec.
*zorder*
Tick and label zorder.
*bottom*, *top*, *left*, *right* : [bool | 'on' | 'off']
controls whether to draw the respective ticks.
*labelbottom*, *labeltop*, *labelleft*, *labelright*
Boolean or ['on' | 'off'], controls whether to draw the
respective tick labels.
Example::
ax.tick_params(direction='out', length=6, width=2, colors='r')
This will make all major ticks be red, pointing out of the box,
and with dimensions 6 points by 2 points. Tick labels will
also be red.
"""
if axis in ['x', 'both']:
xkw = dict(kwargs)
xkw.pop('left', None)
xkw.pop('right', None)
xkw.pop('labelleft', None)
xkw.pop('labelright', None)
self.xaxis.set_tick_params(**xkw)
if axis in ['y', 'both']:
ykw = dict(kwargs)
ykw.pop('top', None)
ykw.pop('bottom', None)
ykw.pop('labeltop', None)
ykw.pop('labelbottom', None)
self.yaxis.set_tick_params(**ykw)
def set_axis_off(self):
"""turn off the axis"""
self.axison = False
def set_axis_on(self):
"""turn on the axis"""
self.axison = True
def get_axis_bgcolor(self):
"""Return the axis background color"""
return self._axisbg
def set_axis_bgcolor(self, color):
"""
set the axes background color
ACCEPTS: any matplotlib color - see
:func:`~matplotlib.pyplot.colors`
"""
self._axisbg = color
self.patch.set_facecolor(color)
### data limits, ticks, tick labels, and formatting
def invert_xaxis(self):
"Invert the x-axis."
left, right = self.get_xlim()
self.set_xlim(right, left, auto=None)
def xaxis_inverted(self):
"""Returns *True* if the x-axis is inverted."""
left, right = self.get_xlim()
return right < left
def get_xbound(self):
"""
Returns the x-axis numerical bounds where::
lowerBound < upperBound
"""
left, right = self.get_xlim()
if left < right:
return left, right
else:
return right, left
def set_xbound(self, lower=None, upper=None):
"""
Set the lower and upper numerical bounds of the x-axis.
This method will honor axes inversion regardless of parameter order.
It will not change the _autoscaleXon attribute.
"""
if upper is None and iterable(lower):
lower, upper = lower
old_lower, old_upper = self.get_xbound()
if lower is None:
lower = old_lower
if upper is None:
upper = old_upper
if self.xaxis_inverted():
if lower < upper:
self.set_xlim(upper, lower, auto=None)
else:
self.set_xlim(lower, upper, auto=None)
else:
if lower < upper:
self.set_xlim(lower, upper, auto=None)
else:
self.set_xlim(upper, lower, auto=None)
def get_xlim(self):
"""
Get the x-axis range [*left*, *right*]
"""
return tuple(self.viewLim.intervalx)
def set_xlim(self, left=None, right=None, emit=True, auto=False, **kw):
"""
Call signature::
set_xlim(self, *args, **kwargs):
Set the data limits for the xaxis
Examples::
set_xlim((left, right))
set_xlim(left, right)
set_xlim(left=1) # right unchanged
set_xlim(right=1) # left unchanged
Keyword arguments:
*left*: scalar
The left xlim; *xmin*, the previous name, may still be used
*right*: scalar
The right xlim; *xmax*, the previous name, may still be used
*emit*: [ *True* | *False* ]
Notify observers of limit change
*auto*: [ *True* | *False* | *None* ]
Turn *x* autoscaling on (*True*), off (*False*; default),
or leave unchanged (*None*)
Note, the *left* (formerly *xmin*) value may be greater than
the *right* (formerly *xmax*).
For example, suppose *x* is years before present.
Then one might use::
set_ylim(5000, 0)
so 5000 years ago is on the left of the plot and the
present is on the right.
Returns the current xlimits as a length 2 tuple
ACCEPTS: length 2 sequence of floats
"""
if 'xmin' in kw:
left = kw.pop('xmin')
if 'xmax' in kw:
right = kw.pop('xmax')
if kw:
raise ValueError("unrecognized kwargs: %s" % kw.keys())
if right is None and iterable(left):
left, right = left
self._process_unit_info(xdata=(left, right))
if left is not None:
left = self.convert_xunits(left)
if right is not None:
right = self.convert_xunits(right)
old_left, old_right = self.get_xlim()
if left is None:
left = old_left
if right is None:
right = old_right
if left == right:
warnings.warn(('Attempting to set identical left==right results\n'
+ 'in singular transformations; automatically expanding.\n'
+ 'left=%s, right=%s') % (left, right))
left, right = mtransforms.nonsingular(left, right, increasing=False)
left, right = self.xaxis.limit_range_for_scale(left, right)
self.viewLim.intervalx = (left, right)
if auto is not None:
self._autoscaleXon = bool(auto)
if emit:
self.callbacks.process('xlim_changed', self)
# Call all of the other x-axes that are shared with this one
for other in self._shared_x_axes.get_siblings(self):
if other is not self:
other.set_xlim(self.viewLim.intervalx,
emit=False, auto=auto)
if (other.figure != self.figure and
other.figure.canvas is not None):
other.figure.canvas.draw_idle()
return left, right
def get_xscale(self):
return self.xaxis.get_scale()
get_xscale.__doc__ = "Return the xaxis scale string: %s""" % (
", ".join(mscale.get_scale_names()))
@docstring.dedent_interpd
def set_xscale(self, value, **kwargs):
"""
Call signature::
set_xscale(value)
Set the scaling of the x-axis: %(scale)s
ACCEPTS: [%(scale)s]
Different kwargs are accepted, depending on the scale:
%(scale_docs)s
"""
self.xaxis._set_scale(value, **kwargs)
self.autoscale_view(scaley=False)
self._update_transScale()
def get_xticks(self, minor=False):
"""Return the x ticks as a list of locations"""
return self.xaxis.get_ticklocs(minor=minor)
def set_xticks(self, ticks, minor=False):
"""
Set the x ticks with list of *ticks*
ACCEPTS: sequence of floats
"""
return self.xaxis.set_ticks(ticks, minor=minor)
def get_xmajorticklabels(self):
"""
Get the xtick labels as a list of :class:`~matplotlib.text.Text`
instances.
"""
return cbook.silent_list('Text xticklabel',
self.xaxis.get_majorticklabels())
def get_xminorticklabels(self):
"""
Get the x minor tick labels as a list of
:class:`matplotlib.text.Text` instances.
"""
return cbook.silent_list('Text xticklabel',
self.xaxis.get_minorticklabels())
def get_xticklabels(self, minor=False):
"""
Get the x tick labels as a list of :class:`~matplotlib.text.Text`
instances.
"""
return cbook.silent_list('Text xticklabel',
self.xaxis.get_ticklabels(minor=minor))
@docstring.dedent_interpd
def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs):
"""
Call signature::
set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the xtick labels with list of strings *labels*. Return a
list of axis text instances.
*kwargs* set the :class:`~matplotlib.text.Text` properties.
Valid properties are
%(Text)s
ACCEPTS: sequence of strings
"""
return self.xaxis.set_ticklabels(labels, fontdict,
minor=minor, **kwargs)
def invert_yaxis(self):
"""
Invert the y-axis.
"""
bottom, top = self.get_ylim()
self.set_ylim(top, bottom, auto=None)
def yaxis_inverted(self):
"""Returns *True* if the y-axis is inverted."""
bottom, top = self.get_ylim()
return top < bottom
def get_ybound(self):
"""
Return y-axis numerical bounds in the form of
``lowerBound < upperBound``
"""
bottom, top = self.get_ylim()
if bottom < top:
return bottom, top
else:
return top, bottom
def set_ybound(self, lower=None, upper=None):
"""
Set the lower and upper numerical bounds of the y-axis.
This method will honor axes inversion regardless of parameter order.
It will not change the _autoscaleYon attribute.
"""
if upper is None and iterable(lower):
lower, upper = lower
old_lower, old_upper = self.get_ybound()
if lower is None:
lower = old_lower
if upper is None:
upper = old_upper
if self.yaxis_inverted():
if lower < upper:
self.set_ylim(upper, lower, auto=None)
else:
self.set_ylim(lower, upper, auto=None)
else:
if lower < upper:
self.set_ylim(lower, upper, auto=None)
else:
self.set_ylim(upper, lower, auto=None)
def get_ylim(self):
"""
Get the y-axis range [*bottom*, *top*]
"""
return tuple(self.viewLim.intervaly)
def set_ylim(self, bottom=None, top=None, emit=True, auto=False, **kw):
"""
Call signature::
set_ylim(self, *args, **kwargs):
Set the data limits for the yaxis
Examples::
set_ylim((bottom, top))
set_ylim(bottom, top)
set_ylim(bottom=1) # top unchanged
set_ylim(top=1) # bottom unchanged
Keyword arguments:
*bottom*: scalar
The bottom ylim; the previous name, *ymin*, may still be used
*top*: scalar
The top ylim; the previous name, *ymax*, may still be used
*emit*: [ *True* | *False* ]
Notify observers of limit change
*auto*: [ *True* | *False* | *None* ]
Turn *y* autoscaling on (*True*), off (*False*; default),
or leave unchanged (*None*)
Note, the *bottom* (formerly *ymin*) value may be greater than
the *top* (formerly *ymax*).
For example, suppose *y* is depth in the ocean.
Then one might use::
set_ylim(5000, 0)
so 5000 m depth is at the bottom of the plot and the
surface, 0 m, is at the top.
Returns the current ylimits as a length 2 tuple
ACCEPTS: length 2 sequence of floats
"""
if 'ymin' in kw:
bottom = kw.pop('ymin')
if 'ymax' in kw:
top = kw.pop('ymax')
if kw:
raise ValueError("unrecognized kwargs: %s" % kw.keys())
if top is None and iterable(bottom):
bottom, top = bottom
if bottom is not None:
bottom = self.convert_yunits(bottom)
if top is not None:
top = self.convert_yunits(top)
old_bottom, old_top = self.get_ylim()
if bottom is None:
bottom = old_bottom
if top is None:
top = old_top
if bottom == top:
warnings.warn(('Attempting to set identical bottom==top results\n'
+ 'in singular transformations; automatically expanding.\n'
+ 'bottom=%s, top=%s') % (bottom, top))
bottom, top = mtransforms.nonsingular(bottom, top, increasing=False)
bottom, top = self.yaxis.limit_range_for_scale(bottom, top)
self.viewLim.intervaly = (bottom, top)
if auto is not None:
self._autoscaleYon = bool(auto)
if emit:
self.callbacks.process('ylim_changed', self)
# Call all of the other y-axes that are shared with this one
for other in self._shared_y_axes.get_siblings(self):
if other is not self:
other.set_ylim(self.viewLim.intervaly,
emit=False, auto=auto)
if (other.figure != self.figure and
other.figure.canvas is not None):
other.figure.canvas.draw_idle()
return bottom, top
def get_yscale(self):
return self.yaxis.get_scale()
get_yscale.__doc__ = "Return the yaxis scale string: %s""" % (
", ".join(mscale.get_scale_names()))
@docstring.dedent_interpd
def set_yscale(self, value, **kwargs):
"""
Call signature::
set_yscale(value)
Set the scaling of the y-axis: %(scale)s
ACCEPTS: [%(scale)s]
Different kwargs are accepted, depending on the scale:
%(scale_docs)s
"""
self.yaxis._set_scale(value, **kwargs)
self.autoscale_view(scalex=False)
self._update_transScale()
def get_yticks(self, minor=False):
"""Return the y ticks as a list of locations"""
return self.yaxis.get_ticklocs(minor=minor)
def set_yticks(self, ticks, minor=False):
"""
Set the y ticks with list of *ticks*
ACCEPTS: sequence of floats
Keyword arguments:
*minor*: [ *False* | *True* ]
Sets the minor ticks if *True*
"""
return self.yaxis.set_ticks(ticks, minor=minor)
def get_ymajorticklabels(self):
"""
Get the major y tick labels as a list of
:class:`~matplotlib.text.Text` instances.
"""
return cbook.silent_list('Text yticklabel',
self.yaxis.get_majorticklabels())
def get_yminorticklabels(self):
"""
Get the minor y tick labels as a list of
:class:`~matplotlib.text.Text` instances.
"""
return cbook.silent_list('Text yticklabel',
self.yaxis.get_minorticklabels())
def get_yticklabels(self, minor=False):
"""
Get the y tick labels as a list of :class:`~matplotlib.text.Text`
instances
"""
return cbook.silent_list('Text yticklabel',
self.yaxis.get_ticklabels(minor=minor))
@docstring.dedent_interpd
def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs):
"""
Call signature::
set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the y tick labels with list of strings *labels*. Return a list of
:class:`~matplotlib.text.Text` instances.
*kwargs* set :class:`~matplotlib.text.Text` properties for the labels.
Valid properties are
%(Text)s
ACCEPTS: sequence of strings
"""
return self.yaxis.set_ticklabels(labels, fontdict,
minor=minor, **kwargs)
def xaxis_date(self, tz=None):
"""
Sets up x-axis ticks and labels that treat the x data as dates.
*tz* is a timezone string or :class:`tzinfo` instance.
Defaults to rc value.
"""
# should be enough to inform the unit conversion interface
# dates are coming in
self.xaxis.axis_date(tz)
def yaxis_date(self, tz=None):
"""
Sets up y-axis ticks and labels that treat the y data as dates.
*tz* is a timezone string or :class:`tzinfo` instance.
Defaults to rc value.
"""
self.yaxis.axis_date(tz)
def format_xdata(self, x):
"""
Return *x* string formatted. This function will use the attribute
self.fmt_xdata if it is callable, else will fall back on the xaxis
major formatter
"""
try:
return self.fmt_xdata(x)
except TypeError:
func = self.xaxis.get_major_formatter().format_data_short
val = func(x)
return val
def format_ydata(self, y):
"""
Return y string formatted. This function will use the
:attr:`fmt_ydata` attribute if it is callable, else will fall
back on the yaxis major formatter
"""
try:
return self.fmt_ydata(y)
except TypeError:
func = self.yaxis.get_major_formatter().format_data_short
val = func(y)
return val
def format_coord(self, x, y):
"""Return a format string formatting the *x*, *y* coord"""
if x is None:
xs = '???'
else:
xs = self.format_xdata(x)
if y is None:
ys = '???'
else:
ys = self.format_ydata(y)
return 'x=%s y=%s' % (xs, ys)
#### Interactive manipulation
def can_zoom(self):
"""
Return *True* if this axes supports the zoom box button functionality.
"""
return True
def can_pan(self):
"""
Return *True* if this axes supports any pan/zoom button functionality.
"""
return True
def get_navigate(self):
"""
Get whether the axes responds to navigation commands
"""
return self._navigate
def set_navigate(self, b):
"""
Set whether the axes responds to navigation toolbar commands
ACCEPTS: [ *True* | *False* ]
"""
self._navigate = b
def get_navigate_mode(self):
"""
Get the navigation toolbar button status: 'PAN', 'ZOOM', or None
"""
return self._navigate_mode
def set_navigate_mode(self, b):
"""
Set the navigation toolbar button status;
.. warning::
this is not a user-API function.
"""
self._navigate_mode = b
def start_pan(self, x, y, button):
"""
Called when a pan operation has started.
*x*, *y* are the mouse coordinates in display coords.
button is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
.. note::
Intended to be overridden by new projection types.
"""
self._pan_start = cbook.Bunch(
lim=self.viewLim.frozen(),
trans=self.transData.frozen(),
trans_inverse=self.transData.inverted().frozen(),
bbox=self.bbox.frozen(),
x=x,
y=y
)
def end_pan(self):
"""
Called when a pan operation completes (when the mouse button
is up.)
.. note::
Intended to be overridden by new projection types.
"""
del self._pan_start
def drag_pan(self, button, key, x, y):
"""
Called when the mouse moves during a pan operation.
*button* is the mouse button number:
* 1: LEFT
* 2: MIDDLE
* 3: RIGHT
*key* is a "shift" key
*x*, *y* are the mouse coordinates in display coords.
.. note::
Intended to be overridden by new projection types.
"""
def format_deltas(key, dx, dy):
if key == 'control':
if abs(dx) > abs(dy):
dy = dx
else:
dx = dy
elif key == 'x':
dy = 0
elif key == 'y':
dx = 0
elif key == 'shift':
if 2 * abs(dx) < abs(dy):
dx = 0
elif 2 * abs(dy) < abs(dx):
dy = 0
elif abs(dx) > abs(dy):
dy = dy / abs(dy) * abs(dx)
else:
dx = dx / abs(dx) * abs(dy)
return (dx, dy)
p = self._pan_start
dx = x - p.x
dy = y - p.y
if dx == 0 and dy == 0:
return
if button == 1:
dx, dy = format_deltas(key, dx, dy)
result = p.bbox.translated(-dx, -dy) \
.transformed(p.trans_inverse)
elif button == 3:
try:
dx = -dx / float(self.bbox.width)
dy = -dy / float(self.bbox.height)
dx, dy = format_deltas(key, dx, dy)
if self.get_aspect() != 'auto':
dx = 0.5 * (dx + dy)
dy = dx
alpha = np.power(10.0, (dx, dy))
start = np.array([p.x, p.y])
oldpoints = p.lim.transformed(p.trans)
newpoints = start + alpha * (oldpoints - start)
result = mtransforms.Bbox(newpoints) \
.transformed(p.trans_inverse)
except OverflowError:
warnings.warn('Overflow while panning')
return
self.set_xlim(*result.intervalx)
self.set_ylim(*result.intervaly)
def get_cursor_props(self):
"""
Return the cursor propertiess as a (*linewidth*, *color*)
tuple, where *linewidth* is a float and *color* is an RGBA
tuple
"""
return self._cursorProps
def set_cursor_props(self, *args):
"""
Set the cursor property as::
ax.set_cursor_props(linewidth, color)
or::
ax.set_cursor_props((linewidth, color))
ACCEPTS: a (*float*, *color*) tuple
"""
if len(args) == 1:
lw, c = args[0]
elif len(args) == 2:
lw, c = args
else:
raise ValueError('args must be a (linewidth, color) tuple')
c = mcolors.colorConverter.to_rgba(c)
self._cursorProps = lw, c
def get_children(self):
"""return a list of child artists"""
children = []
children.append(self.xaxis)
children.append(self.yaxis)
children.extend(self.lines)
children.extend(self.patches)
children.extend(self.texts)
children.extend(self.tables)
children.extend(self.artists)
children.extend(self.images)
if self.legend_ is not None:
children.append(self.legend_)
children.extend(self.collections)
children.append(self.title)
children.append(self._left_title)
children.append(self._right_title)
children.append(self.patch)
children.extend(self.spines.itervalues())
return children
def contains(self, mouseevent):
"""
Test whether the mouse event occured in the axes.
Returns *True* / *False*, {}
"""
if callable(self._contains):
return self._contains(self, mouseevent)
return self.patch.contains(mouseevent)
def contains_point(self, point):
"""
Returns *True* if the point (tuple of x,y) is inside the axes
(the area defined by the its patch). A pixel coordinate is
required.
"""
return self.patch.contains_point(point, radius=1.0)
def pick(self, *args):
"""
Call signature::
pick(mouseevent)
each child artist will fire a pick event if mouseevent is over
the artist and the artist has picker set
"""
martist.Artist.pick(self, args[0])
### Labelling
def get_title(self, loc="center"):
"""Get an axes title.
Get one of the three available axes titles. The available titles
are positioned above the axes in the center, flush with the left
edge, and flush with the right edge.
Parameters
----------
loc : {'center', 'left', 'right'}, str, optional
Which title to get, defaults to 'center'
Returns
-------
title: str
The title text string.
"""
try:
title = {'left': self._left_title,
'center': self.title,
'right': self._right_title}[loc.lower()]
except KeyError:
raise ValueError("'%s' is not a valid location" % loc)
return title.get_text()
@docstring.dedent_interpd
def set_title(self, label, fontdict=None, loc="center", **kwargs):
"""
Set a title for the axes.
Set one of the three available axes titles. The available titles
are positioned above the axes in the center, flush with the left
edge, and flush with the right edge.
Parameters
----------
label : str
Text to use for the title
fontdict : dict
A dictionary controlling the appearance of the title text,
the default `fontdict` is::
{'fontsize': rcParams['axes.titlesize'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}
loc : {'center', 'left', 'right'}, str, optional
Which title to set, defaults to 'center'
Returns
-------
text : :class:`~matplotlib.text.Text`
The matplotlib text instance representing the title
Other parameters
----------------
Other keyword arguments are text properties, see
:class:`~matplotlib.text.Text` for a list of valid text
properties.
"""
try:
title = {'left': self._left_title,
'center': self.title,
'right': self._right_title}[loc.lower()]
except KeyError:
raise ValueError("'%s' is not a valid location" % loc)
default = {
'fontsize': rcParams['axes.titlesize'],
'verticalalignment': 'baseline',
'horizontalalignment': loc.lower()
}
title.set_text(label)
title.update(default)
if fontdict is not None:
title.update(fontdict)
title.update(kwargs)
return title
def get_xlabel(self):
"""
Get the xlabel text string.
"""
label = self.xaxis.get_label()
return label.get_text()
@docstring.dedent_interpd
def set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs):
"""
Set the label for the xaxis.
Parameters
----------
xlabel : string
x label
labelpad : scalar, optional, default: None
spacing in points between the label and the x-axis
Other parameters
----------------
kwargs : `~matplotlib.text.Text` properties
See also
--------
text : for information on how override and the optional args work
"""
if labelpad is not None:
self.xaxis.labelpad = labelpad
return self.xaxis.set_label_text(xlabel, fontdict, **kwargs)
def get_ylabel(self):
"""
Get the ylabel text string.
"""
label = self.yaxis.get_label()
return label.get_text()
@docstring.dedent_interpd
def set_ylabel(self, ylabel, fontdict=None, labelpad=None, **kwargs):
"""
Set the label for the yaxis
Parameters
----------
ylabel : string
y label
labelpad : scalar, optional, default: None
spacing in points between the label and the x-axis
Other parameters
----------------
kwargs : `~matplotlib.text.Text` properties
See also
--------
text : for information on how override and the optional args work
"""
if labelpad is not None:
self.yaxis.labelpad = labelpad
return self.yaxis.set_label_text(ylabel, fontdict, **kwargs)
@docstring.dedent_interpd
def text(self, x, y, s, fontdict=None,
withdash=False, **kwargs):
"""
Add text to the axes.
Add text in string *s* to axis at location *x*, *y*, data
coordinates.
Parameters
----------
s : string
text
x, y : scalars
data coordinates
fontdict : dictionary, optional, default: None
A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by your rc parameters.
withdash : boolean, optional, default: False
Creates a `~matplotlib.text.TextWithDash` instance instead of a
`~matplotlib.text.Text` instance.
Other parameters
----------------
kwargs : `~matplotlib.text.Text` properties.
Other miscellaneous text parameters.
Examples
--------
Individual keyword arguments can be used to override any given
parameter::
>>> text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 is
lower-left and 1,1 is upper-right). The example below places
text in the center of the axes::
>>> text(0.5, 0.5,'matplotlib', horizontalalignment='center',
... verticalalignment='center',
... transform=ax.transAxes)
You can put a rectangular box around the text instance (e.g., to
set a background color) by using the keyword *bbox*. *bbox* is
a dictionary of `~matplotlib.patches.Rectangle`
properties. For example::
>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
"""
default = {
'verticalalignment': 'baseline',
'horizontalalignment': 'left',
'transform': self.transData,
'clip_on': False
}
# At some point if we feel confident that TextWithDash
# is robust as a drop-in replacement for Text and that
# the performance impact of the heavier-weight class
# isn't too significant, it may make sense to eliminate
# the withdash kwarg and simply delegate whether there's
# a dash to TextWithDash and dashlength.
if withdash:
t = mtext.TextWithDash(
x=x, y=y, text=s)
else:
t = mtext.Text(
x=x, y=y, text=s)
self._set_artist_props(t)
t.update(default)
if fontdict is not None:
t.update(fontdict)
t.update(kwargs)
self.texts.append(t)
t._remove_method = lambda h: self.texts.remove(h)
t.set_clip_path(self.patch)
return t
@docstring.dedent_interpd
def annotate(self, *args, **kwargs):
"""
Create an annotation: a piece of text referring to a data
point.
Call signature::
annotate(s, xy, xytext=None, xycoords='data',
textcoords='data', arrowprops=None, **kwargs)
Keyword arguments:
%(Annotation)s
.. plot:: mpl_examples/pylab_examples/annotation_demo2.py
"""
a = mtext.Annotation(*args, **kwargs)
a.set_transform(mtransforms.IdentityTransform())
self._set_artist_props(a)
if kwargs.has_key('clip_on'):
a.set_clip_path(self.patch)
self.texts.append(a)
a._remove_method = lambda h: self.texts.remove(h)
return a
#### Lines and spans
@docstring.dedent_interpd
def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
"""
Add a horizontal line across the axis.
Call signature::
axhline(y=0, xmin=0, xmax=1, **kwargs)
Draw a horizontal line at *y* from *xmin* to *xmax*. With the
default values of *xmin* = 0 and *xmax* = 1, this line will
always span the horizontal extent of the axes, regardless of
the xlim settings, even if you change them, e.g., with the
:meth:`set_xlim` command. That is, the horizontal extent is
in axes coords: 0=left, 0.5=middle, 1.0=right but the *y*
location is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. e.g.,
* draw a thick red hline at *y* = 0 that spans the xrange::
>>> axhline(linewidth=4, color='r')
* draw a default hline at *y* = 1 that spans the xrange::
>>> axhline(y=1)
* draw a default hline at *y* = .5 that spans the the middle half of
the xrange::
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
with the exception of 'transform':
%(Line2D)s
.. seealso::
:meth:`axhspan`
for example plot and source code
"""
if "transform" in kwargs:
raise ValueError(
"'transform' is not allowed as a kwarg;"
+ "axhline generates its own transform.")
ymin, ymax = self.get_ybound()
# We need to strip away the units for comparison with
# non-unitized bounds
self._process_unit_info(ydata=y, kwargs=kwargs)
yy = self.convert_yunits(y)
scaley = (yy < ymin) or (yy > ymax)
trans = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
l = mlines.Line2D([xmin, xmax], [y, y], transform=trans, **kwargs)
self.add_line(l)
self.autoscale_view(scalex=False, scaley=scaley)
return l
@docstring.dedent_interpd
def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
"""
Add a vertical line across the axes.
Call signature::
axvline(x=0, ymin=0, ymax=1, **kwargs)
Draw a vertical line at *x* from *ymin* to *ymax*. With the
default values of *ymin* = 0 and *ymax* = 1, this line will
always span the vertical extent of the axes, regardless of the
ylim settings, even if you change them, e.g., with the
:meth:`set_ylim` command. That is, the vertical extent is in
axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location
is in data coordinates.
Return value is the :class:`~matplotlib.lines.Line2D`
instance. kwargs are the same as kwargs to plot, and can be
used to control the line properties. e.g.,
* draw a thick red vline at *x* = 0 that spans the yrange::
>>> axvline(linewidth=4, color='r')
* draw a default vline at *x* = 1 that spans the yrange::
>>> axvline(x=1)
* draw a default vline at *x* = .5 that spans the the middle half of
the yrange::
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
with the exception of 'transform':
%(Line2D)s
.. seealso::
:meth:`axhspan`
for example plot and source code
"""
if "transform" in kwargs:
raise ValueError(
"'transform' is not allowed as a kwarg;"
+ "axvline generates its own transform.")
xmin, xmax = self.get_xbound()
# We need to strip away the units for comparison with
# non-unitized bounds
self._process_unit_info(xdata=x, kwargs=kwargs)
xx = self.convert_xunits(x)
scalex = (xx < xmin) or (xx > xmax)
trans = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
self.add_line(l)
self.autoscale_view(scalex=scalex, scaley=False)
return l
@docstring.dedent_interpd
def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
"""
Add a horizontal span (rectangle) across the axis.
Call signature::
axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
*y* coords are in data units and *x* coords are in axes (relative
0-1) units.
Draw a horizontal span (rectangle) from *ymin* to *ymax*.
With the default values of *xmin* = 0 and *xmax* = 1, this
always spans the xrange, regardless of the xlim settings, even
if you change them, e.g., with the :meth:`set_xlim` command.
That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the *y* location is in data
coordinates.
Return value is a :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a gray rectangle from *y* = 0.25-0.75 that spans the
horizontal extent of the axes::
>>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon` properties:
%(Polygon)s
**Example:**
.. plot:: mpl_examples/pylab_examples/axhspan_demo.py
"""
trans = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
# process the unit information
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
# first we need to strip away the units
xmin, xmax = self.convert_xunits([xmin, xmax])
ymin, ymax = self.convert_yunits([ymin, ymax])
verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
self.autoscale_view(scalex=False)
return p
@docstring.dedent_interpd
def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
"""
Add a vertical span (rectangle) across the axes.
Call signature::
axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
*x* coords are in data units and *y* coords are in axes (relative
0-1) units.
Draw a vertical span (rectangle) from *xmin* to *xmax*. With
the default values of *ymin* = 0 and *ymax* = 1, this always
spans the yrange, regardless of the ylim settings, even if you
change them, e.g., with the :meth:`set_ylim` command. That is,
the vertical extent is in axes coords: 0=bottom, 0.5=middle,
1.0=top but the *y* location is in data coordinates.
Return value is the :class:`matplotlib.patches.Polygon`
instance.
Examples:
* draw a vertical green translucent rectangle from x=1.25 to 1.55 that
spans the yrange of the axes::
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
Valid kwargs are :class:`~matplotlib.patches.Polygon`
properties:
%(Polygon)s
.. seealso::
:meth:`axhspan`
for example plot and source code
"""
trans = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
# process the unit information
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
# first we need to strip away the units
xmin, xmax = self.convert_xunits([xmin, xmax])
ymin, ymax = self.convert_yunits([ymin, ymax])
verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
self.autoscale_view(scaley=False)
return p
@docstring.dedent
def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
label='', **kwargs):
"""
Plot horizontal lines.
Plot horizontal lines at each `y` from `xmin` to `xmax`.
Parameters
----------
y : scalar or 1D array_like
y-indexes where to plot the lines.
xmin, xmax : scalar or 1D array_like
Respective beginning and end of each line. If scalars are
provided, all lines will have same length.
colors : array_like of colors, optional, default: 'k'
linestyles : ['solid' | 'dashed' | 'dashdot' | 'dotted'], optional
label : string, optional, default: ''
Returns
-------
lines : `~matplotlib.collections.LineCollection`
Other parameters
----------------
kwargs : `~matplotlib.collections.LineCollection` properties.
See also
--------
vlines : vertical lines
Examples
--------
.. plot:: mpl_examples/pylab_examples/vline_hline_demo.py
"""
# We do the conversion first since not all unitized data is uniform
# process the unit information
self._process_unit_info([xmin, xmax], y, kwargs=kwargs)
y = self.convert_yunits(y)
xmin = self.convert_xunits(xmin)
xmax = self.convert_xunits(xmax)
if not iterable(y):
y = [y]
if not iterable(xmin):
xmin = [xmin]
if not iterable(xmax):
xmax = [xmax]
y = np.asarray(y)
xmin = np.asarray(xmin)
xmax = np.asarray(xmax)
if len(xmin) == 1:
xmin = np.resize(xmin, y.shape)
if len(xmax) == 1:
xmax = np.resize(xmax, y.shape)
if len(xmin) != len(y):
raise ValueError('xmin and y are unequal sized sequences')
if len(xmax) != len(y):
raise ValueError('xmax and y are unequal sized sequences')
verts = [((thisxmin, thisy), (thisxmax, thisy))
for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)]
coll = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(coll)
coll.update(kwargs)
if len(y) > 0:
minx = min(xmin.min(), xmax.min())
maxx = max(xmin.max(), xmax.max())
miny = y.min()
maxy = y.max()
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return coll
@docstring.dedent_interpd
def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
label='', **kwargs):
"""
Plot vertical lines.
Plot vertical lines at each `x` from `ymin` to `ymax`.
Parameters
----------
x : scalar or 1D array_like
x-indexes where to plot the lines.
xmin, xmax : scalar or 1D array_like
Respective beginning and end of each line. If scalars are
provided, all lines will have same length.
colors : array_like of colors, optional, default: 'k'
linestyles : ['solid' | 'dashed' | 'dashdot' | 'dotted'], optional
label : string, optional, default: ''
Returns
-------
lines : `~matplotlib.collections.LineCollection`
Other parameters
----------------
kwargs : `~matplotlib.collections.LineCollection` properties.
See also
--------
hlines : horizontal lines
Examples
---------
.. plot:: mpl_examples/pylab_examples/vline_hline_demo.py
"""
self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs)
# We do the conversion first since not all unitized data is uniform
x = self.convert_xunits(x)
ymin = self.convert_yunits(ymin)
ymax = self.convert_yunits(ymax)
if not iterable(x):
x = [x]
if not iterable(ymin):
ymin = [ymin]
if not iterable(ymax):
ymax = [ymax]
x = np.asarray(x)
ymin = np.asarray(ymin)
ymax = np.asarray(ymax)
if len(ymin) == 1:
ymin = np.resize(ymin, x.shape)
if len(ymax) == 1:
ymax = np.resize(ymax, x.shape)
if len(ymin) != len(x):
raise ValueError('ymin and x are unequal sized sequences')
if len(ymax) != len(x):
raise ValueError('ymax and x are unequal sized sequences')
Y = np.array([ymin, ymax]).T
verts = [((thisx, thisymin), (thisx, thisymax))
for thisx, (thisymin, thisymax) in zip(x, Y)]
#print 'creating line collection'
coll = mcoll.LineCollection(verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(coll)
coll.update(kwargs)
if len(x) > 0:
minx = min(x)
maxx = max(x)
miny = min(min(ymin), min(ymax))
maxy = max(max(ymin), max(ymax))
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
return coll
@docstring.dedent_interpd
def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
linelengths=1, linewidths=None, colors=None,
linestyles='solid', **kwargs):
"""
Plot identical parallel lines at specific positions.
Call signature::
eventplot(positions, orientation='horizontal', lineoffsets=0,
linelengths=1, linewidths=None, color =None,
linestyles='solid'
Plot parallel lines at the given positions. positions should be a 1D
or 2D array-like object, with each row corresponding to a row or column
of lines.
This type of plot is commonly used in neuroscience for representing
neural events, where it is commonly called a spike raster, dot raster,
or raster plot.
However, it is useful in any situation where you wish to show the
timing or position of multiple sets of discrete events, such as the
arrival times of people to a business on each day of the month or the
date of hurricanes each year of the last century.
*orientation* : [ 'horizonal' | 'vertical' ]
'horizonal' : the lines will be vertical and arranged in rows
"vertical' : lines will be horizontal and arranged in columns
*lineoffsets* :
A float or array-like containing floats.
*linelengths* :
A float or array-like containing floats.
*linewidths* :
A float or array-like containing floats.
*colors*
must be a sequence of RGBA tuples (eg arbitrary color
strings, etc, not allowed) or a list of such sequences
*linestyles* :
[ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] or an array of these
values
For linelengths, linewidths, colors, and linestyles, if only a single
value is given, that value is applied to all lines. If an array-like
is given, it must have the same length as positions, and each value
will be applied to the corresponding row or column in positions.
Returns a list of :class:`matplotlib.collections.EventCollection`
objects that were added.
kwargs are :class:`~matplotlib.collections.LineCollection` properties:
%(LineCollection)s
**Example:**
.. plot:: mpl_examples/pylab_examples/eventplot_demo.py
"""
self._process_unit_info(xdata=positions,
ydata=[lineoffsets, linelengths],
kwargs=kwargs)
# We do the conversion first since not all unitized data is uniform
positions = self.convert_xunits(positions)
lineoffsets = self.convert_yunits(lineoffsets)
linelengths = self.convert_yunits(linelengths)
if not iterable(positions):
positions = [positions]
elif any(iterable(position) for position in positions):
positions = [np.asanyarray(position) for position in positions]
else:
positions = [np.asanyarray(positions)]
if len(positions) == 0:
return []
if not iterable(lineoffsets):
lineoffsets = [lineoffsets]
if not iterable(linelengths):
linelengths = [linelengths]
if not iterable(linewidths):
linewidths = [linewidths]
if not iterable(colors):
colors = [colors]
if hasattr(linestyles, 'lower') or not iterable(linestyles):
linestyles = [linestyles]
lineoffsets = np.asarray(lineoffsets)
linelengths = np.asarray(linelengths)
linewidths = np.asarray(linewidths)
if len(lineoffsets) == 0:
lineoffsets = [None]
if len(linelengths) == 0:
linelengths = [None]
if len(linewidths) == 0:
lineoffsets = [None]
if len(linewidths) == 0:
lineoffsets = [None]
if len(colors) == 0:
colors = [None]
if len(lineoffsets) == 1 and len(positions) != 1:
lineoffsets = np.tile(lineoffsets, len(positions))
lineoffsets[0] = 0
lineoffsets = np.cumsum(lineoffsets)
if len(linelengths) == 1:
linelengths = np.tile(linelengths, len(positions))
if len(linewidths) == 1:
linewidths = np.tile(linewidths, len(positions))
if len(colors) == 1:
colors = np.asanyarray(colors)
colors = np.tile(colors, [len(positions), 1])
if len(linestyles) == 1:
linestyles = [linestyles] * len(positions)
if len(lineoffsets) != len(positions):
raise ValueError('lineoffsets and positions are unequal sized '
'sequences')
if len(linelengths) != len(positions):
raise ValueError('linelengths and positions are unequal sized '
'sequences')
if len(linewidths) != len(positions):
raise ValueError('linewidths and positions are unequal sized '
'sequences')
if len(colors) != len(positions):
raise ValueError('colors and positions are unequal sized '
'sequences')
if len(linestyles) != len(positions):
raise ValueError('linestyles and positions are unequal sized '
'sequences')
colls = []
for position, lineoffset, linelength, linewidth, color, linestyle in \
itertools.izip(positions, lineoffsets, linelengths, linewidths,
colors, linestyles):
coll = mcoll.EventCollection(position,
orientation=orientation,
lineoffset=lineoffset,
linelength=linelength,
linewidth=linewidth,
color=color,
linestyle=linestyle)
self.add_collection(coll)
coll.update(kwargs)
colls.append(coll)
if len(positions) > 0:
minpos = min(position.min() for position in positions)
maxpos = max(position.max() for position in positions)
minline = (lineoffsets - linelengths).min()
maxline = (lineoffsets + linelengths).max()
if colls[0].is_horizontal():
corners = (minpos, minline), (maxpos, maxline)
else:
corners = (minline, minpos), (maxline, maxpos)
self.update_datalim(corners)
self.autoscale_view()
return colls
#### Basic plotting
@docstring.dedent_interpd
def plot(self, *args, **kwargs):
"""
Plot lines and/or markers to the
:class:`~matplotlib.axes.Axes`. *args* is a variable length
argument, allowing for multiple *x*, *y* pairs with an
optional format string. For example, each of the following is
legal::
plot(x, y) # plot x and y using default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
If *x* and/or *y* is 2-dimensional, then the corresponding columns
will be plotted.
An arbitrary number of *x*, *y*, *fmt* groups can be
specified, as in::
a.plot(x1, y1, 'g^', x2, y2, 'g-')
Return value is a list of lines that were added.
By default, each line is assigned a different color specified by a
'color cycle'. To change this behavior, you can edit the
axes.color_cycle rcParam. Alternatively, you can use
:meth:`~matplotlib.axes.Axes.set_default_color_cycle`.
The following format string characters are accepted to control
the line style or marker:
================ ===============================
character description
================ ===============================
``'-'`` solid line style
``'--'`` dashed line style
``'-.'`` dash-dot line style
``':'`` dotted line style
``'.'`` point marker
``','`` pixel marker
``'o'`` circle marker
``'v'`` triangle_down marker
``'^'`` triangle_up marker
``'<'`` triangle_left marker
``'>'`` triangle_right marker
``'1'`` tri_down marker
``'2'`` tri_up marker
``'3'`` tri_left marker
``'4'`` tri_right marker
``'s'`` square marker
``'p'`` pentagon marker
``'*'`` star marker
``'h'`` hexagon1 marker
``'H'`` hexagon2 marker
``'+'`` plus marker
``'x'`` x marker
``'D'`` diamond marker
``'d'`` thin_diamond marker
``'|'`` vline marker
``'_'`` hline marker
================ ===============================
The following color abbreviations are supported:
========== ========
character color
========== ========
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white
========== ========
In addition, you can specify colors in many weird and
wonderful ways, including full names (``'green'``), hex
strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
grayscale intensities as a string (``'0.8'``). Of these, the
string specifications can be used in place of a ``fmt`` group,
but the tuple forms can be used only as ``kwargs``.
Line styles and colors are combined in a single format string, as in
``'bo'`` for blue circles.
The *kwargs* can be used to set line properties (any property that has
a ``set_*`` method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example::
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()
If you make multiple lines with one plot command, the kwargs
apply to all those lines, e.g.::
plot(x1, y1, x2, y2, antialised=False)
Neither line will be antialiased.
You do not need to use format strings, which are just
abbreviations. All of the line properties can be controlled
by keyword arguments. For example, you can set the color,
marker, linestyle, and markercolor with::
plot(x, y, color='green', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=12).
See :class:`~matplotlib.lines.Line2D` for details.
The kwargs are :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
kwargs *scalex* and *scaley*, if defined, are passed on to
:meth:`~matplotlib.axes.Axes.autoscale_view` to determine
whether the *x* and *y* axes are autoscaled; the default is
*True*.
"""
scalex = kwargs.pop('scalex', True)
scaley = kwargs.pop('scaley', True)
if not self._hold:
self.cla()
lines = []
for line in self._get_lines(*args, **kwargs):
self.add_line(line)
lines.append(line)
self.autoscale_view(scalex=scalex, scaley=scaley)
return lines
@docstring.dedent_interpd
def plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False,
**kwargs):
"""
Plot with data with dates.
Call signature::
plot_date(x, y, fmt='bo', tz=None, xdate=True,
ydate=False, **kwargs)
Similar to the :func:`~matplotlib.pyplot.plot` command, except
the *x* or *y* (or both) data is considered to be dates, and the
axis is labeled accordingly.
*x* and/or *y* can be a sequence of dates represented as float
days since 0001-01-01 UTC.
Keyword arguments:
*fmt*: string
The plot format string.
*tz*: [ *None* | timezone string | :class:`tzinfo` instance]
The time zone to use in labeling dates. If *None*, defaults to rc
value.
*xdate*: [ *True* | *False* ]
If *True*, the *x*-axis will be labeled with dates.
*ydate*: [ *False* | *True* ]
If *True*, the *y*-axis will be labeled with dates.
Note if you are using custom date tickers and formatters, it
may be necessary to set the formatters/locators after the call
to :meth:`plot_date` since :meth:`plot_date` will set the
default tick locator to
:class:`matplotlib.dates.AutoDateLocator` (if the tick
locator is not already set to a
:class:`matplotlib.dates.DateLocator` instance) and the
default tick formatter to
:class:`matplotlib.dates.AutoDateFormatter` (if the tick
formatter is not already set to a
:class:`matplotlib.dates.DateFormatter` instance).
Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:mod:`~matplotlib.dates` for helper functions
:func:`~matplotlib.dates.date2num`,
:func:`~matplotlib.dates.num2date` and
:func:`~matplotlib.dates.drange` for help on creating the required
floating point dates.
"""
if not self._hold:
self.cla()
ret = self.plot(x, y, fmt, **kwargs)
if xdate:
self.xaxis_date(tz)
if ydate:
self.yaxis_date(tz)
self.autoscale_view()
return ret
@docstring.dedent_interpd
def loglog(self, *args, **kwargs):
"""
Make a plot with log scaling on both the *x* and *y* axis.
Call signature::
loglog(*args, **kwargs)
:func:`~matplotlib.pyplot.loglog` supports all the keyword
arguments of :func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale` /
:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basex*/*basey*: scalar > 1
Base of the *x*/*y* logarithm
*subsx*/*subsy*: [ *None* | sequence ]
The location of the minor *x*/*y* ticks; *None* defaults
to autosubs, which depend on the number of decades in the
plot; see :meth:`matplotlib.axes.Axes.set_xscale` /
:meth:`matplotlib.axes.Axes.set_yscale` for details
*nonposx*/*nonposy*: ['mask' | 'clip' ]
Non-positive values in *x* or *y* can be masked as
invalid, or clipped to a very small positive number
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/log_demo.py
"""
if not self._hold:
self.cla()
dx = {'basex': kwargs.pop('basex', 10),
'subsx': kwargs.pop('subsx', None),
'nonposx': kwargs.pop('nonposx', 'mask'),
}
dy = {'basey': kwargs.pop('basey', 10),
'subsy': kwargs.pop('subsy', None),
'nonposy': kwargs.pop('nonposy', 'mask'),
}
self.set_xscale('log', **dx)
self.set_yscale('log', **dy)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
@docstring.dedent_interpd
def semilogx(self, *args, **kwargs):
"""
Make a plot with log scaling on the *x* axis.
Call signature::
semilogx(*args, **kwargs)
:func:`semilogx` supports all the keyword arguments of
:func:`~matplotlib.pyplot.plot` and
:meth:`matplotlib.axes.Axes.set_xscale`.
Notable keyword arguments:
*basex*: scalar > 1
Base of the *x* logarithm
*subsx*: [ *None* | sequence ]
The location of the minor xticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for
details.
*nonposx*: [ 'mask' | 'clip' ]
Non-positive values in *x* can be masked as
invalid, or clipped to a very small positive number
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:meth:`loglog`
For example code and figure
"""
if not self._hold:
self.cla()
d = {'basex': kwargs.pop('basex', 10),
'subsx': kwargs.pop('subsx', None),
'nonposx': kwargs.pop('nonposx', 'mask'),
}
self.set_xscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
@docstring.dedent_interpd
def semilogy(self, *args, **kwargs):
"""
Make a plot with log scaling on the *y* axis.
call signature::
semilogy(*args, **kwargs)
:func:`semilogy` supports all the keyword arguments of
:func:`~matplotlib.pylab.plot` and
:meth:`matplotlib.axes.Axes.set_yscale`.
Notable keyword arguments:
*basey*: scalar > 1
Base of the *y* logarithm
*subsy*: [ *None* | sequence ]
The location of the minor yticks; *None* defaults to
autosubs, which depend on the number of decades in the
plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for
details.
*nonposy*: [ 'mask' | 'clip' ]
Non-positive values in *y* can be masked as
invalid, or clipped to a very small positive number
The remaining valid kwargs are
:class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
.. seealso::
:meth:`loglog`
For example code and figure
"""
if not self._hold:
self.cla()
d = {'basey': kwargs.pop('basey', 10),
'subsy': kwargs.pop('subsy', None),
'nonposy': kwargs.pop('nonposy', 'mask'),
}
self.set_yscale('log', **d)
b = self._hold
self._hold = True # we've already processed the hold
l = self.plot(*args, **kwargs)
self._hold = b # restore the hold
return l
@docstring.dedent_interpd
def acorr(self, x, **kwargs):
"""
Plot the autocorrelation of *x*.
Call signature::
acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, **kwargs)
If *normed* = *True*, normalize the data by the autocorrelation at
0-th lag. *x* is detrended by the *detrend* callable (default no
normalization).
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length 2*maxlags+1 lag vector
- *c* is the 2*maxlags+1 auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :meth:`plot`
The default *linestyle* is None and the default *marker* is
``'o'``, though these can be overridden with keyword args.
The cross correlation is performed with
:func:`numpy.correlate` with *mode* = 2.
If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines`
rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw
vertical lines from the origin to the acorr. Otherwise, the
plot style is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
*maxlags* is a positive integer detailing the number of lags
to show. The default value of *None* will return all
``(2*len(x)-1)`` lags.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where
- *linecol* is the
:class:`~matplotlib.collections.LineCollection`
- *b* is the *x*-axis.
.. seealso::
:meth:`~matplotlib.axes.Axes.plot` or
:meth:`~matplotlib.axes.Axes.vlines`
For documentation on valid kwargs.
**Example:**
:func:`~matplotlib.pyplot.xcorr` is top graph, and
:func:`~matplotlib.pyplot.acorr` is bottom graph.
.. plot:: mpl_examples/pylab_examples/xcorr_demo.py
"""
return self.xcorr(x, x, **kwargs)
@docstring.dedent_interpd
def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs):
"""
Plot the cross correlation between *x* and *y*.
Call signature::
xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs)
If *normed* = *True*, normalize the data by the cross
correlation at 0-th lag. *x* and y are detrended by the
*detrend* callable (default no normalization). *x* and *y*
must be equal length.
Data are plotted as ``plot(lags, c, **kwargs)``
Return value is a tuple (*lags*, *c*, *line*) where:
- *lags* are a length ``2*maxlags+1`` lag vector
- *c* is the ``2*maxlags+1`` auto correlation vector
- *line* is a :class:`~matplotlib.lines.Line2D` instance
returned by :func:`~matplotlib.pyplot.plot`.
The default *linestyle* is *None* and the default *marker* is
'o', though these can be overridden with keyword args. The
cross correlation is performed with :func:`numpy.correlate`
with *mode* = 2.
If *usevlines* is *True*:
:func:`~matplotlib.pyplot.vlines`
rather than :func:`~matplotlib.pyplot.plot` is used to draw
vertical lines from the origin to the xcorr. Otherwise the
plotstyle is determined by the kwargs, which are
:class:`~matplotlib.lines.Line2D` properties.
The return value is a tuple (*lags*, *c*, *linecol*, *b*)
where *linecol* is the
:class:`matplotlib.collections.LineCollection` instance and
*b* is the *x*-axis.
*maxlags* is a positive integer detailing the number of lags to show.
The default value of *None* will return all ``(2*len(x)-1)`` lags.
**Example:**
:func:`~matplotlib.pyplot.xcorr` is top graph, and
:func:`~matplotlib.pyplot.acorr` is bottom graph.
.. plot:: mpl_examples/pylab_examples/xcorr_demo.py
"""
Nx = len(x)
if Nx != len(y):
raise ValueError('x and y must be equal length')
x = detrend(np.asarray(x))
y = detrend(np.asarray(y))
c = np.correlate(x, y, mode=2)
if normed:
c /= np.sqrt(np.dot(x, x) * np.dot(y, y))
if maxlags is None:
maxlags = Nx - 1
if maxlags >= Nx or maxlags < 1:
raise ValueError('maglags must be None or strictly '
'positive < %d' % Nx)
lags = np.arange(-maxlags, maxlags + 1)
c = c[Nx - 1 - maxlags:Nx + maxlags]
if usevlines:
a = self.vlines(lags, [0], c, **kwargs)
b = self.axhline(**kwargs)
else:
kwargs.setdefault('marker', 'o')
kwargs.setdefault('linestyle', 'None')
a, = self.plot(lags, c, **kwargs)
b = None
return lags, c, a, b
def _get_legend_handles(self, legend_handler_map=None):
"return artists that will be used as handles for legend"
handles_original = self.lines + self.patches + \
self.collections + self.containers
# collections
handler_map = mlegend.Legend.get_default_handler_map()
if legend_handler_map is not None:
handler_map = handler_map.copy()
handler_map.update(legend_handler_map)
handles = []
for h in handles_original:
if h.get_label() == "_nolegend_": # .startswith('_'):
continue
if mlegend.Legend.get_legend_handler(handler_map, h):
handles.append(h)
return handles
def get_legend_handles_labels(self, legend_handler_map=None):
"""
Return handles and labels for legend
``ax.legend()`` is equivalent to ::
h, l = ax.get_legend_handles_labels()
ax.legend(h, l)
"""
handles = []
labels = []
for handle in self._get_legend_handles(legend_handler_map):
label = handle.get_label()
if label and not label.startswith('_'):
handles.append(handle)
labels.append(label)
return handles, labels
def legend(self, *args, **kwargs):
"""
Place a legend on the current axes.
Call signature::
legend(*args, **kwargs)
Places legend at location *loc*. Labels are a sequence of
strings and *loc* can be a string or an integer specifying the
legend location.
To make a legend with existing lines::
legend()
:meth:`legend` by itself will try and build a legend using the label
property of the lines/patches/collections. You can set the label of
a line by doing::
plot(x, y, label='my data')
or::
line.set_label('my data').
If label is set to '_nolegend_', the item will not be shown in
legend.
To automatically generate the legend from labels::
legend( ('label1', 'label2', 'label3') )
To make a legend for a list of lines and labels::
legend( (line1, line2, line3), ('label1', 'label2', 'label3') )
To make a legend at a given location, using a location argument::
legend( ('label1', 'label2', 'label3'), loc='upper left')
or::
legend((line1, line2, line3), ('label1', 'label2', 'label3'), loc=2)
The location codes are
=============== =============
Location String Location Code
=============== =============
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10
=============== =============
Users can specify any arbitrary location for the legend using the
*bbox_to_anchor* keyword argument. bbox_to_anchor can be an instance
of BboxBase(or its derivatives) or a tuple of 2 or 4 floats.
For example::
loc = 'upper right', bbox_to_anchor = (0.5, 0.5)
will place the legend so that the upper right corner of the legend at
the center of the axes.
The legend location can be specified in other coordinate, by using the
*bbox_transform* keyword.
The loc itslef can be a 2-tuple giving x,y of the lower-left corner of
the legend in axes coords (*bbox_to_anchor* is ignored).
Keyword arguments:
*prop*: [ *None* | FontProperties | dict ]
A :class:`matplotlib.font_manager.FontProperties`
instance. If *prop* is a dictionary, a new instance will be
created with *prop*. If *None*, use rc settings.
*fontsize*: [size in points | 'xx-small' | 'x-small' | 'small' |
'medium' | 'large' | 'x-large' | 'xx-large']
Set the font size. May be either a size string, relative to
the default font size, or an absolute font size in points. This
argument is only used if prop is not specified.
*numpoints*: integer
The number of points in the legend for line
*scatterpoints*: integer
The number of points in the legend for scatter plot
*scatteryoffsets*: list of floats
a list of yoffsets for scatter symbols in legend
*markerscale*: [ *None* | scalar ]
The relative size of legend markers vs. original. If *None*,
use rc settings.
*frameon*: [ *True* | *False* ]
if *True*, draw a frame around the legend.
The default is set by the rcParam 'legend.frameon'
*fancybox*: [ *None* | *False* | *True* ]
if *True*, draw a frame with a round fancybox. If *None*,
use rc settings
*shadow*: [ *None* | *False* | *True* ]
If *True*, draw a shadow behind legend. If *None*,
use rc settings.
*framealpha*: [*None* | float]
If not None, alpha channel for legend frame. Default *None*.
*ncol* : integer
number of columns. default is 1
*mode* : [ "expand" | *None* ]
if mode is "expand", the legend will be horizontally expanded
to fill the axes area (or *bbox_to_anchor*)
*bbox_to_anchor*: an instance of BboxBase or a tuple of 2 or 4 floats
the bbox that the legend will be anchored.
*bbox_transform* : [ an instance of Transform | *None* ]
the transform for the bbox. transAxes if *None*.
*title* : string
the legend title
Padding and spacing between various elements use following
keywords parameters. These values are measure in font-size
units. e.g., a fontsize of 10 points and a handlelength=5
implies a handlelength of 50 points. Values from rcParams
will be used if None.
================ ====================================================
Keyword Description
================ ====================================================
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns
================ ====================================================
.. note::
Not all kinds of artist are supported by the legend command.
See :ref:`plotting-guide-legend` for details.
**Example:**
.. plot:: mpl_examples/api/legend_demo.py
.. seealso::
:ref:`plotting-guide-legend`.
"""
if len(args) == 0:
handles, labels = self.get_legend_handles_labels()
if len(handles) == 0:
warnings.warn("No labeled objects found. "
"Use label='...' kwarg on individual plots.")
return None
elif len(args) == 1:
# LABELS
labels = args[0]
handles = [h for h, label in zip(self._get_legend_handles(),
labels)]
elif len(args) == 2:
if is_string_like(args[1]) or isinstance(args[1], int):
# LABELS, LOC
labels, loc = args
handles = [h for h, label in zip(self._get_legend_handles(),
labels)]
kwargs['loc'] = loc
else:
# LINES, LABELS
handles, labels = args
elif len(args) == 3:
# LINES, LABELS, LOC
handles, labels, loc = args
kwargs['loc'] = loc
else:
raise TypeError('Invalid arguments to legend')
# Why do we need to call "flatten" here? -JJL
# handles = cbook.flatten(handles)
self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
return self.legend_
#### Specialized plotting
def step(self, x, y, *args, **kwargs):
"""
Make a step plot.
Call signature::
step(x, y, *args, **kwargs)
Additional keyword args to :func:`step` are the same as those
for :func:`~matplotlib.pyplot.plot`.
*x* and *y* must be 1-D sequences, and it is assumed, but not checked,
that *x* is uniformly increasing.
Keyword arguments:
*where*: [ 'pre' | 'post' | 'mid' ]
If 'pre', the interval from x[i] to x[i+1] has level y[i+1]
If 'post', that interval has level y[i]
If 'mid', the jumps in *y* occur half-way between the
*x*-values.
"""
where = kwargs.pop('where', 'pre')
if where not in ('pre', 'post', 'mid'):
raise ValueError("'where' argument to step must be "
"'pre', 'post' or 'mid'")
usr_linestyle = kwargs.pop('linestyle', '')
kwargs['linestyle'] = 'steps-' + where + usr_linestyle
return self.plot(x, y, *args, **kwargs)
@docstring.dedent_interpd
def bar(self, left, height, width=0.8, bottom=None, **kwargs):
"""
Make a bar plot.
Make a bar plot with rectangles bounded by:
`left`, `left` + `width`, `bottom`, `bottom` + `height`
(left, right, bottom and top edges)
Parameters
----------
left : sequence of scalars
the x coordinates of the left sides of the bars
height : sequence of scalars
the heights of the bars
width : scalar or array-like, optional, default: 0.8
the width(s) of the bars
bottom : scalar or array-like, optional, default: None
the y coordinate(s) of the bars
color : scalar or array-like, optional
the colors of the bar faces
edgecolor : scalar or array-like, optional
the colors of the bar edges
linewidth : scalar or array-like, optional, default: None
width of bar edge(s). If None, use default
linewidth; If 0, don't draw edges.
xerr : scalar or array-like, optional, default: None
if not None, will be used to generate errorbar(s) on the bar chart
yerr :scalar or array-like, optional, default: None
if not None, will be used to generate errorbar(s) on the bar chart
ecolor : scalar or array-like, optional, default: None
specifies the color of errorbar(s)
capsize : integer, optional, default: 3
determines the length in points of the error bar caps
error_kw :
dictionary of kwargs to be passed to errorbar method. *ecolor* and
*capsize* may be specified here rather than as independent kwargs.
align : ['edge' | 'center'], optional, default: 'edge'
If `edge`, aligns bars by their left edges (for vertical bars) and
by their bottom edges (for horizontal bars). If `center`, interpret
the `left` argument as the coordinates of the centers of the bars.
orientation : 'vertical' | 'horizontal', optional, default: 'vertical'
The orientation of the bars.
log : boolean, optional, default: False
If true, sets the axis to be log scale
Returns
-------
:class:`matplotlib.patches.Rectangle` instances.
Notes
-----
The optional arguments `color`, `edgecolor`, `linewidth`,
`xerr`, and `yerr` can be either scalars or sequences of
length equal to the number of bars. This enables you to use
bar as the basis for stacked bar charts, or candlestick plots.
Detail: `xerr` and `yerr` are passed directly to
:meth:`errorbar`, so they can also have shape 2xN for
independent specification of lower and upper errors.
Other optional kwargs:
%(Rectangle)s
**Example:** A stacked bar chart.
.. plot:: mpl_examples/pylab_examples/bar_stacked.py
"""
if not self._hold:
self.cla()
color = kwargs.pop('color', None)
edgecolor = kwargs.pop('edgecolor', None)
linewidth = kwargs.pop('linewidth', None)
# Because xerr and yerr will be passed to errorbar,
# most dimension checking and processing will be left
# to the errorbar method.
xerr = kwargs.pop('xerr', None)
yerr = kwargs.pop('yerr', None)
error_kw = kwargs.pop('error_kw', dict())
ecolor = kwargs.pop('ecolor', None)
capsize = kwargs.pop('capsize', 3)
error_kw.setdefault('ecolor', ecolor)
error_kw.setdefault('capsize', capsize)
align = kwargs.pop('align', 'edge')
orientation = kwargs.pop('orientation', 'vertical')
log = kwargs.pop('log', False)
label = kwargs.pop('label', '')
def make_iterable(x):
if not iterable(x):
return [x]
else:
return x
# make them safe to take len() of
_left = left
left = make_iterable(left)
height = make_iterable(height)
width = make_iterable(width)
_bottom = bottom
bottom = make_iterable(bottom)
linewidth = make_iterable(linewidth)
adjust_ylim = False
adjust_xlim = False
if orientation == 'vertical':
self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs)
if log:
self.set_yscale('log', nonposy='clip')
# size width and bottom according to length of left
if _bottom is None:
if self.get_yscale() == 'log':
adjust_ylim = True
bottom = [0]
nbars = len(left)
if len(width) == 1:
width *= nbars
if len(bottom) == 1:
bottom *= nbars
elif orientation == 'horizontal':
self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs)
if log:
self.set_xscale('log', nonposx='clip')
# size left and height according to length of bottom
if _left is None:
if self.get_xscale() == 'log':
adjust_xlim = True
left = [0]
nbars = len(bottom)
if len(left) == 1:
left *= nbars
if len(height) == 1:
height *= nbars
else:
raise ValueError('invalid orientation: %s' % orientation)
if len(linewidth) < nbars:
linewidth *= nbars
if color is None:
color = [None] * nbars
else:
color = list(mcolors.colorConverter.to_rgba_array(color))
if len(color) == 0: # until to_rgba_array is changed
color = [[0, 0, 0, 0]]
if len(color) < nbars:
color *= nbars
if edgecolor is None:
edgecolor = [None] * nbars
else:
edgecolor = list(mcolors.colorConverter.to_rgba_array(edgecolor))
if len(edgecolor) == 0: # until to_rgba_array is changed
edgecolor = [[0, 0, 0, 0]]
if len(edgecolor) < nbars:
edgecolor *= nbars
# FIXME: convert the following to proper input validation
# raising ValueError; don't use assert for this.
assert len(left) == nbars, ("incompatible sizes: argument 'left' must "
"be length %d or scalar" % nbars)
assert len(height) == nbars, ("incompatible sizes: argument 'height' "
"must be length %d or scalar" %
nbars)
assert len(width) == nbars, ("incompatible sizes: argument 'width' "
"must be length %d or scalar" %
nbars)
assert len(bottom) == nbars, ("incompatible sizes: argument 'bottom' "
"must be length %d or scalar" %
nbars)
patches = []
# lets do some conversions now since some types cannot be
# subtracted uniformly
if self.xaxis is not None:
left = self.convert_xunits(left)
width = self.convert_xunits(width)
if xerr is not None:
xerr = self.convert_xunits(xerr)
if self.yaxis is not None:
bottom = self.convert_yunits(bottom)
height = self.convert_yunits(height)
if yerr is not None:
yerr = self.convert_yunits(yerr)
if align == 'edge':
pass
elif align == 'center':
if orientation == 'vertical':
left = [left[i] - width[i] / 2. for i in xrange(len(left))]
elif orientation == 'horizontal':
bottom = [bottom[i] - height[i] / 2.
for i in xrange(len(bottom))]
else:
raise ValueError('invalid alignment: %s' % align)
args = zip(left, bottom, width, height, color, edgecolor, linewidth)
for l, b, w, h, c, e, lw in args:
if h < 0:
b += h
h = abs(h)
if w < 0:
l += w
w = abs(w)
r = mpatches.Rectangle(
xy=(l, b), width=w, height=h,
facecolor=c,
edgecolor=e,
linewidth=lw,
label='_nolegend_'
)
r.update(kwargs)
r.get_path()._interpolation_steps = 100
#print r.get_label(), label, 'label' in kwargs
self.add_patch(r)
patches.append(r)
holdstate = self._hold
self.hold(True) # ensure hold is on before plotting errorbars
if xerr is not None or yerr is not None:
if orientation == 'vertical':
# using list comps rather than arrays to preserve unit info
x = [l + 0.5 * w for l, w in zip(left, width)]
y = [b + h for b, h in zip(bottom, height)]
elif orientation == 'horizontal':
# using list comps rather than arrays to preserve unit info
x = [l + w for l, w in zip(left, width)]
y = [b + 0.5 * h for b, h in zip(bottom, height)]
if "label" not in error_kw:
error_kw["label"] = '_nolegend_'
errorbar = self.errorbar(x, y,
yerr=yerr, xerr=xerr,
fmt=None, **error_kw)
else:
errorbar = None
self.hold(holdstate) # restore previous hold state
if adjust_xlim:
xmin, xmax = self.dataLim.intervalx
xmin = np.amin([w for w in width if w > 0])
if xerr is not None:
xmin = xmin - np.amax(xerr)
xmin = max(xmin * 0.9, 1e-100)
self.dataLim.intervalx = (xmin, xmax)
if adjust_ylim:
ymin, ymax = self.dataLim.intervaly
ymin = np.amin([h for h in height if h > 0])
if yerr is not None:
ymin = ymin - np.amax(yerr)
ymin = max(ymin * 0.9, 1e-100)
self.dataLim.intervaly = (ymin, ymax)
self.autoscale_view()
bar_container = BarContainer(patches, errorbar, label=label)
self.add_container(bar_container)
return bar_container
@docstring.dedent_interpd
def barh(self, bottom, width, height=0.8, left=None, **kwargs):
"""
Make a horizontal bar plot.
Call signature::
barh(bottom, width, height=0.8, left=0, **kwargs)
Make a horizontal bar plot with rectangles bounded by:
*left*, *left* + *width*, *bottom*, *bottom* + *height*
(left, right, bottom and top edges)
*bottom*, *width*, *height*, and *left* can be either scalars
or sequences
Return value is a list of
:class:`matplotlib.patches.Rectangle` instances.
Required arguments:
======== ======================================================
Argument Description
======== ======================================================
*bottom* the vertical positions of the bottom edges of the bars
*width* the lengths of the bars
======== ======================================================
Optional keyword arguments:
=============== ==========================================
Keyword Description
=============== ==========================================
*height* the heights (thicknesses) of the bars
*left* the x coordinates of the left edges of the
bars
*color* the colors of the bars
*edgecolor* the colors of the bar edges
*linewidth* width of bar edges; None means use default
linewidth; 0 means don't draw edges.
*xerr* if not None, will be used to generate
errorbars on the bar chart
*yerr* if not None, will be used to generate
errorbars on the bar chart
*ecolor* specifies the color of any errorbar
*capsize* (default 3) determines the length in
points of the error bar caps
*align* 'edge' (default) | 'center'
*log* [False|True] False (default) leaves the
horizontal axis as-is; True sets it to log
scale
=============== ==========================================
Setting *align* = 'edge' aligns bars by their bottom edges in
bottom, while *align* = 'center' interprets these values as
the *y* coordinates of the bar centers.
The optional arguments *color*, *edgecolor*, *linewidth*,
*xerr*, and *yerr* can be either scalars or sequences of
length equal to the number of bars. This enables you to use
barh as the basis for stacked bar charts, or candlestick
plots.
other optional kwargs:
%(Rectangle)s
"""
patches = self.bar(left=left, height=height, width=width,
bottom=bottom, orientation='horizontal', **kwargs)
return patches
@docstring.dedent_interpd
def broken_barh(self, xranges, yrange, **kwargs):
"""
Plot horizontal bars.
Call signature::
broken_barh(self, xranges, yrange, **kwargs)
A collection of horizontal bars spanning *yrange* with a sequence of
*xranges*.
Required arguments:
========= ==============================
Argument Description
========= ==============================
*xranges* sequence of (*xmin*, *xwidth*)
*yrange* sequence of (*ymin*, *ywidth*)
========= ==============================
kwargs are
:class:`matplotlib.collections.BrokenBarHCollection`
properties:
%(BrokenBarHCollection)s
these can either be a single argument, ie::
facecolors = 'black'
or a sequence of arguments for the various bars, ie::
facecolors = ('black', 'red', 'green')
**Example:**
.. plot:: mpl_examples/pylab_examples/broken_barh.py
"""
col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs)
self.add_collection(col, autolim=True)
self.autoscale_view()
return col
def stem(self, *args, **kwargs):
"""
Create a stem plot.
Call signatures::
stem(y, linefmt='b-', markerfmt='bo', basefmt='r-')
stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-')
A stem plot plots vertical lines (using *linefmt*) at each *x*
location from the baseline to *y*, and places a marker there
using *markerfmt*. A horizontal line at 0 is is plotted using
*basefmt*.
If no *x* values are provided, the default is (0, 1, ..., len(y) - 1)
Return value is a tuple (*markerline*, *stemlines*,
*baseline*).
.. seealso::
This
`document <http://www.mathworks.com/help/techdoc/ref/stem.html>`_
for details.
**Example:**
.. plot:: mpl_examples/pylab_examples/stem_plot.py
"""
remember_hold = self._hold
if not self._hold:
self.cla()
self.hold(True)
# Assume there's at least one data array
y = np.asarray(args[0], dtype=np.float)
args = args[1:]
# Try a second one
try:
second = np.asarray(args[0], dtype=np.float)
x, y = y, second
args = args[1:]
except (IndexError, ValueError):
# The second array doesn't make sense, or it doesn't exist
second = np.arange(len(y))
x = second
# Popping some defaults
try:
linefmt = kwargs.pop('linefmt', args[0])
except IndexError:
linefmt = kwargs.pop('linefmt', 'b-')
try:
markerfmt = kwargs.pop('markerfmt', args[1])
except IndexError:
markerfmt = kwargs.pop('markerfmt', 'bo')
try:
basefmt = kwargs.pop('basefmt', args[2])
except IndexError:
basefmt = kwargs.pop('basefmt', 'r-')
bottom = kwargs.pop('bottom', None)
label = kwargs.pop('label', None)
markerline, = self.plot(x, y, markerfmt, label="_nolegend_")
if bottom is None:
bottom = 0
stemlines = []
for thisx, thisy in zip(x, y):
l, = self.plot([thisx, thisx], [bottom, thisy], linefmt,
label="_nolegend_")
stemlines.append(l)
baseline, = self.plot([np.amin(x), np.amax(x)], [bottom, bottom],
basefmt, label="_nolegend_")
self.hold(remember_hold)
stem_container = StemContainer((markerline, stemlines, baseline),
label=label)
self.add_container(stem_container)
return stem_container
def pie(self, x, explode=None, labels=None, colors=None,
autopct=None, pctdistance=0.6, shadow=False,
labeldistance=1.1, startangle=None, radius=None):
r"""
Plot a pie chart.
Call signature::
pie(x, explode=None, labels=None,
colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),
autopct=None, pctdistance=0.6, shadow=False,
labeldistance=1.1, startangle=None, radius=None)
Make a pie chart of array *x*. The fractional area of each
wedge is given by x/sum(x). If sum(x) <= 1, then the values
of x give the fractional area directly and the array will not
be normalized. The wedges are plotted counterclockwise,
by default starting from the x-axis.
Keyword arguments:
*explode*: [ *None* | len(x) sequence ]
If not *None*, is a ``len(x)`` array which specifies the
fraction of the radius with which to offset each wedge.
*colors*: [ *None* | color sequence ]
A sequence of matplotlib color args through which the pie chart
will cycle.
*labels*: [ *None* | len(x) sequence of strings ]
A sequence of strings providing the labels for each wedge
*autopct*: [ *None* | format string | format function ]
If not *None*, is a string or function used to label the wedges
with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be ``fmt%pct``.
If it is a function, it will be called.
*pctdistance*: scalar
The ratio between the center of each pie slice and the
start of the text generated by *autopct*. Ignored if
*autopct* is *None*; default is 0.6.
*labeldistance*: scalar
The radial distance at which the pie labels are drawn
*shadow*: [ *False* | *True* ]
Draw a shadow beneath the pie.
*startangle*: [ *None* | Offset angle ]
If not *None*, rotates the start of the pie chart by *angle*
degrees counterclockwise from the x-axis.
*radius*: [ *None* | scalar ]
The radius of the pie, if *radius* is *None* it will be set to 1.
The pie chart will probably look best if the figure and axes are
square, or the Axes aspect is equal. e.g.::
figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])
or::
axes(aspect=1)
Return value:
If *autopct* is *None*, return the tuple (*patches*, *texts*):
- *patches* is a sequence of
:class:`matplotlib.patches.Wedge` instances
- *texts* is a list of the label
:class:`matplotlib.text.Text` instances.
If *autopct* is not *None*, return the tuple (*patches*,
*texts*, *autotexts*), where *patches* and *texts* are as
above, and *autotexts* is a list of
:class:`~matplotlib.text.Text` instances for the numeric
labels.
"""
self.set_frame_on(False)
x = np.asarray(x).astype(np.float32)
sx = float(x.sum())
if sx > 1:
x = np.divide(x, sx)
if labels is None:
labels = [''] * len(x)
if explode is None:
explode = [0] * len(x)
assert(len(x) == len(labels))
assert(len(x) == len(explode))
if colors is None:
colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w')
center = 0, 0
if radius is None:
radius = 1
# Starting theta1 is the start fraction of the circle
if startangle is None:
theta1 = 0
else:
theta1 = startangle / 360.0
texts = []
slices = []
autotexts = []
i = 0
for frac, label, expl in cbook.safezip(x, labels, explode):
x, y = center
theta2 = theta1 + frac
thetam = 2 * math.pi * 0.5 * (theta1 + theta2)
x += expl * math.cos(thetam)
y += expl * math.sin(thetam)
w = mpatches.Wedge((x, y), radius, 360. * theta1, 360. * theta2,
facecolor=colors[i % len(colors)])
slices.append(w)
self.add_patch(w)
w.set_label(label)
if shadow:
# make sure to add a shadow after the call to
# add_patch so the figure and transform props will be
# set
shad = mpatches.Shadow(w, -0.02, -0.02,
#props={'facecolor':w.get_facecolor()}
)
shad.set_zorder(0.9 * w.get_zorder())
shad.set_label('_nolegend_')
self.add_patch(shad)
xt = x + labeldistance * radius * math.cos(thetam)
yt = y + labeldistance * radius * math.sin(thetam)
label_alignment = xt > 0 and 'left' or 'right'
t = self.text(xt, yt, label,
size=rcParams['xtick.labelsize'],
horizontalalignment=label_alignment,
verticalalignment='center')
texts.append(t)
if autopct is not None:
xt = x + pctdistance * radius * math.cos(thetam)
yt = y + pctdistance * radius * math.sin(thetam)
if is_string_like(autopct):
s = autopct % (100. * frac)
elif callable(autopct):
s = autopct(100. * frac)
else:
raise TypeError(
'autopct must be callable or a format string')
t = self.text(xt, yt, s,
horizontalalignment='center',
verticalalignment='center')
autotexts.append(t)
theta1 = theta2
i += 1
self.set_xlim((-1.25, 1.25))
self.set_ylim((-1.25, 1.25))
self.set_xticks([])
self.set_yticks([])
if autopct is None:
return slices, texts
else:
return slices, texts, autotexts
@docstring.dedent_interpd
def errorbar(self, x, y, yerr=None, xerr=None,
fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, errorevery=1, capthick=None,
**kwargs):
"""
Plot an errorbar graph.
Call signature::
errorbar(x, y, yerr=None, xerr=None,
fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, errorevery=1,
capthick=None)
Plot *x* versus *y* with error deltas in *yerr* and *xerr*.
Vertical errorbars are plotted if *yerr* is not *None*.
Horizontal errorbars are plotted if *xerr* is not *None*.
*x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a
single error bar at *x*, *y*.
Optional keyword arguments:
*xerr*/*yerr*: [ scalar | N, Nx1, or 2xN array-like ]
If a scalar number, len(N) array-like object, or an Nx1
array-like object, errorbars are drawn at +/-value relative
to the data.
If a sequence of shape 2xN, errorbars are drawn at -row1
and +row2 relative to the data.
*fmt*: '-'
The plot format symbol. If *fmt* is *None*, only the
errorbars are plotted. This is used for adding
errorbars to a bar plot, for example.
*ecolor*: [ *None* | mpl color ]
A matplotlib color arg which gives the color the errorbar lines;
if *None*, use the marker color.
*elinewidth*: scalar
The linewidth of the errorbar lines. If *None*, use the linewidth.
*capsize*: scalar
The length of the error bar caps in points
*capthick*: scalar
An alias kwarg to *markeredgewidth* (a.k.a. - *mew*). This
setting is a more sensible name for the property that
controls the thickness of the error bar cap in points. For
backwards compatibility, if *mew* or *markeredgewidth* are given,
then they will over-ride *capthick*. This may change in future
releases.
*barsabove*: [ *True* | *False* ]
if *True*, will plot the errorbars above the plot
symbols. Default is below.
*lolims* / *uplims* / *xlolims* / *xuplims*: [ *False* | *True* ]
These arguments can be used to indicate that a value gives
only upper/lower limits. In that case a caret symbol is
used to indicate this. lims-arguments may be of the same
type as *xerr* and *yerr*.
*errorevery*: positive integer
subsamples the errorbars. e.g., if everyerror=5, errorbars for
every 5-th datapoint will be plotted. The data plot itself still
shows all data points.
All other keyword arguments are passed on to the plot command for the
markers. For example, this code makes big red squares with
thick green edges::
x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker='s',
mfc='red', mec='green', ms=20, mew=4)
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
and *markeredgewith*.
valid kwargs for the marker properties are
%(Line2D)s
Returns (*plotline*, *caplines*, *barlinecols*):
*plotline*: :class:`~matplotlib.lines.Line2D` instance
*x*, *y* plot markers and/or line
*caplines*: list of error bar cap
:class:`~matplotlib.lines.Line2D` instances
*barlinecols*: list of
:class:`~matplotlib.collections.LineCollection` instances for
the horizontal and vertical error ranges.
**Example:**
.. plot:: mpl_examples/statistics/errorbar_demo.py
"""
if errorevery < 1:
raise ValueError(
'errorevery has to be a strictly positive integer')
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
if not self._hold:
self.cla()
holdstate = self._hold
self._hold = True
label = kwargs.pop("label", None)
# make sure all the args are iterable; use lists not arrays to
# preserve units
if not iterable(x):
x = [x]
if not iterable(y):
y = [y]
if xerr is not None:
if not iterable(xerr):
xerr = [xerr] * len(x)
if yerr is not None:
if not iterable(yerr):
yerr = [yerr] * len(y)
l0 = None
if barsabove and fmt is not None:
l0, = self.plot(x, y, fmt, label="_nolegend_", **kwargs)
barcols = []
caplines = []
lines_kw = {'label': '_nolegend_'}
if elinewidth:
lines_kw['linewidth'] = elinewidth
else:
if 'linewidth' in kwargs:
lines_kw['linewidth'] = kwargs['linewidth']
if 'lw' in kwargs:
lines_kw['lw'] = kwargs['lw']
if 'transform' in kwargs:
lines_kw['transform'] = kwargs['transform']
if 'alpha' in kwargs:
lines_kw['alpha'] = kwargs['alpha']
if 'zorder' in kwargs:
lines_kw['zorder'] = kwargs['zorder']
# arrays fine here, they are booleans and hence not units
if not iterable(lolims):
lolims = np.asarray([lolims] * len(x), bool)
else:
lolims = np.asarray(lolims, bool)
if not iterable(uplims):
uplims = np.array([uplims] * len(x), bool)
else:
uplims = np.asarray(uplims, bool)
if not iterable(xlolims):
xlolims = np.array([xlolims] * len(x), bool)
else:
xlolims = np.asarray(xlolims, bool)
if not iterable(xuplims):
xuplims = np.array([xuplims] * len(x), bool)
else:
xuplims = np.asarray(xuplims, bool)
everymask = np.arange(len(x)) % errorevery == 0
def xywhere(xs, ys, mask):
"""
return xs[mask], ys[mask] where mask is True but xs and
ys are not arrays
"""
assert len(xs) == len(ys)
assert len(xs) == len(mask)
xs = [thisx for thisx, b in zip(xs, mask) if b]
ys = [thisy for thisy, b in zip(ys, mask) if b]
return xs, ys
if capsize > 0:
plot_kw = {
'ms': 2 * capsize,
'label': '_nolegend_'}
if capthick is not None:
# 'mew' has higher priority, I believe,
# if both 'mew' and 'markeredgewidth' exists.
# So, save capthick to markeredgewidth so that
# explicitly setting mew or markeredgewidth will
# over-write capthick.
plot_kw['markeredgewidth'] = capthick
# For backwards-compat, allow explicit setting of
# 'mew' or 'markeredgewidth' to over-ride capthick.
if 'markeredgewidth' in kwargs:
plot_kw['markeredgewidth'] = kwargs['markeredgewidth']
if 'mew' in kwargs:
plot_kw['mew'] = kwargs['mew']
if 'transform' in kwargs:
plot_kw['transform'] = kwargs['transform']
if 'alpha' in kwargs:
plot_kw['alpha'] = kwargs['alpha']
if 'zorder' in kwargs:
plot_kw['zorder'] = kwargs['zorder']
if xerr is not None:
if (iterable(xerr) and len(xerr) == 2 and
iterable(xerr[0]) and iterable(xerr[1])):
# using list comps rather than arrays to preserve units
left = [thisx - thiserr for (thisx, thiserr)
in cbook.safezip(x, xerr[0])]
right = [thisx + thiserr for (thisx, thiserr)
in cbook.safezip(x, xerr[1])]
else:
# using list comps rather than arrays to preserve units
left = [thisx - thiserr for (thisx, thiserr)
in cbook.safezip(x, xerr)]
right = [thisx + thiserr for (thisx, thiserr)
in cbook.safezip(x, xerr)]
yo, _ = xywhere(y, right, everymask)
lo, ro = xywhere(left, right, everymask)
barcols.append(self.hlines(yo, lo, ro, **lines_kw))
if capsize > 0:
if xlolims.any():
# can't use numpy logical indexing since left and
# y are lists
leftlo, ylo = xywhere(left, y, xlolims & everymask)
caplines.extend(
self.plot(leftlo, ylo, ls='None',
marker=mlines.CARETLEFT, **plot_kw))
xlolims = ~xlolims
leftlo, ylo = xywhere(left, y, xlolims & everymask)
caplines.extend(self.plot(leftlo, ylo, 'k|', **plot_kw))
else:
leftlo, ylo = xywhere(left, y, everymask)
caplines.extend(self.plot(leftlo, ylo, 'k|', **plot_kw))
if xuplims.any():
rightup, yup = xywhere(right, y, xuplims & everymask)
caplines.extend(
self.plot(rightup, yup, ls='None',
marker=mlines.CARETRIGHT, **plot_kw))
xuplims = ~xuplims
rightup, yup = xywhere(right, y, xuplims & everymask)
caplines.extend(self.plot(rightup, yup, 'k|', **plot_kw))
else:
rightup, yup = xywhere(right, y, everymask)
caplines.extend(self.plot(rightup, yup, 'k|', **plot_kw))
if yerr is not None:
if (iterable(yerr) and len(yerr) == 2 and
iterable(yerr[0]) and iterable(yerr[1])):
# using list comps rather than arrays to preserve units
lower = [thisy - thiserr for (thisy, thiserr)
in cbook.safezip(y, yerr[0])]
upper = [thisy + thiserr for (thisy, thiserr)
in cbook.safezip(y, yerr[1])]
else:
# using list comps rather than arrays to preserve units
lower = [thisy - thiserr for (thisy, thiserr)
in cbook.safezip(y, yerr)]
upper = [thisy + thiserr for (thisy, thiserr)
in cbook.safezip(y, yerr)]
xo, _ = xywhere(x, lower, everymask)
lo, uo = xywhere(lower, upper, everymask)
barcols.append(self.vlines(xo, lo, uo, **lines_kw))
if capsize > 0:
if lolims.any():
xlo, lowerlo = xywhere(x, lower, lolims & everymask)
caplines.extend(
self.plot(xlo, lowerlo, ls='None',
marker=mlines.CARETDOWN, **plot_kw))
lolims = ~lolims
xlo, lowerlo = xywhere(x, lower, lolims & everymask)
caplines.extend(self.plot(xlo, lowerlo, 'k_', **plot_kw))
else:
xlo, lowerlo = xywhere(x, lower, everymask)
caplines.extend(self.plot(xlo, lowerlo, 'k_', **plot_kw))
if uplims.any():
xup, upperup = xywhere(x, upper, uplims & everymask)
caplines.extend(
self.plot(xup, upperup, ls='None',
marker=mlines.CARETUP, **plot_kw))
uplims = ~uplims
xup, upperup = xywhere(x, upper, uplims & everymask)
caplines.extend(self.plot(xup, upperup, 'k_', **plot_kw))
else:
xup, upperup = xywhere(x, upper, everymask)
caplines.extend(self.plot(xup, upperup, 'k_', **plot_kw))
if not barsabove and fmt is not None:
l0, = self.plot(x, y, fmt, **kwargs)
if ecolor is None:
if l0 is None:
ecolor = self._get_lines.color_cycle.next()
else:
ecolor = l0.get_color()
for l in barcols:
l.set_color(ecolor)
for l in caplines:
l.set_color(ecolor)
self.autoscale_view()
self._hold = holdstate
errorbar_container = ErrorbarContainer((l0, tuple(caplines),
tuple(barcols)),
has_xerr=(xerr is not None),
has_yerr=(yerr is not None),
label=label)
self.containers.append(errorbar_container)
return errorbar_container # (l0, caplines, barcols)
def boxplot(self, x, notch=False, sym='b+', vert=True, whis=1.5,
positions=None, widths=None, patch_artist=False,
bootstrap=None, usermedians=None, conf_intervals=None):
"""
Make a box and whisker plot.
Call signature::
boxplot(x, notch=False, sym='+', vert=True, whis=1.5,
positions=None, widths=None, patch_artist=False,
bootstrap=None, usermedians=None, conf_intervals=None)
Make a box and whisker plot for each column of *x* or each
vector in sequence *x*. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
Function Arguments:
*x* :
Array or a sequence of vectors.
*notch* : [ False (default) | True ]
If False (default), produces a rectangular box plot.
If True, will produce a notched box plot
*sym* : [ default 'b+' ]
The default symbol for flier points.
Enter an empty string ('') if you don't want to show fliers.
*vert* : [ False | True (default) ]
If True (default), makes the boxes vertical.
If False, makes horizontal boxes.
*whis* : [ default 1.5 ]
Defines the length of the whiskers as a function of the inner
quartile range. They extend to the most extreme data point
within ( ``whis*(75%-25%)`` ) data range.
*bootstrap* : [ *None* (default) | integer ]
Specifies whether to bootstrap the confidence intervals
around the median for notched boxplots. If bootstrap==None,
no bootstrapping is performed, and notches are calculated
using a Gaussian-based asymptotic approximation (see McGill, R.,
Tukey, J.W., and Larsen, W.A., 1978, and Kendall and Stuart,
1967). Otherwise, bootstrap specifies the number of times to
bootstrap the median to determine it's 95% confidence intervals.
Values between 1000 and 10000 are recommended.
*usermedians* : [ default None ]
An array or sequence whose first dimension (or length) is
compatible with *x*. This overrides the medians computed by
matplotlib for each element of *usermedians* that is not None.
When an element of *usermedians* == None, the median will be
computed directly as normal.
*conf_intervals* : [ default None ]
Array or sequence whose first dimension (or length) is compatible
with *x* and whose second dimension is 2. When the current element
of *conf_intervals* is not None, the notch locations computed by
matplotlib are overridden (assuming notch is True). When an
element of *conf_intervals* is None, boxplot compute notches the
method specified by the other kwargs (e.g., *bootstrap*).
*positions* : [ default 1,2,...,n ]
Sets the horizontal positions of the boxes. The ticks and limits
are automatically set to match the positions.
*widths* : [ default 0.5 ]
Either a scalar or a vector and sets the width of each box. The
default is 0.5, or ``0.15*(distance between extreme positions)``
if that is smaller.
*patch_artist* : [ False (default) | True ]
If False produces boxes with the Line2D artist
If True produces boxes with the Patch artist
Returns a dictionary mapping each component of the boxplot
to a list of the :class:`matplotlib.lines.Line2D`
instances created. That dictionary has the following keys
(assuming vertical boxplots):
- boxes: the main body of the boxplot showing the quartiles
and the median's confidence intervals if enabled.
- medians: horizonal lines at the median of each box.
- whiskers: the vertical lines extending to the most extreme,
n-outlier data points.
- caps: the horizontal lines at the ends of the whiskers.
- fliers: points representing data that extend beyone the
whiskers (outliers).
**Example:**
.. plot:: pyplots/boxplot_demo.py
"""
def bootstrapMedian(data, N=5000):
# determine 95% confidence intervals of the median
M = len(data)
percentile = [2.5, 97.5]
estimate = np.zeros(N)
for n in range(N):
bsIndex = np.random.random_integers(0, M - 1, M)
bsData = data[bsIndex]
estimate[n] = mlab.prctile(bsData, 50)
CI = mlab.prctile(estimate, percentile)
return CI
def computeConfInterval(data, med, iq, bootstrap):
if bootstrap is not None:
# Do a bootstrap estimate of notch locations.
# get conf. intervals around median
CI = bootstrapMedian(data, N=bootstrap)
notch_min = CI[0]
notch_max = CI[1]
else:
# Estimate notch locations using Gaussian-based
# asymptotic approximation.
#
# For discussion: McGill, R., Tukey, J.W.,
# and Larsen, W.A. (1978) "Variations of
# Boxplots", The American Statistician, 32:12-16.
N = len(data)
notch_min = med - 1.57 * iq / np.sqrt(N)
notch_max = med + 1.57 * iq / np.sqrt(N)
return notch_min, notch_max
if not self._hold:
self.cla()
holdStatus = self._hold
whiskers, caps, boxes, medians, fliers = [], [], [], [], []
# convert x to a list of vectors
if hasattr(x, 'shape'):
if len(x.shape) == 1:
if hasattr(x[0], 'shape'):
x = list(x)
else:
x = [x, ]
elif len(x.shape) == 2:
nr, nc = x.shape
if nr == 1:
x = [x]
elif nc == 1:
x = [x.ravel()]
else:
x = [x[:, i] for i in xrange(nc)]
else:
raise ValueError("input x can have no more than 2 dimensions")
if not hasattr(x[0], '__len__'):
x = [x]
col = len(x)
# sanitize user-input medians
msg1 = "usermedians must either be a list/tuple or a 1d array"
msg2 = "usermedians' length must be compatible with x"
if usermedians is not None:
if hasattr(usermedians, 'shape'):
if len(usermedians.shape) != 1:
raise ValueError(msg1)
elif usermedians.shape[0] != col:
raise ValueError(msg2)
elif len(usermedians) != col:
raise ValueError(msg2)
#sanitize user-input confidence intervals
msg1 = "conf_intervals must either be a list of tuples or a 2d array"
msg2 = "conf_intervals' length must be compatible with x"
msg3 = "each conf_interval, if specificied, must have two values"
if conf_intervals is not None:
if hasattr(conf_intervals, 'shape'):
if len(conf_intervals.shape) != 2:
raise ValueError(msg1)
elif conf_intervals.shape[0] != col:
raise ValueError(msg2)
elif conf_intervals.shape[1] == 2:
raise ValueError(msg3)
else:
if len(conf_intervals) != col:
raise ValueError(msg2)
for ci in conf_intervals:
if ci is not None and len(ci) != 2:
raise ValueError(msg3)
# get some plot info
if positions is None:
positions = range(1, col + 1)
if widths is None:
distance = max(positions) - min(positions)
widths = min(0.15 * max(distance, 1.0), 0.5)
if isinstance(widths, float) or isinstance(widths, int):
widths = np.ones((col,), float) * widths
# loop through columns, adding each to plot
self.hold(True)
for i, pos in enumerate(positions):
d = np.ravel(x[i])
row = len(d)
if row == 0:
# no data, skip this position
continue
# get median and quartiles
q1, med, q3 = mlab.prctile(d, [25, 50, 75])
# replace with input medians if available
if usermedians is not None:
if usermedians[i] is not None:
med = usermedians[i]
# get high extreme
iq = q3 - q1
hi_val = q3 + whis * iq
wisk_hi = np.compress(d <= hi_val, d)
if len(wisk_hi) == 0 or np.max(wisk_hi) < q3:
wisk_hi = q3
else:
wisk_hi = max(wisk_hi)
# get low extreme
lo_val = q1 - whis * iq
wisk_lo = np.compress(d >= lo_val, d)
if len(wisk_lo) == 0 or np.min(wisk_lo) > q1:
wisk_lo = q1
else:
wisk_lo = min(wisk_lo)
# get fliers - if we are showing them
flier_hi = []
flier_lo = []
flier_hi_x = []
flier_lo_x = []
if len(sym) != 0:
flier_hi = np.compress(d > wisk_hi, d)
flier_lo = np.compress(d < wisk_lo, d)
flier_hi_x = np.ones(flier_hi.shape[0]) * pos
flier_lo_x = np.ones(flier_lo.shape[0]) * pos
# get x locations for fliers, whisker, whisker cap and box sides
box_x_min = pos - widths[i] * 0.5
box_x_max = pos + widths[i] * 0.5
wisk_x = np.ones(2) * pos
cap_x_min = pos - widths[i] * 0.25
cap_x_max = pos + widths[i] * 0.25
cap_x = [cap_x_min, cap_x_max]
# get y location for median
med_y = [med, med]
# calculate 'notch' plot
if notch:
# conf. intervals from user, if available
if (conf_intervals is not None and
conf_intervals[i] is not None):
notch_max = np.max(conf_intervals[i])
notch_min = np.min(conf_intervals[i])
else:
notch_min, notch_max = computeConfInterval(d, med, iq,
bootstrap)
# make our notched box vectors
box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max,
box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min,
box_x_min]
box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max,
med, notch_min, q1]
# make our median line vectors
med_x = [cap_x_min, cap_x_max]
med_y = [med, med]
# calculate 'regular' plot
else:
# make our box vectors
box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min]
box_y = [q1, q1, q3, q3, q1]
# make our median line vectors
med_x = [box_x_min, box_x_max]
def to_vc(xs, ys):
# convert arguments to verts and codes
verts = []
#codes = []
for xi, yi in zip(xs, ys):
verts.append((xi, yi))
verts.append((0, 0)) # ignored
codes = [mpath.Path.MOVETO] + \
[mpath.Path.LINETO] * (len(verts) - 2) + \
[mpath.Path.CLOSEPOLY]
return verts, codes
def patch_list(xs, ys):
verts, codes = to_vc(xs, ys)
path = mpath.Path(verts, codes)
patch = mpatches.PathPatch(path)
self.add_artist(patch)
return [patch]
# vertical or horizontal plot?
if vert:
def doplot(*args):
return self.plot(*args)
def dopatch(xs, ys):
return patch_list(xs, ys)
else:
def doplot(*args):
shuffled = []
for i in xrange(0, len(args), 3):
shuffled.extend([args[i + 1], args[i], args[i + 2]])
return self.plot(*shuffled)
def dopatch(xs, ys):
xs, ys = ys, xs # flip X, Y
return patch_list(xs, ys)
if patch_artist:
median_color = 'k'
else:
median_color = 'r'
whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--',
wisk_x, [q3, wisk_hi], 'b--'))
caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-',
cap_x, [wisk_lo, wisk_lo], 'k-'))
if patch_artist:
boxes.extend(dopatch(box_x, box_y))
else:
boxes.extend(doplot(box_x, box_y, 'b-'))
medians.extend(doplot(med_x, med_y, median_color + '-'))
fliers.extend(doplot(flier_hi_x, flier_hi, sym,
flier_lo_x, flier_lo, sym))
# fix our axes/ticks up a little
if vert:
setticks, setlim = self.set_xticks, self.set_xlim
else:
setticks, setlim = self.set_yticks, self.set_ylim
newlimits = min(positions) - 0.5, max(positions) + 0.5
setlim(newlimits)
setticks(positions)
# reset hold status
self.hold(holdStatus)
return dict(whiskers=whiskers, caps=caps, boxes=boxes,
medians=medians, fliers=fliers)
@docstring.dedent_interpd
def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, **kwargs):
"""
Make a scatter plot of x vs y, where x and y are sequence like objects
of the same lengths.
Parameters
----------
x, y : array_like, shape (n, )
Input data
s : scalar or array_like, shape (n, ), optional, default: 20
size in points^2.
c : color or sequence of color, optional, default : 'b'
`c` can be a single color format string, or a sequence of color
specifications of length `N`, or a sequence of `N` numbers to be
mapped to colors using the `cmap` and `norm` specified via kwargs
(see below). Note that `c` should not be a single numeric RGB or
RGBA sequence because that is indistinguishable from an array of
values to be colormapped. `c` can be a 2-D array in which the
rows are RGB or RGBA, however.
marker : `~matplotlib.markers.MarkerStyle`, optional, default: 'o'
See `~matplotlib.markers` for more information on the different
styles of markers scatter supports.
cmap : `~matplotlib.colors.Colormap`, optional, default: None
A `~matplotlib.colors.Colormap` instance or registered name.
`cmap` is only used if `c` is an array of floats. If None,
defaults to rc `image.cmap`.
norm : `~matplotlib.colors.Normalize`, optional, default: None
A `~matplotlib.colors.Normalize` instance is used to scale
luminance data to 0, 1. `norm` is only used if `c` is an array of
floats. If `None`, use the default :func:`normalize`.
vmin, vmax : scalar, optional, default: None
`vmin` and `vmax` are used in conjunction with `norm` to normalize
luminance data. If either are `None`, the min and max of the
color array is used. Note if you pass a `norm` instance, your
settings for `vmin` and `vmax` will be ignored.
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)
linewidths : scalar or array_like, optional, default: None
If None, defaults to (lines.linewidth,). Note that this is a
tuple, and if you set the linewidths argument you must set it as a
sequence of floats, as required by
`~matplotlib.collections.RegularPolyCollection`.
Returns
-------
paths : `~matplotlib.collections.PathCollection`
Other parameters
----------------
kwargs : `~matplotlib.collections.Collection` properties
Notes
------
Any or all of `x`, `y`, `s`, and `c` may be masked arrays, in
which case all masks will be combined and only unmasked points
will be plotted.
Examples
--------
.. plot:: mpl_examples/shapes_and_collections/scatter_demo.py
"""
if not self._hold:
self.cla()
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x = self.convert_xunits(x)
y = self.convert_yunits(y)
# np.ma.ravel yields an ndarray, not a masked array,
# unless its argument is a masked array.
x = np.ma.ravel(x)
y = np.ma.ravel(y)
if x.size != y.size:
raise ValueError("x and y must be the same size")
s = np.ma.ravel(s) # This doesn't have to match x, y in size.
c_is_stringy = is_string_like(c) or is_sequence_of_strings(c)
if not c_is_stringy:
c = np.asanyarray(c)
if c.size == x.size:
c = np.ma.ravel(c)
x, y, s, c = cbook.delete_masked_points(x, y, s, c)
scales = s # Renamed for readability below.
if c_is_stringy:
colors = mcolors.colorConverter.to_rgba_array(c, alpha)
else:
# The inherent ambiguity is resolved in favor of color
# mapping, not interpretation as rgb or rgba:
if c.size == x.size:
colors = None # use cmap, norm after collection is created
else:
colors = mcolors.colorConverter.to_rgba_array(c, alpha)
faceted = kwargs.pop('faceted', None)
edgecolors = kwargs.get('edgecolors', None)
if faceted is not None:
cbook.warn_deprecated(
'1.2', name='faceted', alternative='edgecolor',
obj_type='option')
if faceted:
edgecolors = None
else:
edgecolors = 'none'
# to be API compatible
if marker is None and not (verts is None):
marker = (verts, 0)
verts = None
marker_obj = mmarkers.MarkerStyle(marker)
path = marker_obj.get_path().transformed(
marker_obj.get_transform())
if not marker_obj.is_filled():
edgecolors = 'face'
collection = mcoll.PathCollection(
(path,), scales,
facecolors=colors,
edgecolors=edgecolors,
linewidths=linewidths,
offsets=zip(x, y),
transOffset=kwargs.pop('transform', self.transData),
)
collection.set_transform(mtransforms.IdentityTransform())
collection.set_alpha(alpha)
collection.update(kwargs)
if colors is None:
if norm is not None:
assert(isinstance(norm, mcolors.Normalize))
collection.set_array(np.asarray(c))
collection.set_cmap(cmap)
collection.set_norm(norm)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
# The margin adjustment is a hack to deal with the fact that we don't
# want to transform all the symbols whose scales are in points
# to data coords to get the exact bounding box for efficiency
# reasons. It can be done right if this is deemed important.
# Also, only bother with this padding if there is anything to draw.
if self._xmargin < 0.05 and x.size > 0:
self.set_xmargin(0.05)
if self._ymargin < 0.05 and x.size > 0:
self.set_ymargin(0.05)
self.add_collection(collection)
self.autoscale_view()
return collection
@docstring.dedent_interpd
def hexbin(self, x, y, C=None, gridsize=100, bins=None,
xscale='linear', yscale='linear', extent=None,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors='none',
reduce_C_function=np.mean, mincnt=None, marginals=False,
**kwargs):
"""
Make a hexagonal binning plot.
Call signature::
hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = 'linear', yscale = 'linear',
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors='none'
reduce_C_function = np.mean, mincnt=None, marginals=True
**kwargs)
Make a hexagonal binning plot of *x* versus *y*, where *x*,
*y* are 1-D sequences of the same length, *N*. If *C* is *None*
(the default), this is a histogram of the number of occurences
of the observations at (x[i],y[i]).
If *C* is specified, it specifies values at the coordinate
(x[i],y[i]). These values are accumulated for each hexagonal
bin and then reduced according to *reduce_C_function*, which
defaults to numpy's mean function (np.mean). (If *C* is
specified, it must also be a 1-D sequence of the same length
as *x* and *y*.)
*x*, *y* and/or *C* may be masked arrays, in which case only
unmasked points will be plotted.
Optional keyword arguments:
*gridsize*: [ 100 | integer ]
The number of hexagons in the *x*-direction, default is
100. The corresponding number of hexagons in the
*y*-direction is chosen such that the hexagons are
approximately regular. Alternatively, gridsize can be a
tuple with two elements specifying the number of hexagons
in the *x*-direction and the *y*-direction.
*bins*: [ *None* | 'log' | integer | sequence ]
If *None*, no binning is applied; the color of each hexagon
directly corresponds to its count value.
If 'log', use a logarithmic scale for the color
map. Internally, :math:`log_{10}(i+1)` is used to
determine the hexagon color.
If an integer, divide the counts in the specified number
of bins, and color the hexagons accordingly.
If a sequence of values, the values of the lower bound of
the bins to be used.
*xscale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the horizontal axis.
*scale*: [ 'linear' | 'log' ]
Use a linear or log10 scale on the vertical axis.
*mincnt*: [ *None* | a positive integer ]
If not *None*, only display cells with more than *mincnt*
number of points in the cell
*marginals*: [ *True* | *False* ]
if marginals is *True*, plot the marginal density as
colormapped rectagles along the bottom of the x-axis and
left of the y-axis
*extent*: [ *None* | scalars (left, right, bottom, top) ]
The limits of the bins. The default assigns the limits
based on gridsize, x, y, xscale and yscale.
Other keyword arguments controlling color mapping and normalization
arguments:
*cmap*: [ *None* | Colormap ]
a :class:`matplotlib.colors.Colormap` instance. If *None*,
defaults to rc ``image.cmap``.
*norm*: [ *None* | Normalize ]
:class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1.
*vmin* / *vmax*: scalar
*vmin* and *vmax* are used in conjunction with *norm* to normalize
luminance data. If either are *None*, the min and max of the color
array *C* is used. Note if you pass a norm instance, your settings
for *vmin* and *vmax* will be ignored.
*alpha*: scalar between 0 and 1, or *None*
the alpha value for the patches
*linewidths*: [ *None* | scalar ]
If *None*, defaults to rc lines.linewidth. Note that this
is a tuple, and if you set the linewidths argument you
must set it as a sequence of floats, as required by
:class:`~matplotlib.collections.RegularPolyCollection`.
Other keyword arguments controlling the Collection properties:
*edgecolors*: [ *None* | ``'none'`` | mpl color | color sequence ]
If ``'none'``, draws the edges in the same color as the fill color.
This is the default, as it avoids unsightly unpainted pixels
between the hexagons.
If *None*, draws the outlines in the default color.
If a matplotlib color arg or sequence of rgba tuples, draws the
outlines in the specified color.
Here are the standard descriptions of all the
:class:`~matplotlib.collections.Collection` kwargs:
%(Collection)s
The return value is a
:class:`~matplotlib.collections.PolyCollection` instance; use
:meth:`~matplotlib.collections.PolyCollection.get_array` on
this :class:`~matplotlib.collections.PolyCollection` to get
the counts in each hexagon. If *marginals* is *True*, horizontal
bar and vertical bar (both PolyCollections) will be attached
to the return collection as attributes *hbar* and *vbar*.
**Example:**
.. plot:: mpl_examples/pylab_examples/hexbin_demo.py
"""
if not self._hold:
self.cla()
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x, y, C = cbook.delete_masked_points(x, y, C)
# Set the size of the hexagon grid
if iterable(gridsize):
nx, ny = gridsize
else:
nx = gridsize
ny = int(nx / math.sqrt(3))
# Count the number of data in each hexagon
x = np.array(x, float)
y = np.array(y, float)
if xscale == 'log':
if np.any(x <= 0.0):
raise ValueError("x contains non-positive values, so can not"
" be log-scaled")
x = np.log10(x)
if yscale == 'log':
if np.any(y <= 0.0):
raise ValueError("y contains non-positive values, so can not"
" be log-scaled")
y = np.log10(y)
if extent is not None:
xmin, xmax, ymin, ymax = extent
else:
xmin = np.amin(x)
xmax = np.amax(x)
ymin = np.amin(y)
ymax = np.amax(y)
# In the x-direction, the hexagons exactly cover the region from
# xmin to xmax. Need some padding to avoid roundoff errors.
padding = 1.e-9 * (xmax - xmin)
xmin -= padding
xmax += padding
sx = (xmax - xmin) / nx
sy = (ymax - ymin) / ny
if marginals:
xorig = x.copy()
yorig = y.copy()
x = (x - xmin) / sx
y = (y - ymin) / sy
ix1 = np.round(x).astype(int)
iy1 = np.round(y).astype(int)
ix2 = np.floor(x).astype(int)
iy2 = np.floor(y).astype(int)
nx1 = nx + 1
ny1 = ny + 1
nx2 = nx
ny2 = ny
n = nx1 * ny1 + nx2 * ny2
d1 = (x - ix1) ** 2 + 3.0 * (y - iy1) ** 2
d2 = (x - ix2 - 0.5) ** 2 + 3.0 * (y - iy2 - 0.5) ** 2
bdist = (d1 < d2)
if C is None:
accum = np.zeros(n)
# Create appropriate views into "accum" array.
lattice1 = accum[:nx1 * ny1]
lattice2 = accum[nx1 * ny1:]
lattice1.shape = (nx1, ny1)
lattice2.shape = (nx2, ny2)
for i in xrange(len(x)):
if bdist[i]:
if ((ix1[i] >= 0) and (ix1[i] < nx1) and
(iy1[i] >= 0) and (iy1[i] < ny1)):
lattice1[ix1[i], iy1[i]] += 1
else:
if ((ix2[i] >= 0) and (ix2[i] < nx2) and
(iy2[i] >= 0) and (iy2[i] < ny2)):
lattice2[ix2[i], iy2[i]] += 1
# threshold
if mincnt is not None:
for i in xrange(nx1):
for j in xrange(ny1):
if lattice1[i, j] < mincnt:
lattice1[i, j] = np.nan
for i in xrange(nx2):
for j in xrange(ny2):
if lattice2[i, j] < mincnt:
lattice2[i, j] = np.nan
accum = np.hstack((lattice1.astype(float).ravel(),
lattice2.astype(float).ravel()))
good_idxs = ~np.isnan(accum)
else:
if mincnt is None:
mincnt = 0
# create accumulation arrays
lattice1 = np.empty((nx1, ny1), dtype=object)
for i in xrange(nx1):
for j in xrange(ny1):
lattice1[i, j] = []
lattice2 = np.empty((nx2, ny2), dtype=object)
for i in xrange(nx2):
for j in xrange(ny2):
lattice2[i, j] = []
for i in xrange(len(x)):
if bdist[i]:
if ((ix1[i] >= 0) and (ix1[i] < nx1) and
(iy1[i] >= 0) and (iy1[i] < ny1)):
lattice1[ix1[i], iy1[i]].append(C[i])
else:
if ((ix2[i] >= 0) and (ix2[i] < nx2) and
(iy2[i] >= 0) and (iy2[i] < ny2)):
lattice2[ix2[i], iy2[i]].append(C[i])
for i in xrange(nx1):
for j in xrange(ny1):
vals = lattice1[i, j]
if len(vals) > mincnt:
lattice1[i, j] = reduce_C_function(vals)
else:
lattice1[i, j] = np.nan
for i in xrange(nx2):
for j in xrange(ny2):
vals = lattice2[i, j]
if len(vals) > mincnt:
lattice2[i, j] = reduce_C_function(vals)
else:
lattice2[i, j] = np.nan
accum = np.hstack((lattice1.astype(float).ravel(),
lattice2.astype(float).ravel()))
good_idxs = ~np.isnan(accum)
offsets = np.zeros((n, 2), float)
offsets[:nx1 * ny1, 0] = np.repeat(np.arange(nx1), ny1)
offsets[:nx1 * ny1, 1] = np.tile(np.arange(ny1), nx1)
offsets[nx1 * ny1:, 0] = np.repeat(np.arange(nx2) + 0.5, ny2)
offsets[nx1 * ny1:, 1] = np.tile(np.arange(ny2), nx2) + 0.5
offsets[:, 0] *= sx
offsets[:, 1] *= sy
offsets[:, 0] += xmin
offsets[:, 1] += ymin
# remove accumulation bins with no data
offsets = offsets[good_idxs, :]
accum = accum[good_idxs]
polygon = np.zeros((6, 2), float)
polygon[:, 0] = sx * np.array([0.5, 0.5, 0.0, -0.5, -0.5, 0.0])
polygon[:, 1] = sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0
if edgecolors == 'none':
edgecolors = 'face'
if xscale == 'log' or yscale == 'log':
polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1)
if xscale == 'log':
polygons[:, :, 0] = 10.0 ** polygons[:, :, 0]
xmin = 10.0 ** xmin
xmax = 10.0 ** xmax
self.set_xscale(xscale)
if yscale == 'log':
polygons[:, :, 1] = 10.0 ** polygons[:, :, 1]
ymin = 10.0 ** ymin
ymax = 10.0 ** ymax
self.set_yscale(yscale)
collection = mcoll.PolyCollection(
polygons,
edgecolors=edgecolors,
linewidths=linewidths,
)
else:
collection = mcoll.PolyCollection(
[polygon],
edgecolors=edgecolors,
linewidths=linewidths,
offsets=offsets,
transOffset=mtransforms.IdentityTransform(),
offset_position="data"
)
if isinstance(norm, mcolors.LogNorm):
if (accum == 0).any():
# make sure we have not zeros
accum += 1
# autoscale the norm with curren accum values if it hasn't
# been set
if norm is not None:
if norm.vmin is None and norm.vmax is None:
norm.autoscale(accum)
# Transform accum if needed
if bins == 'log':
accum = np.log10(accum + 1)
elif bins != None:
if not iterable(bins):
minimum, maximum = min(accum), max(accum)
bins -= 1 # one less edge than bins
bins = minimum + (maximum - minimum) * np.arange(bins) / bins
bins = np.sort(bins)
accum = bins.searchsorted(accum)
if norm is not None:
assert(isinstance(norm, mcolors.Normalize))
collection.set_array(accum)
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_alpha(alpha)
collection.update(kwargs)
if vmin is not None or vmax is not None:
collection.set_clim(vmin, vmax)
else:
collection.autoscale_None()
corners = ((xmin, ymin), (xmax, ymax))
self.update_datalim(corners)
self.autoscale_view(tight=True)
# add the collection last
self.add_collection(collection)
if not marginals:
return collection
if C is None:
C = np.ones(len(x))
def coarse_bin(x, y, coarse):
ind = coarse.searchsorted(x).clip(0, len(coarse) - 1)
mus = np.zeros(len(coarse))
for i in range(len(coarse)):
mu = reduce_C_function(y[ind == i])
mus[i] = mu
return mus
coarse = np.linspace(xmin, xmax, gridsize)
xcoarse = coarse_bin(xorig, C, coarse)
valid = ~np.isnan(xcoarse)
verts, values = [], []
for i, val in enumerate(xcoarse):
thismin = coarse[i]
if i < len(coarse) - 1:
thismax = coarse[i + 1]
else:
thismax = thismin + np.diff(coarse)[-1]
if not valid[i]:
continue
verts.append([(thismin, 0),
(thismin, 0.05),
(thismax, 0.05),
(thismax, 0)])
values.append(val)
values = np.array(values)
trans = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
hbar.set_array(values)
hbar.set_cmap(cmap)
hbar.set_norm(norm)
hbar.set_alpha(alpha)
hbar.update(kwargs)
self.add_collection(hbar)
coarse = np.linspace(ymin, ymax, gridsize)
ycoarse = coarse_bin(yorig, C, coarse)
valid = ~np.isnan(ycoarse)
verts, values = [], []
for i, val in enumerate(ycoarse):
thismin = coarse[i]
if i < len(coarse) - 1:
thismax = coarse[i + 1]
else:
thismax = thismin + np.diff(coarse)[-1]
if not valid[i]:
continue
verts.append([(0, thismin), (0.0, thismax),
(0.05, thismax), (0.05, thismin)])
values.append(val)
values = np.array(values)
trans = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
vbar.set_array(values)
vbar.set_cmap(cmap)
vbar.set_norm(norm)
vbar.set_alpha(alpha)
vbar.update(kwargs)
self.add_collection(vbar)
collection.hbar = hbar
collection.vbar = vbar
def on_changed(collection):
hbar.set_cmap(collection.get_cmap())
hbar.set_clim(collection.get_clim())
vbar.set_cmap(collection.get_cmap())
vbar.set_clim(collection.get_clim())
collection.callbacksSM.connect('changed', on_changed)
return collection
@docstring.dedent_interpd
def arrow(self, x, y, dx, dy, **kwargs):
"""
Add an arrow to the axes.
Call signature::
arrow(x, y, dx, dy, **kwargs)
Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*,
*y* + *dy*). Uses FancyArrow patch to construct the arrow.
The resulting arrow is affected by the axes aspect ratio and limits.
This may produce an arrow whose head is not square with its stem. To
create an arrow whose head is square with its stem, use
:meth:`annotate`.
Optional kwargs control the arrow construction and properties:
%(FancyArrow)s
**Example:**
.. plot:: mpl_examples/pylab_examples/arrow_demo.py
"""
# Strip away units for the underlying patch since units
# do not make sense to most patch-like code
x = self.convert_xunits(x)
y = self.convert_yunits(y)
dx = self.convert_xunits(dx)
dy = self.convert_yunits(dy)
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
self.add_artist(a)
return a
def quiverkey(self, *args, **kw):
qk = mquiver.QuiverKey(*args, **kw)
self.add_artist(qk)
return qk
quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc
def quiver(self, *args, **kw):
if not self._hold:
self.cla()
q = mquiver.Quiver(self, *args, **kw)
self.add_collection(q, False)
self.update_datalim(q.XY)
self.autoscale_view()
return q
quiver.__doc__ = mquiver.Quiver.quiver_doc
def stackplot(self, x, *args, **kwargs):
return mstack.stackplot(self, x, *args, **kwargs)
stackplot.__doc__ = mstack.stackplot.__doc__
def streamplot(self, x, y, u, v, density=1, linewidth=None, color=None,
cmap=None, norm=None, arrowsize=1, arrowstyle='-|>',
minlength=0.1, transform=None):
if not self._hold:
self.cla()
stream_container = mstream.streamplot(self, x, y, u, v,
density=density,
linewidth=linewidth,
color=color,
cmap=cmap,
norm=norm,
arrowsize=arrowsize,
arrowstyle=arrowstyle,
minlength=minlength,
transform=transform)
return stream_container
streamplot.__doc__ = mstream.streamplot.__doc__
@docstring.dedent_interpd
def barbs(self, *args, **kw):
"""
%(barbs_doc)s
**Example:**
.. plot:: mpl_examples/pylab_examples/barb_demo.py
"""
if not self._hold:
self.cla()
b = mquiver.Barbs(self, *args, **kw)
self.add_collection(b)
self.update_datalim(b.get_offsets())
self.autoscale_view()
return b
@docstring.dedent_interpd
def fill(self, *args, **kwargs):
"""
Plot filled polygons.
Call signature::
fill(*args, **kwargs)
*args* is a variable length argument, allowing for multiple
*x*, *y* pairs with an optional color format string; see
:func:`~matplotlib.pyplot.plot` for details on the argument
parsing. For example, to plot a polygon with vertices at *x*,
*y* in blue.::
ax.fill(x,y, 'b' )
An arbitrary number of *x*, *y*, *color* groups can be specified::
ax.fill(x1, y1, 'g', x2, y2, 'r')
Return value is a list of :class:`~matplotlib.patches.Patch`
instances that were added.
The same color strings that :func:`~matplotlib.pyplot.plot`
supports are supported by the fill format string.
If you would like to fill below a curve, e.g., shade a region
between 0 and *y* along *x*, use :meth:`fill_between`
The *closed* kwarg will close the polygon when *True* (default).
kwargs control the :class:`~matplotlib.patches.Polygon` properties:
%(Polygon)s
**Example:**
.. plot:: mpl_examples/lines_bars_and_markers/fill_demo.py
"""
if not self._hold:
self.cla()
patches = []
for poly in self._get_patches_for_fill(*args, **kwargs):
self.add_patch(poly)
patches.append(poly)
self.autoscale_view()
return patches
@docstring.dedent_interpd
def fill_between(self, x, y1, y2=0, where=None, interpolate=False,
**kwargs):
"""
Make filled polygons between two curves.
Call signature::
fill_between(x, y1, y2=0, where=None, **kwargs)
Create a :class:`~matplotlib.collections.PolyCollection`
filling the regions between *y1* and *y2* where
``where==True``
*x* :
An N-length array of the x data
*y1* :
An N-length array (or scalar) of the y data
*y2* :
An N-length array (or scalar) of the y data
*where* :
If *None*, default to fill between everywhere. If not *None*,
it is an N-length numpy boolean array and the fill will
only happen over the regions where ``where==True``.
*interpolate* :
If *True*, interpolate between the two lines to find the
precise point of intersection. Otherwise, the start and
end points of the filled region will only occur on explicit
values in the *x* array.
*kwargs* :
Keyword args passed on to the
:class:`~matplotlib.collections.PolyCollection`.
kwargs control the :class:`~matplotlib.patches.Polygon` properties:
%(PolyCollection)s
.. plot:: mpl_examples/pylab_examples/fill_between_demo.py
.. seealso::
:meth:`fill_betweenx`
for filling between two sets of x-values
"""
# Handle united data, such as dates
self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs)
self._process_unit_info(ydata=y2)
# Convert the arrays so we can work with them
x = ma.masked_invalid(self.convert_xunits(x))
y1 = ma.masked_invalid(self.convert_yunits(y1))
y2 = ma.masked_invalid(self.convert_yunits(y2))
if y1.ndim == 0:
y1 = np.ones_like(x) * y1
if y2.ndim == 0:
y2 = np.ones_like(x) * y2
if where is None:
where = np.ones(len(x), np.bool)
else:
where = np.asarray(where, np.bool)
if not (x.shape == y1.shape == y2.shape == where.shape):
raise ValueError("Argument dimensions are incompatible")
mask = reduce(ma.mask_or, [ma.getmask(a) for a in (x, y1, y2)])
if mask is not ma.nomask:
where &= ~mask
polys = []
for ind0, ind1 in mlab.contiguous_regions(where):
xslice = x[ind0:ind1]
y1slice = y1[ind0:ind1]
y2slice = y2[ind0:ind1]
if not len(xslice):
continue
N = len(xslice)
X = np.zeros((2 * N + 2, 2), np.float)
if interpolate:
def get_interp_point(ind):
im1 = max(ind - 1, 0)
x_values = x[im1:ind + 1]
diff_values = y1[im1:ind + 1] - y2[im1:ind + 1]
y1_values = y1[im1:ind + 1]
if len(diff_values) == 2:
if np.ma.is_masked(diff_values[1]):
return x[im1], y1[im1]
elif np.ma.is_masked(diff_values[0]):
return x[ind], y1[ind]
diff_order = diff_values.argsort()
diff_root_x = np.interp(
0, diff_values[diff_order], x_values[diff_order])
diff_root_y = np.interp(diff_root_x, x_values, y1_values)
return diff_root_x, diff_root_y
start = get_interp_point(ind0)
end = get_interp_point(ind1)
else:
# the purpose of the next two lines is for when y2 is a
# scalar like 0 and we want the fill to go all the way
# down to 0 even if none of the y1 sample points do
start = xslice[0], y2slice[0]
end = xslice[-1], y2slice[-1]
X[0] = start
X[N + 1] = end
X[1:N + 1, 0] = xslice
X[1:N + 1, 1] = y1slice
X[N + 2:, 0] = xslice[::-1]
X[N + 2:, 1] = y2slice[::-1]
polys.append(X)
collection = mcoll.PolyCollection(polys, **kwargs)
# now update the datalim and autoscale
XY1 = np.array([x[where], y1[where]]).T
XY2 = np.array([x[where], y2[where]]).T
self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits,
updatex=True, updatey=True)
self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits,
updatex=False, updatey=True)
self.add_collection(collection)
self.autoscale_view()
return collection
@docstring.dedent_interpd
def fill_betweenx(self, y, x1, x2=0, where=None, **kwargs):
"""
Make filled polygons between two horizontal curves.
Call signature::
fill_betweenx(y, x1, x2=0, where=None, **kwargs)
Create a :class:`~matplotlib.collections.PolyCollection`
filling the regions between *x1* and *x2* where
``where==True``
*y* :
An N-length array of the y data
*x1* :
An N-length array (or scalar) of the x data
*x2* :
An N-length array (or scalar) of the x data
*where* :
If *None*, default to fill between everywhere. If not *None*,
it is a N length numpy boolean array and the fill will
only happen over the regions where ``where==True``
*kwargs* :
keyword args passed on to the
:class:`~matplotlib.collections.PolyCollection`
kwargs control the :class:`~matplotlib.patches.Polygon` properties:
%(PolyCollection)s
.. plot:: mpl_examples/pylab_examples/fill_betweenx_demo.py
.. seealso::
:meth:`fill_between`
for filling between two sets of y-values
"""
# Handle united data, such as dates
self._process_unit_info(ydata=y, xdata=x1, kwargs=kwargs)
self._process_unit_info(xdata=x2)
# Convert the arrays so we can work with them
y = ma.masked_invalid(self.convert_yunits(y))
x1 = ma.masked_invalid(self.convert_xunits(x1))
x2 = ma.masked_invalid(self.convert_xunits(x2))
if x1.ndim == 0:
x1 = np.ones_like(y) * x1
if x2.ndim == 0:
x2 = np.ones_like(y) * x2
if where is None:
where = np.ones(len(y), np.bool)
else:
where = np.asarray(where, np.bool)
if not (y.shape == x1.shape == x2.shape == where.shape):
raise ValueError("Argument dimensions are incompatible")
mask = reduce(ma.mask_or, [ma.getmask(a) for a in (y, x1, x2)])
if mask is not ma.nomask:
where &= ~mask
polys = []
for ind0, ind1 in mlab.contiguous_regions(where):
yslice = y[ind0:ind1]
x1slice = x1[ind0:ind1]
x2slice = x2[ind0:ind1]
if not len(yslice):
continue
N = len(yslice)
Y = np.zeros((2 * N + 2, 2), np.float)
# the purpose of the next two lines is for when x2 is a
# scalar like 0 and we want the fill to go all the way
# down to 0 even if none of the x1 sample points do
Y[0] = x2slice[0], yslice[0]
Y[N + 1] = x2slice[-1], yslice[-1]
Y[1:N + 1, 0] = x1slice
Y[1:N + 1, 1] = yslice
Y[N + 2:, 0] = x2slice[::-1]
Y[N + 2:, 1] = yslice[::-1]
polys.append(Y)
collection = mcoll.PolyCollection(polys, **kwargs)
# now update the datalim and autoscale
X1Y = np.array([x1[where], y[where]]).T
X2Y = np.array([x2[where], y[where]]).T
self.dataLim.update_from_data_xy(X1Y, self.ignore_existing_data_limits,
updatex=True, updatey=True)
self.dataLim.update_from_data_xy(X2Y, self.ignore_existing_data_limits,
updatex=False, updatey=True)
self.add_collection(collection)
self.autoscale_view()
return collection
#### plotting z(x,y): imshow, pcolor and relatives, contour
@docstring.dedent_interpd
def imshow(self, X, cmap=None, norm=None, aspect=None,
interpolation=None, alpha=None, vmin=None, vmax=None,
origin=None, extent=None, shape=None, filternorm=1,
filterrad=4.0, imlim=None, resample=None, url=None, **kwargs):
"""
Display an image on the axes.
Parameters
-----------
X : array_like, shape (n, m) or (n, m, 3) or (n, m, 4)
Display the image in `X` to current axes. `X` may be a float
array, a uint8 array or a PIL image. If `X` is an array, it
can have the following shapes:
- MxN -- luminance (grayscale, float array only)
- MxNx3 -- RGB (float or uint8 array)
- MxNx4 -- RGBA (float or uint8 array)
The value for each component of MxNx3 and MxNx4 float arrays
should be in the range 0.0 to 1.0; MxN float arrays may be
normalised.
cmap : `~matplotlib.colors.Colormap`, optional, default: None
If None, default to rc `image.cmap` value. `cmap` is ignored when
`X` has RGB(A) information
aspect : ['auto' | 'equal' | scalar], optional, default: None
If 'auto', changes the image aspect ratio to match that of the
axes.
If 'equal', and `extent` is None, changes the axes aspect ratio to
match that of the image. If `extent` is not `None`, the axes
aspect ratio is changed to match that of the extent.
If None, default to rc ``image.aspect`` value.
interpolation : string, optional, default: None
Acceptable values are 'none', 'nearest', 'bilinear', 'bicubic',
'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser',
'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc',
'lanczos'
If `interpolation` is None, default to rc `image.interpolation`.
See also the `filternorm` and `filterrad` parameters.
If `interpolation` is 'none', then no interpolation is performed
on the Agg, ps and pdf backends. Other backends will fall back to
'nearest'.
norm : `~matplotlib.colors.Normalize`, optional, default: None
A `~matplotlib.colors.Normalize` instance is used to scale
luminance data to 0, 1. If `None`, use the default
func:`normalize`. `norm` is only used if `X` is an array of
floats.
vmin, vmax : scalar, optional, default: None
`vmin` and `vmax` are used in conjunction with norm to normalize
luminance data. Note if you pass a `norm` instance, your
settings for `vmin` and `vmax` will be ignored.
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)
origin : ['upper' | 'lower'], optional, default: None
Place the [0,0] index of the array in the upper left or lower left
corner of the axes. If None, default to rc `image.origin`.
extent : scalars (left, right, bottom, top), optional, default: None
Data limits for the axes. The default assigns zero-based row,
column indices to the `x`, `y` centers of the pixels.
shape : scalars (columns, rows), optional, default: None
For raw buffer images
filternorm : scalar, optional, default: 1
A parameter for the antigrain image resize filter. From the
antigrain documentation, if `filternorm` = 1, the filter
normalizes integer values and corrects the rounding errors. It
doesn't do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means
that any sum of pixel weights must be equal to 1.0. So, the
filter function must produce a graph of the proper shape.
filterrad : scalar, optional, default: 4.0
The filter radius for filters that have a radius parameter, i.e.
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'
Returns
--------
image : `~matplotlib.image.AxesImage`
Other parameters
----------------
kwargs : `~matplotlib.artist.Artist` properties.
See also
--------
matshow : Plot a matrix or an array as an image.
Examples
--------
.. plot:: mpl_examples/pylab_examples/image_demo.py
"""
if not self._hold:
self.cla()
if norm is not None:
assert(isinstance(norm, mcolors.Normalize))
if aspect is None:
aspect = rcParams['image.aspect']
self.set_aspect(aspect)
im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
filternorm=filternorm,
filterrad=filterrad, resample=resample, **kwargs)
im.set_data(X)
im.set_alpha(alpha)
self._set_artist_props(im)
if im.get_clip_path() is None:
# image does not already have clipping set, clip to axes patch
im.set_clip_path(self.patch)
#if norm is None and shape is None:
# im.set_clim(vmin, vmax)
if vmin is not None or vmax is not None:
im.set_clim(vmin, vmax)
else:
im.autoscale_None()
im.set_url(url)
# update ax.dataLim, and, if autoscaling, set viewLim
# to tightly fit the image, regardless of dataLim.
im.set_extent(im.get_extent())
self.images.append(im)
im._remove_method = lambda h: self.images.remove(h)
return im
@staticmethod
def _pcolorargs(funcname, *args, **kw):
# This takes one kwarg, allmatch.
# If allmatch is True, then the incoming X, Y, C must
# have matching dimensions, taking into account that
# X and Y can be 1-D rather than 2-D. This perfect
# match is required for Gouroud shading. For flat
# shading, X and Y specify boundaries, so we need
# one more boundary than color in each direction.
# For convenience, and consistent with Matlab, we
# discard the last row and/or column of C if necessary
# to meet this condition. This is done if allmatch
# is False.
allmatch = kw.pop("allmatch", False)
if len(args) == 1:
C = args[0]
numRows, numCols = C.shape
if allmatch:
X, Y = np.meshgrid(np.arange(numCols), np.arange(numRows))
else:
X, Y = np.meshgrid(np.arange(numCols + 1),
np.arange(numRows + 1))
return X, Y, C
if len(args) == 3:
X, Y, C = args
numRows, numCols = C.shape
else:
raise TypeError(
'Illegal arguments to %s; see help(%s)' % (funcname, funcname))
Nx = X.shape[-1]
Ny = Y.shape[0]
if len(X.shape) != 2 or X.shape[0] == 1:
x = X.reshape(1, Nx)
X = x.repeat(Ny, axis=0)
if len(Y.shape) != 2 or Y.shape[1] == 1:
y = Y.reshape(Ny, 1)
Y = y.repeat(Nx, axis=1)
if X.shape != Y.shape:
raise TypeError(
'Incompatible X, Y inputs to %s; see help(%s)' % (
funcname, funcname))
if allmatch:
if not (Nx == numCols and Ny == numRows):
raise TypeError('Dimensions of C %s are incompatible with'
' X (%d) and/or Y (%d); see help(%s)' % (
C.shape, Nx, Ny, funcname))
else:
if not (numCols in (Nx, Nx-1) and numRows in (Ny, Ny-1)):
raise TypeError('Dimensions of C %s are incompatible with'
' X (%d) and/or Y (%d); see help(%s)' % (
C.shape, Nx, Ny, funcname))
C = C[:Ny-1, :Nx-1]
return X, Y, C
@docstring.dedent_interpd
def pcolor(self, *args, **kwargs):
"""
Create a pseudocolor plot of a 2-D array.
.. note::
pcolor can be very slow for large arrays; consider
using the similar but much faster
:func:`~matplotlib.pyplot.pcolormesh` instead.
Call signatures::
pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)
*C* is the array of color values.
*X* and *Y*, if given, specify the (*x*, *y*) coordinates of
the colored quadrilaterals; the quadrilateral for C[i,j] has
corners at::
(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).
Ideally the dimensions of *X* and *Y* should be one greater
than those of *C*; if the dimensions are the same, then the
last row and column of *C* will be ignored.
Note that the the column index corresponds to the
*x*-coordinate, and the row index corresponds to *y*; for
details, see the :ref:`Grid Orientation
<axes-pcolor-grid-orientation>` section below.
If either or both of *X* and *Y* are 1-D arrays or column vectors,
they will be expanded as needed into the appropriate 2-D arrays,
making a rectangular grid.
*X*, *Y* and *C* may be masked arrays. If either C[i, j], or one
of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j],
[i, j+1],[i+1, j+1]) is masked, nothing is plotted.
Keyword arguments:
*cmap*: [ *None* | Colormap ]
A :class:`matplotlib.colors.Colormap` instance. If *None*, use
rc settings.
*norm*: [ *None* | Normalize ]
An :class:`matplotlib.colors.Normalize` instance is used
to scale luminance data to 0,1. If *None*, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ *None* | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either is *None*, it
is autoscaled to the respective min or max
of the color array *C*. If not *None*, *vmin* or
*vmax* passed in here override any pre-existing values
supplied in the *norm* instance.
*shading*: [ 'flat' | 'faceted' ]
If 'faceted', a black grid is drawn around each rectangle; if
'flat', edges are not drawn. Default is 'flat', contrary to
MATLAB.
This kwarg is deprecated; please use 'edgecolors' instead:
* shading='flat' -- edgecolors='none'
* shading='faceted -- edgecolors='k'
*edgecolors*: [ *None* | ``'none'`` | color | color sequence]
If *None*, the rc setting is used by default.
If ``'none'``, edges will not be visible.
An mpl color or sequence of colors will set the edge color
*alpha*: ``0 <= scalar <= 1`` or *None*
the alpha blending value
Return value is a :class:`matplotlib.collections.Collection`
instance.
.. _axes-pcolor-grid-orientation:
The grid orientation follows the MATLAB convention: an
array *C* with shape (*nrows*, *ncolumns*) is plotted with
the column number as *X* and the row number as *Y*, increasing
up; hence it is plotted the way the array would be printed,
except that the *Y* axis is reversed. That is, *C* is taken
as *C*(*y*, *x*).
Similarly for :func:`meshgrid`::
x = np.arange(5)
y = np.arange(3)
X, Y = np.meshgrid(x, y)
is equivalent to::
X = array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
Y = array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2]])
so if you have::
C = rand(len(x), len(y))
then you need to transpose C::
pcolor(X, Y, C.T)
or::
pcolor(C.T)
MATLAB :func:`pcolor` always discards the last row and column
of *C*, but matplotlib displays the last row and column if *X* and
*Y* are not specified, or if *X* and *Y* have one more row and
column than *C*.
kwargs can be used to control the
:class:`~matplotlib.collections.PolyCollection` properties:
%(PolyCollection)s
.. note::
The default *antialiaseds* is False if the default
*edgecolors*="none" is used. This eliminates artificial lines
at patch boundaries, and works regardless of the value of
alpha. If *edgecolors* is not "none", then the default
*antialiaseds* is taken from
rcParams['patch.antialiased'], which defaults to *True*.
Stroking the edges may be preferred if *alpha* is 1, but
will cause artifacts otherwise.
.. seealso::
:func:`~matplotlib.pyplot.pcolormesh`
For an explanation of the differences between
pcolor and pcolormesh.
"""
if not self._hold:
self.cla()
alpha = kwargs.pop('alpha', None)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
if 'shading' in kwargs:
cbook.warn_deprecated(
'1.2', name='shading', alternative='edgecolors',
obj_type='option')
shading = kwargs.pop('shading', 'flat')
X, Y, C = self._pcolorargs('pcolor', *args, allmatch=False)
Ny, Nx = X.shape
# convert to MA, if necessary.
C = ma.asarray(C)
X = ma.asarray(X)
Y = ma.asarray(Y)
mask = ma.getmaskarray(X) + ma.getmaskarray(Y)
xymask = (mask[0:-1, 0:-1] + mask[1:, 1:] +
mask[0:-1, 1:] + mask[1:, 0:-1])
# don't plot if C or any of the surrounding vertices are masked.
mask = ma.getmaskarray(C) + xymask
newaxis = np.newaxis
compress = np.compress
ravelmask = (mask == 0).ravel()
X1 = compress(ravelmask, ma.filled(X[0:-1, 0:-1]).ravel())
Y1 = compress(ravelmask, ma.filled(Y[0:-1, 0:-1]).ravel())
X2 = compress(ravelmask, ma.filled(X[1:, 0:-1]).ravel())
Y2 = compress(ravelmask, ma.filled(Y[1:, 0:-1]).ravel())
X3 = compress(ravelmask, ma.filled(X[1:, 1:]).ravel())
Y3 = compress(ravelmask, ma.filled(Y[1:, 1:]).ravel())
X4 = compress(ravelmask, ma.filled(X[0:-1, 1:]).ravel())
Y4 = compress(ravelmask, ma.filled(Y[0:-1, 1:]).ravel())
npoly = len(X1)
xy = np.concatenate((X1[:, newaxis], Y1[:, newaxis],
X2[:, newaxis], Y2[:, newaxis],
X3[:, newaxis], Y3[:, newaxis],
X4[:, newaxis], Y4[:, newaxis],
X1[:, newaxis], Y1[:, newaxis]),
axis=1)
verts = xy.reshape((npoly, 5, 2))
C = compress(ravelmask, ma.filled(C[0:Ny - 1, 0:Nx - 1]).ravel())
linewidths = (0.25,)
if 'linewidth' in kwargs:
kwargs['linewidths'] = kwargs.pop('linewidth')
kwargs.setdefault('linewidths', linewidths)
if shading == 'faceted':
edgecolors = 'k',
else:
edgecolors = 'none'
if 'edgecolor' in kwargs:
kwargs['edgecolors'] = kwargs.pop('edgecolor')
ec = kwargs.setdefault('edgecolors', edgecolors)
# aa setting will default via collections to patch.antialiased
# unless the boundary is not stroked, in which case the
# default will be False; with unstroked boundaries, aa
# makes artifacts that are often disturbing.
if 'antialiased' in kwargs:
kwargs['antialiaseds'] = kwargs.pop('antialiased')
if 'antialiaseds' not in kwargs and (is_string_like(ec) and
ec.lower() == "none"):
kwargs['antialiaseds'] = False
collection = mcoll.PolyCollection(verts, **kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None:
assert(isinstance(norm, mcolors.Normalize))
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_clim(vmin, vmax)
collection.autoscale_None()
self.grid(False)
x = X.compressed()
y = Y.compressed()
# Transform from native to data coordinates?
t = collection._transform
if (not isinstance(t, mtransforms.Transform)
and hasattr(t, '_as_mpl_transform')):
t = t._as_mpl_transform(self.axes)
if t and any(t.contains_branch_seperately(self.transData)):
trans_to_data = t - self.transData
pts = np.vstack([x, y]).T.astype(np.float)
transformed_pts = trans_to_data.transform(pts)
x = transformed_pts[..., 0]
y = transformed_pts[..., 1]
minx = np.amin(x)
maxx = np.amax(x)
miny = np.amin(y)
maxy = np.amax(y)
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
self.add_collection(collection)
return collection
@docstring.dedent_interpd
def pcolormesh(self, *args, **kwargs):
"""
Plot a quadrilateral mesh.
Call signatures::
pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)
Create a pseudocolor plot of a 2-D array.
pcolormesh is similar to :func:`~matplotlib.pyplot.pcolor`,
but uses a different mechanism and returns a different
object; pcolor returns a
:class:`~matplotlib.collections.PolyCollection` but pcolormesh
returns a
:class:`~matplotlib.collections.QuadMesh`. It is much faster,
so it is almost always preferred for large arrays.
*C* may be a masked array, but *X* and *Y* may not. Masked
array support is implemented via *cmap* and *norm*; in
contrast, :func:`~matplotlib.pyplot.pcolor` simply does not
draw quadrilaterals with masked colors or vertices.
Keyword arguments:
*cmap*: [ *None* | Colormap ]
A :class:`matplotlib.colors.Colormap` instance. If *None*, use
rc settings.
*norm*: [ *None* | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to
scale luminance data to 0,1. If *None*, defaults to
:func:`normalize`.
*vmin*/*vmax*: [ *None* | scalar ]
*vmin* and *vmax* are used in conjunction with *norm* to
normalize luminance data. If either is *None*, it
is autoscaled to the respective min or max
of the color array *C*. If not *None*, *vmin* or
*vmax* passed in here override any pre-existing values
supplied in the *norm* instance.
*shading*: [ 'flat' | 'gouraud' ]
'flat' indicates a solid color for each quad. When
'gouraud', each quad will be Gouraud shaded. When gouraud
shading, edgecolors is ignored.
*edgecolors*: [*None* | ``'None'`` | ``'face'`` | color |
color sequence]
If *None*, the rc setting is used by default.
If ``'None'``, edges will not be visible.
If ``'face'``, edges will have the same color as the faces.
An mpl color or sequence of colors will set the edge color
*alpha*: ``0 <= scalar <= 1`` or *None*
the alpha blending value
Return value is a :class:`matplotlib.collections.QuadMesh`
object.
kwargs can be used to control the
:class:`matplotlib.collections.QuadMesh` properties:
%(QuadMesh)s
.. seealso::
:func:`~matplotlib.pyplot.pcolor`
For an explanation of the grid orientation and the
expansion of 1-D *X* and/or *Y* to 2-D arrays.
"""
if not self._hold:
self.cla()
alpha = kwargs.pop('alpha', None)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
shading = kwargs.pop('shading', 'flat').lower()
antialiased = kwargs.pop('antialiased', False)
kwargs.setdefault('edgecolors', 'None')
allmatch = (shading == 'gouraud')
X, Y, C = self._pcolorargs('pcolormesh', *args, allmatch=allmatch)
Ny, Nx = X.shape
# convert to one dimensional arrays
C = C.ravel()
X = X.ravel()
Y = Y.ravel()
coords = np.zeros(((Nx * Ny), 2), dtype=float)
coords[:, 0] = X
coords[:, 1] = Y
collection = mcoll.QuadMesh(
Nx - 1, Ny - 1, coords,
antialiased=antialiased, shading=shading, **kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
if norm is not None:
assert(isinstance(norm, mcolors.Normalize))
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_clim(vmin, vmax)
collection.autoscale_None()
self.grid(False)
# Transform from native to data coordinates?
t = collection._transform
if (not isinstance(t, mtransforms.Transform)
and hasattr(t, '_as_mpl_transform')):
t = t._as_mpl_transform(self.axes)
if t and any(t.contains_branch_seperately(self.transData)):
trans_to_data = t - self.transData
pts = np.vstack([X, Y]).T.astype(np.float)
transformed_pts = trans_to_data.transform(pts)
X = transformed_pts[..., 0]
Y = transformed_pts[..., 1]
minx = np.amin(X)
maxx = np.amax(X)
miny = np.amin(Y)
maxy = np.amax(Y)
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self.autoscale_view()
self.add_collection(collection)
return collection
@docstring.dedent_interpd
def pcolorfast(self, *args, **kwargs):
"""
pseudocolor plot of a 2-D array
Experimental; this is a pcolor-type method that
provides the fastest possible rendering with the Agg
backend, and that can handle any quadrilateral grid.
It supports only flat shading (no outlines), it lacks
support for log scaling of the axes, and it does not
have a pyplot wrapper.
Call signatures::
ax.pcolorfast(C, **kwargs)
ax.pcolorfast(xr, yr, C, **kwargs)
ax.pcolorfast(x, y, C, **kwargs)
ax.pcolorfast(X, Y, C, **kwargs)
C is the 2D array of color values corresponding to quadrilateral
cells. Let (nr, nc) be its shape. C may be a masked array.
``ax.pcolorfast(C, **kwargs)`` is equivalent to
``ax.pcolorfast([0,nc], [0,nr], C, **kwargs)``
*xr*, *yr* specify the ranges of *x* and *y* corresponding to the
rectangular region bounding *C*. If::
xr = [x0, x1]
and::
yr = [y0,y1]
then *x* goes from *x0* to *x1* as the second index of *C* goes
from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of
cell (0,0), and (*x1*, *y1*) is the outermost corner of cell
(*nr*-1, *nc*-1). All cells are rectangles of the same size.
This is the fastest version.
*x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively,
giving the x and y boundaries of the cells. Hence the cells are
rectangular but the grid may be nonuniform. The speed is
intermediate. (The grid is checked, and if found to be
uniform the fast version is used.)
*X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify
the (x,y) coordinates of the corners of the colored
quadrilaterals; the quadrilateral for C[i,j] has corners at
(X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]),
(X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular.
This is the most general, but the slowest to render. It may
produce faster and more compact output using ps, pdf, and
svg backends, however.
Note that the the column index corresponds to the x-coordinate,
and the row index corresponds to y; for details, see
the "Grid Orientation" section below.
Optional keyword arguments:
*cmap*: [ *None* | Colormap ]
A :class:`matplotlib.colors.Colormap` instance from cm. If *None*,
use rc settings.
*norm*: [ *None* | Normalize ]
A :class:`matplotlib.colors.Normalize` instance is used to scale
luminance data to 0,1. If *None*, defaults to normalize()
*vmin*/*vmax*: [ *None* | scalar ]
*vmin* and *vmax* are used in conjunction with norm to normalize
luminance data. If either are *None*, the min and max
of the color array *C* is used. If you pass a norm instance,
*vmin* and *vmax* will be *None*.
*alpha*: ``0 <= scalar <= 1`` or *None*
the alpha blending value
Return value is an image if a regular or rectangular grid
is specified, and a :class:`~matplotlib.collections.QuadMesh`
collection in the general quadrilateral case.
"""
if not self._hold:
self.cla()
alpha = kwargs.pop('alpha', None)
norm = kwargs.pop('norm', None)
cmap = kwargs.pop('cmap', None)
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
if norm is not None:
assert(isinstance(norm, mcolors.Normalize))
C = args[-1]
nr, nc = C.shape
if len(args) == 1:
style = "image"
x = [0, nc]
y = [0, nr]
elif len(args) == 3:
x, y = args[:2]
x = np.asarray(x)
y = np.asarray(y)
if x.ndim == 1 and y.ndim == 1:
if x.size == 2 and y.size == 2:
style = "image"
else:
dx = np.diff(x)
dy = np.diff(y)
if (np.ptp(dx) < 0.01 * np.abs(dx.mean()) and
np.ptp(dy) < 0.01 * np.abs(dy.mean())):
style = "image"
else:
style = "pcolorimage"
elif x.ndim == 2 and y.ndim == 2:
style = "quadmesh"
else:
raise TypeError("arguments do not match valid signatures")
else:
raise TypeError("need 1 argument or 3 arguments")
if style == "quadmesh":
# convert to one dimensional arrays
# This should also be moved to the QuadMesh class
C = ma.ravel(C) # data point in each cell is value
# at lower left corner
X = x.ravel()
Y = y.ravel()
Nx = nc + 1
Ny = nr + 1
# The following needs to be cleaned up; the renderer
# requires separate contiguous arrays for X and Y,
# but the QuadMesh class requires the 2D array.
coords = np.empty(((Nx * Ny), 2), np.float64)
coords[:, 0] = X
coords[:, 1] = Y
# The QuadMesh class can also be changed to
# handle relevant superclass kwargs; the initializer
# should do much more than it does now.
collection = mcoll.QuadMesh(nc, nr, coords, 0, edgecolors="None")
collection.set_alpha(alpha)
collection.set_array(C)
collection.set_cmap(cmap)
collection.set_norm(norm)
self.add_collection(collection)
xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max()
ret = collection
else:
# One of the image styles:
xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
if style == "image":
im = mimage.AxesImage(self, cmap, norm,
interpolation='nearest',
origin='lower',
extent=(xl, xr, yb, yt),
**kwargs)
im.set_data(C)
im.set_alpha(alpha)
self.images.append(im)
ret = im
if style == "pcolorimage":
im = mimage.PcolorImage(self, x, y, C,
cmap=cmap,
norm=norm,
alpha=alpha,
**kwargs)
self.images.append(im)
ret = im
self._set_artist_props(ret)
if vmin is not None or vmax is not None:
ret.set_clim(vmin, vmax)
else:
ret.autoscale_None()
self.update_datalim(np.array([[xl, yb], [xr, yt]]))
self.autoscale_view(tight=True)
return ret
def contour(self, *args, **kwargs):
if not self._hold:
self.cla()
kwargs['filled'] = False
return mcontour.QuadContourSet(self, *args, **kwargs)
contour.__doc__ = mcontour.QuadContourSet.contour_doc
def contourf(self, *args, **kwargs):
if not self._hold:
self.cla()
kwargs['filled'] = True
return mcontour.QuadContourSet(self, *args, **kwargs)
contourf.__doc__ = mcontour.QuadContourSet.contour_doc
def clabel(self, CS, *args, **kwargs):
return CS.clabel(*args, **kwargs)
clabel.__doc__ = mcontour.ContourSet.clabel.__doc__
@docstring.dedent_interpd
def table(self, **kwargs):
"""
Add a table to the current axes.
Call signature::
table(cellText=None, cellColours=None,
cellLoc='right', colWidths=None,
rowLabels=None, rowColours=None, rowLoc='left',
colLabels=None, colColours=None, colLoc='center',
loc='bottom', bbox=None):
Returns a :class:`matplotlib.table.Table` instance. For finer
grained control over tables, use the
:class:`~matplotlib.table.Table` class and add it to the axes
with :meth:`~matplotlib.axes.Axes.add_table`.
Thanks to John Gill for providing the class and table.
kwargs control the :class:`~matplotlib.table.Table`
properties:
%(Table)s
"""
return mtable.table(self, **kwargs)
def _make_twin_axes(self, *kl, **kwargs):
"""
make a twinx axes of self. This is used for twinx and twiny.
"""
ax2 = self.figure.add_axes(self.get_position(True), *kl, **kwargs)
return ax2
def twinx(self):
"""
Call signature::
ax = twinx()
create a twin of Axes for generating a plot with a sharex
x-axis but independent y axis. The y-axis of self will have
ticks on left and the returned axes will have ticks on the
right.
.. note::
For those who are 'picking' artists while using twinx, pick
events are only called for the artists in the top-most axes.
"""
ax2 = self._make_twin_axes(sharex=self, frameon=False)
ax2.yaxis.tick_right()
ax2.yaxis.set_label_position('right')
ax2.yaxis.set_offset_position('right')
self.yaxis.tick_left()
ax2.xaxis.set_visible(False)
return ax2
def twiny(self):
"""
Call signature::
ax = twiny()
create a twin of Axes for generating a plot with a shared
y-axis but independent x axis. The x-axis of self will have
ticks on bottom and the returned axes will have ticks on the
top.
.. note::
For those who are 'picking' artists while using twiny, pick
events are only called for the artists in the top-most axes.
"""
ax2 = self._make_twin_axes(sharey=self, frameon=False)
ax2.xaxis.tick_top()
ax2.xaxis.set_label_position('top')
self.xaxis.tick_bottom()
ax2.yaxis.set_visible(False)
return ax2
def get_shared_x_axes(self):
'Return a copy of the shared axes Grouper object for x axes'
return self._shared_x_axes
def get_shared_y_axes(self):
'Return a copy of the shared axes Grouper object for y axes'
return self._shared_y_axes
#### Data analysis
@docstring.dedent_interpd
def hist(self, x, bins=10, range=None, normed=False, weights=None,
cumulative=False, bottom=None, histtype='bar', align='mid',
orientation='vertical', rwidth=None, log=False,
color=None, label=None, stacked=False,
**kwargs):
"""
Plot a histogram.
Compute and draw the histogram of *x*. The return value is a
tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*,
[*patches0*, *patches1*,...]) if the input contains multiple
data.
Multiple data can be provided via *x* as a list of datasets
of potentially different length ([*x0*, *x1*, ...]), or as
a 2-D ndarray in which each column is a dataset. Note that
the ndarray form is transposed relative to the list form.
Masked arrays are not supported at present.
Parameters
----------
x : array_like, shape (n, )
Input values.
bins : integer or array_like, optional, default: 10
If an integer is given, `bins + 1` bin edges are returned,
consistently with :func:`numpy.histogram` for numpy version >=
1.3.
Unequally spaced bins are supported if `bins` is a sequence.
range : tuple, optional, default: None
The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, `range` is (x.min(), x.max()). Range
has no effect if `bins` is a sequence.
If `bins` is a sequence or `range` is specified, autoscaling
is based on the specified bin range instead of the
range of x.
normed : boolean, optional, default: False
If `True`, the first element of the return tuple will
be the counts normalized to form a probability density, i.e.,
``n/(len(x)`dbin)``, ie the integral of the histogram will sum to
1. If *stacked* is also *True*, the sum of the histograms is
normalized to 1.
weights : array_like, shape (n, ), optional, default: None
An array of weights, of the same shape as `x`. Each value in `x`
only contributes its associated weight towards the bin count
(instead of 1). If `normed` is True, the weights are normalized,
so that the integral of the density over the range remains 1.
cumulative : boolean, optional, default : True
If `True`, then a histogram is computed where each bin gives the
counts in that bin plus all bins for smaller values. The last bin
gives the total number of datapoints. If `normed` is also `True`
then the histogram is normalized such that the last bin equals 1.
If `cumulative` evaluates to less than 0 (e.g., -1), the direction
of accumulation is reversed. In this case, if `normed` is also
`True`, then the histogram is normalized such that the first bin
equals 1.
histtype : ['bar' | 'barstacked' | 'step' | 'stepfilled'], optional
The type of histogram to draw.
- 'bar' is a traditional bar-type histogram. If multiple data
are given the bars are aranged side by side.
- 'barstacked' is a bar-type histogram where multiple
data are stacked on top of each other.
- 'step' generates a lineplot that is by default
unfilled.
- 'stepfilled' generates a lineplot that is by default
filled.
align : ['left' | 'mid' | 'right'], optional, default: 'mid'
Controls how the histogram is plotted.
- 'left': bars are centered on the left bin edges.
- 'mid': bars are centered between the bin edges.
- 'right': bars are centered on the right bin edges.
orientation : ['horizontal' | 'vertical'], optional
If 'horizontal', `~matplotlib.pyplot.barh` will be used for
bar-type histograms and the *bottom* kwarg will be the left edges.
rwidth : scalar, optional, default: None
The relative width of the bars as a fraction of the bin width. If
`None`, automatically compute the width. Ignored if `histtype` =
'step' or 'stepfilled'.
log : boolean, optional, default : False
If `True`, the histogram axis will be set to a log scale. If `log`
is `True` and `x` is a 1D array, empty bins will be filtered out
and only the non-empty (`n`, `bins`, `patches`) will be returned.
color : color or array_like of colors, optional, default: None
Color spec or sequence of color specs, one per dataset. Default
(`None`) uses the standard line color sequence.
label : string, optional, default: ''
String, or sequence of strings to match multiple datasets. Bar
charts yield multiple patches per dataset, but only the first gets
the label, so that the legend command will work as expected.
stacked : boolean, optional, default : False
If `True`, multiple data are stacked on top of each other If
`False` multiple data are aranged side by side if histtype is
'bar' or on top of each other if histtype is 'step'
Returns
-------
tuple : (n, bins, patches) or ([n0, n1, ...], bins, [patches0, patches1,...])
Other Parameters
----------------
kwargs : `~matplotlib.patches.Patch` properties
See also
--------
hist2d : 2D histograms
Notes
-----
Until numpy release 1.5, the underlying numpy histogram function was
incorrect with `normed`=`True` if bin sizes were unequal. MPL
inherited that error. It is now corrected within MPL when using
earlier numpy versions.
Examples
--------
.. plot:: mpl_examples/statistics/histogram_demo_features.py
"""
if not self._hold:
self.cla()
# xrange becomes range after 2to3
bin_range = range
range = __builtins__["range"]
# NOTE: the range keyword overwrites the built-in func range !!!
# needs to be fixed in numpy !!!
# Validate string inputs here so we don't have to clutter
# subsequent code.
if histtype not in ['bar', 'barstacked', 'step', 'stepfilled']:
raise ValueError("histtype %s is not recognized" % histtype)
if align not in ['left', 'mid', 'right']:
raise ValueError("align kwarg %s is not recognized" % align)
if orientation not in ['horizontal', 'vertical']:
raise ValueError(
"orientation kwarg %s is not recognized" % orientation)
if histtype == 'barstacked' and not stacked:
stacked = True
# Massage 'x' for processing.
# NOTE: Be sure any changes here is also done below to 'weights'
if isinstance(x, np.ndarray) or not iterable(x[0]):
# TODO: support masked arrays;
x = np.asarray(x)
if x.ndim == 2:
x = x.T # 2-D input with columns as datasets; switch to rows
elif x.ndim == 1:
x = x.reshape(1, x.shape[0]) # new view, single row
else:
raise ValueError("x must be 1D or 2D")
if x.shape[1] < x.shape[0]:
warnings.warn(
'2D hist input should be nsamples x nvariables;\n '
'this looks transposed (shape is %d x %d)' % x.shape[::-1])
else:
# multiple hist with data of different length
x = [np.asarray(xi) for xi in x]
nx = len(x) # number of datasets
if color is None:
color = [self._get_lines.color_cycle.next()
for i in xrange(nx)]
else:
color = mcolors.colorConverter.to_rgba_array(color)
if len(color) != nx:
raise ValueError("color kwarg must have one color per dataset")
# We need to do to 'weights' what was done to 'x'
if weights is not None:
if isinstance(weights, np.ndarray) or not iterable(weights[0]):
w = np.array(weights)
if w.ndim == 2:
w = w.T
elif w.ndim == 1:
w.shape = (1, w.shape[0])
else:
raise ValueError("weights must be 1D or 2D")
else:
w = [np.asarray(wi) for wi in weights]
if len(w) != nx:
raise ValueError('weights should have the same shape as x')
for i in xrange(nx):
if len(w[i]) != len(x[i]):
raise ValueError(
'weights should have the same shape as x')
else:
w = [None]*nx
# Save the datalimits for the same reason:
_saved_bounds = self.dataLim.bounds
# Check whether bins or range are given explicitly. In that
# case use those values for autoscaling.
binsgiven = (cbook.iterable(bins) or bin_range is not None)
# If bins are not specified either explicitly or via range,
# we need to figure out the range required for all datasets,
# and supply that to np.histogram.
if not binsgiven:
xmin = np.inf
xmax = -np.inf
for xi in x:
xmin = min(xmin, xi.min())
xmax = max(xmax, xi.max())
bin_range = (xmin, xmax)
#hist_kwargs = dict(range=range, normed=bool(normed))
# We will handle the normed kwarg within mpl until we
# get to the point of requiring numpy >= 1.5.
hist_kwargs = dict(range=bin_range)
n = []
mlast = bottom
for i in xrange(nx):
# this will automatically overwrite bins,
# so that each histogram uses the same bins
m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
m = m.astype(float) # causes problems later if it's an int
if mlast is None:
mlast = np.zeros(len(bins)-1, m.dtype)
if normed and not stacked:
db = np.diff(bins)
m = (m.astype(float) / db) / m.sum()
if stacked:
m += mlast
mlast[:] = m
n.append(m)
if stacked and normed:
db = np.diff(bins)
for m in n:
m[:] = (m.astype(float) / db) / n[-1].sum()
if cumulative:
slc = slice(None)
if cbook.is_numlike(cumulative) and cumulative < 0:
slc = slice(None, None, -1)
if normed:
n = [(m * np.diff(bins))[slc].cumsum()[slc] for m in n]
else:
n = [m[slc].cumsum()[slc] for m in n]
patches = []
if histtype.startswith('bar'):
# Save autoscale state for later restoration; turn autoscaling
# off so we can do it all a single time at the end, instead
# of having it done by bar or fill and then having to be redone.
_saved_autoscalex = self.get_autoscalex_on()
_saved_autoscaley = self.get_autoscaley_on()
self.set_autoscalex_on(False)
self.set_autoscaley_on(False)
totwidth = np.diff(bins)
if rwidth is not None:
dr = min(1.0, max(0.0, rwidth))
elif len(n) > 1:
dr = 0.8
else:
dr = 1.0
if histtype == 'bar' and not stacked:
width = dr*totwidth/nx
dw = width
if nx > 1:
boffset = -0.5*dr*totwidth*(1.0-1.0/nx)
else:
boffset = 0.0
stacked = False
elif histtype == 'barstacked' or stacked:
width = dr*totwidth
boffset, dw = 0.0, 0.0
if align == 'mid' or align == 'edge':
boffset += 0.5*totwidth
elif align == 'right':
boffset += totwidth
if orientation == 'horizontal':
_barfunc = self.barh
bottom_kwarg = 'left'
else: # orientation == 'vertical'
_barfunc = self.bar
bottom_kwarg = 'bottom'
for m, c in zip(n, color):
if bottom is None:
bottom = np.zeros(len(m), np.float)
if stacked:
height = m - bottom
else:
height = m
patch = _barfunc(bins[:-1]+boffset, height, width,
align='center', log=log,
color=c, **{bottom_kwarg: bottom})
patches.append(patch)
if stacked:
bottom[:] = m
boffset += dw
self.set_autoscalex_on(_saved_autoscalex)
self.set_autoscaley_on(_saved_autoscaley)
self.autoscale_view()
elif histtype.startswith('step'):
# these define the perimeter of the polygon
x = np.zeros(4 * len(bins) - 3, np.float)
y = np.zeros(4 * len(bins) - 3, np.float)
x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1]
x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1]
if log:
if orientation == 'horizontal':
self.set_xscale('log', nonposx='clip')
logbase = self.xaxis._scale.base
else: # orientation == 'vertical'
self.set_yscale('log', nonposy='clip')
logbase = self.yaxis._scale.base
# Setting a minimum of 0 results in problems for log plots
if normed:
# For normed data, set to log base * minimum data value
# (gives 1 full tick-label unit for the lowest filled bin)
ndata = np.array(n)
minimum = (np.min(ndata[ndata > 0])) / logbase
else:
# For non-normed data, set the min to log base,
# again so that there is 1 full tick-label unit
# for the lowest bin
minimum = 1.0 / logbase
y[0], y[-1] = minimum, minimum
else:
minimum = np.min(bins)
if align == 'left' or align == 'center':
x -= 0.5*(bins[1]-bins[0])
elif align == 'right':
x += 0.5*(bins[1]-bins[0])
# If fill kwarg is set, it will be passed to the patch collection,
# overriding this
fill = (histtype == 'stepfilled')
xvals, yvals = [], []
for m in n:
# starting point for drawing polygon
y[0] = y[1]
# top of the previous polygon becomes the bottom
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
# set the top of this polygon
y[1:2*len(bins)-1:2], y[2:2*len(bins)-1:2] = m, m
if log:
y[y < minimum] = minimum
if orientation == 'horizontal':
x, y = y, x
xvals.append(x.copy())
yvals.append(y.copy())
if fill:
# add patches in reverse order so that when stacking,
# items lower in the stack are plottted on top of
# items higher in the stack
for x, y, c in reversed(zip(xvals, yvals, color)):
patches.append(self.fill(
x, y,
closed=True,
facecolor=c))
else:
for x, y, c in reversed(zip(xvals, yvals, color)):
split = 2 * len(bins)
patches.append(self.fill(
x[:split], y[:split],
closed=False, edgecolor=c,
fill=False))
# we return patches, so put it back in the expected order
patches.reverse()
# adopted from adjust_x/ylim part of the bar method
if orientation == 'horizontal':
xmin0 = max(_saved_bounds[0]*0.9, minimum)
xmax = self.dataLim.intervalx[1]
for m in n:
xmin = np.amin(m[m != 0]) # filter out the 0 height bins
xmin = max(xmin*0.9, minimum)
xmin = min(xmin0, xmin)
self.dataLim.intervalx = (xmin, xmax)
elif orientation == 'vertical':
ymin0 = max(_saved_bounds[1]*0.9, minimum)
ymax = self.dataLim.intervaly[1]
for m in n:
ymin = np.amin(m[m != 0]) # filter out the 0 height bins
ymin = max(ymin*0.9, minimum)
ymin = min(ymin0, ymin)
self.dataLim.intervaly = (ymin, ymax)
if label is None:
labels = [None]
elif is_string_like(label):
labels = [label]
elif is_sequence_of_strings(label):
labels = list(label)
else:
raise ValueError(
'invalid label: must be string or sequence of strings')
if len(labels) < nx:
labels += [None] * (nx - len(labels))
for (patch, lbl) in zip(patches, labels):
if patch:
p = patch[0]
p.update(kwargs)
if lbl is not None:
p.set_label(lbl)
p.set_snap(False)
for p in patch[1:]:
p.update(kwargs)
p.set_label('_nolegend_')
if binsgiven:
if orientation == 'vertical':
self.update_datalim(
[(bins[0], 0), (bins[-1], 0)], updatey=False)
else:
self.update_datalim(
[(0, bins[0]), (0, bins[-1])], updatex=False)
if nx == 1:
return n[0], bins, cbook.silent_list('Patch', patches[0])
else:
return n, bins, cbook.silent_list('Lists of Patches', patches)
@docstring.dedent_interpd
def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
cmin=None, cmax=None, **kwargs):
"""
Make a 2D histogram plot.
Parameters
----------
x, y: array_like, shape (n, )
Input values
bins: [None | int | [int, int] | array_like | [array, array]]
The bin specification:
- If int, the number of bins for the two dimensions
(nx=ny=bins).
- If [int, int], the number of bins in each dimension
(nx, ny = bins).
- If array_like, the bin edges for the two dimensions
(x_edges=y_edges=bins).
- If [array, array], the bin edges in each dimension
(x_edges, y_edges = bins).
The default value is 10.
range : array_like shape(2, 2), optional, default: None
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters): [[xmin,
xmax], [ymin, ymax]]. All values outside of this range will be
considered outliers and not tallied in the histogram.
normed : boolean, optional, default: False
Normalize histogram.
weights : array_like, shape (n, ), optional, default: None
An array of values w_i weighing each sample (x_i, y_i).
cmin : scalar, optional, default: None
All bins that has count less than cmin will not be displayed and
these count values in the return value count histogram will also
be set to nan upon return
cmax : scalar, optional, default: None
All bins that has count more than cmax will not be displayed (set
to none before passing to imshow) and these count values in the
return value count histogram will also be set to nan upon return
Returns
-------
The return value is ``(counts, xedges, yedges, Image)``.
Other parameters
-----------------
kwargs : :meth:`pcolorfast` properties.
See also
--------
hist : 1D histogram
Notes
-----
Rendering the histogram with a logarithmic color scale is
accomplished by passing a :class:`colors.LogNorm` instance to
the *norm* keyword argument.
Examples
--------
.. plot:: mpl_examples/pylab_examples/hist2d_demo.py
"""
# xrange becomes range after 2to3
bin_range = range
range = __builtins__["range"]
h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=bin_range,
normed=normed, weights=weights)
if cmin is not None:
h[h < cmin] = None
if cmax is not None:
h[h > cmax] = None
pc = self.pcolorfast(xedges, yedges, h.T, **kwargs)
self.set_xlim(xedges[0], xedges[-1])
self.set_ylim(yedges[0], yedges[-1])
return h, xedges, yedges, pc
@docstring.dedent_interpd
def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
"""
Plot the power spectral density.
Call signature::
psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs)
The power spectral density by Welch's average periodogram
method. The vector *x* is divided into *NFFT* length
segments. Each segment is detrended by function *detrend* and
windowed by function *window*. *noverlap* gives the length of
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
of each segment :math:`i` are averaged to compute *Pxx*, with a
scaling to correct for power loss due to windowing. *Fs* is the
sampling frequency.
%(PSD)s
*noverlap*: integer
The number of points of overlap between blocks. The default value
is 0 (no overlap).
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
Returns the tuple (*Pxx*, *freqs*).
For plotting, the power is plotted as
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
is returned.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D` properties:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/psd_demo.py
"""
if not self._hold:
self.cla()
pxx, freqs = mlab.psd(x, NFFT, Fs, detrend, window, noverlap, pad_to,
sides, scale_by_freq)
pxx.shape = len(freqs),
freqs += Fc
if scale_by_freq in (None, True):
psd_units = 'dB/Hz'
else:
psd_units = 'dB'
self.plot(freqs, 10 * np.log10(pxx), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Power Spectral Density (%s)' % psd_units)
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax - vmin
logi = int(np.log10(intv))
if logi == 0:
logi = .1
step = 10 * logi
#print vmin, vmax, step, intv, math.floor(vmin), math.ceil(vmax)+1
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
self.set_yticks(ticks)
return pxx, freqs
@docstring.dedent_interpd
def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
"""
Plot cross-spectral density.
Call signature::
csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs)
The cross spectral density :math:`P_{xy}` by Welch's average
periodogram method. The vectors *x* and *y* are divided into
*NFFT* length segments. Each segment is detrended by function
*detrend* and windowed by function *window*. The product of
the direct FFTs of *x* and *y* are averaged over each segment
to compute :math:`P_{xy}`, with a scaling to correct for power
loss due to windowing.
Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum
(complex valued), and :math:`10\log_{10}|P_{xy}|` is
plotted.
%(PSD)s
*noverlap*: integer
The number of points of overlap between blocks. The
default value is 0 (no overlap).
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
References:
Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the Line2D properties:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/csd_demo.py
.. seealso:
:meth:`psd`
For a description of the optional parameters.
"""
if not self._hold:
self.cla()
pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap,
pad_to, sides, scale_by_freq)
pxy.shape = len(freqs),
# pxy is complex
freqs += Fc
self.plot(freqs, 10 * np.log10(np.absolute(pxy)), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Cross Spectrum Magnitude (dB)')
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax - vmin
step = 10 * int(np.log10(intv))
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
self.set_yticks(ticks)
return pxy, freqs
@docstring.dedent_interpd
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
"""
Plot the coherence between *x* and *y*.
Call signature::
cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs)
Plot the coherence between *x* and *y*. Coherence is the
normalized cross spectral density:
.. math::
C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}}
%(PSD)s
*noverlap*: integer
The number of points of overlap between blocks. The
default value is 0 (no overlap).
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the x extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
The return value is a tuple (*Cxy*, *f*), where *f* are the
frequencies of the coherence vector.
kwargs are applied to the lines.
References:
* Bendat & Piersol -- Random Data: Analysis and Measurement
Procedures, John Wiley & Sons (1986)
kwargs control the :class:`~matplotlib.lines.Line2D`
properties of the coherence plot:
%(Line2D)s
**Example:**
.. plot:: mpl_examples/pylab_examples/cohere_demo.py
"""
if not self._hold:
self.cla()
cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap,
scale_by_freq)
freqs += Fc
self.plot(freqs, cxy, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Coherence')
self.grid(True)
return cxy, freqs
@docstring.dedent_interpd
def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides='default',
scale_by_freq=None, **kwargs):
"""
Plot a spectrogram.
Call signature::
specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides='default',
scale_by_freq=None, **kwargs)
Compute and plot a spectrogram of data in *x*. Data are split into
*NFFT* length segments and the PSD of each section is
computed. The windowing function *window* is applied to each
segment, and the amount of overlap of each segment is
specified with *noverlap*. The spectrogram is plotted in decibels
as a colormap (using imshow).
%(PSD)s
*noverlap*: integer
The number of points of overlap between blocks. The
default value is 128.
*Fc*: integer
The center frequency of *x* (defaults to 0), which offsets
the y extents of the plot to reflect the frequency range used
when a signal is acquired and then filtered and downsampled to
baseband.
*cmap*:
A :class:`matplotlib.colors.Colormap` instance; if *None*, use
default determined by rc
*xextent*:
The image extent along the x-axis. xextent = (xmin,xmax)
The default is (0,max(bins)), where bins is the return
value from :func:`~matplotlib.mlab.specgram`
*kwargs*:
Additional kwargs are passed on to imshow which makes the
specgram image
Return value is (*Pxx*, *freqs*, *bins*, *im*):
- *bins* are the time points the spectrogram is calculated over
- *freqs* is an array of frequencies
- *Pxx* is an array of shape `(len(times), len(freqs))` of power
- *im* is a :class:`~matplotlib.image.AxesImage` instance
.. note::
If *x* is real (i.e. non-complex), only the positive
spectrum is shown. If *x* is complex, both positive and
negative parts of the spectrum are shown. This can be
overridden using the *sides* keyword argument.
Also note that while the plot is in dB, the *Pxx* array returned is
linear in power.
**Example:**
.. plot:: mpl_examples/pylab_examples/specgram_demo.py
"""
if not self._hold:
self.cla()
Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend,
window, noverlap, pad_to, sides, scale_by_freq)
Z = 10. * np.log10(Pxx)
Z = np.flipud(Z)
if xextent is None:
xextent = 0, np.amax(bins)
xmin, xmax = xextent
freqs += Fc
extent = xmin, xmax, freqs[0], freqs[-1]
im = self.imshow(Z, cmap, extent=extent, **kwargs)
self.axis('auto')
return Pxx, freqs, bins, im
def spy(self, Z, precision=0, marker=None, markersize=None,
aspect='equal', **kwargs):
"""
Plot the sparsity pattern on a 2-D array.
Call signature::
spy(Z, precision=0, marker=None, markersize=None,
aspect='equal', **kwargs)
``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*.
If *precision* is 0, any non-zero value will be plotted;
else, values of :math:`|Z| > precision` will be plotted.
For :class:`scipy.sparse.spmatrix` instances, there is a
special case: if *precision* is 'present', any value present in
the array will be plotted, even if it is identically zero.
The array will be plotted as it would be printed, with
the first index (row) increasing down and the second
index (column) increasing to the right.
By default aspect is 'equal', so that each array element
occupies a square space; set the aspect kwarg to 'auto'
to allow the plot to fill the plot box, or to any scalar
number to specify the aspect ratio of an array element
directly.
Two plotting styles are available: image or marker. Both
are available for full arrays, but only the marker style
works for :class:`scipy.sparse.spmatrix` instances.
If *marker* and *markersize* are *None*, an image will be
returned and any remaining kwargs are passed to
:func:`~matplotlib.pyplot.imshow`; else, a
:class:`~matplotlib.lines.Line2D` object will be returned with
the value of marker determining the marker type, and any
remaining kwargs passed to the
:meth:`~matplotlib.axes.Axes.plot` method.
If *marker* and *markersize* are *None*, useful kwargs include:
* *cmap*
* *alpha*
.. seealso::
:func:`~matplotlib.pyplot.imshow`
For image options.
For controlling colors, e.g., cyan background and red marks,
use::
cmap = mcolors.ListedColormap(['c','r'])
If *marker* or *markersize* is not *None*, useful kwargs include:
* *marker*
* *markersize*
* *color*
Useful values for *marker* include:
* 's' square (default)
* 'o' circle
* '.' point
* ',' pixel
.. seealso::
:func:`~matplotlib.pyplot.plot`
For plotting options
"""
if marker is None and markersize is None and hasattr(Z, 'tocoo'):
marker = 's'
if marker is None and markersize is None:
Z = np.asarray(Z)
mask = np.absolute(Z) > precision
if 'cmap' not in kwargs:
kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
name='binary')
nr, nc = Z.shape
extent = [-0.5, nc - 0.5, nr - 0.5, -0.5]
ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
extent=extent, origin='upper', **kwargs)
else:
if hasattr(Z, 'tocoo'):
c = Z.tocoo()
if precision == 'present':
y = c.row
x = c.col
else:
nonzero = np.absolute(c.data) > precision
y = c.row[nonzero]
x = c.col[nonzero]
else:
Z = np.asarray(Z)
nonzero = np.absolute(Z) > precision
y, x = np.nonzero(nonzero)
if marker is None:
marker = 's'
if markersize is None:
markersize = 10
marks = mlines.Line2D(x, y, linestyle='None',
marker=marker, markersize=markersize, **kwargs)
self.add_line(marks)
nr, nc = Z.shape
self.set_xlim(xmin=-0.5, xmax=nc - 0.5)
self.set_ylim(ymin=nr - 0.5, ymax=-0.5)
self.set_aspect(aspect)
ret = marks
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return ret
def matshow(self, Z, **kwargs):
"""
Plot a matrix or array as an image.
The matrix will be shown the way it would be printed, with the first
row at the top. Row and column numbering is zero-based.
Parameters
----------
Z : array_like shape (n, m)
The matrix to be displayed.
Returns
-------
image : `~matplotlib.image.AxesImage`
Other parameters
----------------
kwargs : `~matplotlib.axes.Axes.imshow` arguments
Sets `origin` to 'upper', 'interpolation' to 'nearest' and
'aspect' to equal.
See also
--------
imshow : plot an image
Examples
--------
.. plot:: mpl_examples/pylab_examples/matshow.py
"""
Z = np.asanyarray(Z)
nr, nc = Z.shape
kw = {'origin': 'upper',
'interpolation': 'nearest',
'aspect': 'equal'} # (already the imshow default)
kw.update(kwargs)
im = self.imshow(Z, **kw)
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
steps=[1, 2, 5, 10],
integer=True))
return im
def get_default_bbox_extra_artists(self):
return [artist for artist in self.get_children()
if artist.get_visible()]
def get_tightbbox(self, renderer, call_axes_locator=True):
"""
Return the tight bounding box of the axes.
The dimension of the Bbox in canvas coordinate.
If *call_axes_locator* is *False*, it does not call the
_axes_locator attribute, which is necessary to get the correct
bounding box. ``call_axes_locator==False`` can be used if the
caller is only intereted in the relative size of the tightbbox
compared to the axes bbox.
"""
bb = []
if not self.get_visible():
return None
locator = self.get_axes_locator()
if locator and call_axes_locator:
pos = locator(self, renderer)
self.apply_aspect(pos)
else:
self.apply_aspect()
bb.append(self.get_window_extent(renderer))
if self.title.get_visible():
bb.append(self.title.get_window_extent(renderer))
if self._left_title.get_visible():
bb.append(self._left_title.get_window_extent(renderer))
if self._right_title.get_visible():
bb.append(self._right_title.get_window_extent(renderer))
bb_xaxis = self.xaxis.get_tightbbox(renderer)
if bb_xaxis:
bb.append(bb_xaxis)
bb_yaxis = self.yaxis.get_tightbbox(renderer)
if bb_yaxis:
bb.append(bb_yaxis)
_bbox = mtransforms.Bbox.union(
[b for b in bb if b.width != 0 or b.height != 0])
return _bbox
def minorticks_on(self):
'Add autoscaling minor ticks to the axes.'
for ax in (self.xaxis, self.yaxis):
if ax.get_scale() == 'log':
s = ax._scale
ax.set_minor_locator(mticker.LogLocator(s.base, s.subs))
else:
ax.set_minor_locator(mticker.AutoMinorLocator())
def minorticks_off(self):
"""Remove minor ticks from the axes."""
self.xaxis.set_minor_locator(mticker.NullLocator())
self.yaxis.set_minor_locator(mticker.NullLocator())
def tricontour(self, *args, **kwargs):
return mtri.tricontour(self, *args, **kwargs)
tricontour.__doc__ = mtri.TriContourSet.tricontour_doc
def tricontourf(self, *args, **kwargs):
return mtri.tricontourf(self, *args, **kwargs)
tricontourf.__doc__ = mtri.TriContourSet.tricontour_doc
def tripcolor(self, *args, **kwargs):
return mtri.tripcolor(self, *args, **kwargs)
tripcolor.__doc__ = mtri.tripcolor.__doc__
def triplot(self, *args, **kwargs):
mtri.triplot(self, *args, **kwargs)
triplot.__doc__ = mtri.triplot.__doc__
from matplotlib.gridspec import GridSpec, SubplotSpec
class SubplotBase:
"""
Base class for subplots, which are :class:`Axes` instances with
additional methods to facilitate generating and manipulating a set
of :class:`Axes` within a figure.
"""
def __init__(self, fig, *args, **kwargs):
"""
*fig* is a :class:`matplotlib.figure.Figure` instance.
*args* is the tuple (*numRows*, *numCols*, *plotNum*), where
the array of subplots in the figure has dimensions *numRows*,
*numCols*, and where *plotNum* is the number of the subplot
being created. *plotNum* starts at 1 in the upper left
corner and increases to the right.
If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the
decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*.
"""
self.figure = fig
if len(args) == 1:
if isinstance(args[0], SubplotSpec):
self._subplotspec = args[0]
else:
try:
s = str(int(args[0]))
rows, cols, num = map(int, s)
except ValueError:
raise ValueError(
'Single argument to subplot must be a 3-digit '
'integer')
self._subplotspec = GridSpec(rows, cols)[num - 1]
# num - 1 for converting from MATLAB to python indexing
elif len(args) == 3:
rows, cols, num = args
rows = int(rows)
cols = int(cols)
if isinstance(num, tuple) and len(num) == 2:
num = [int(n) for n in num]
self._subplotspec = GridSpec(rows, cols)[num[0] - 1:num[1]]
else:
self._subplotspec = GridSpec(rows, cols)[int(num) - 1]
# num - 1 for converting from MATLAB to python indexing
else:
raise ValueError('Illegal argument(s) to subplot: %s' % (args,))
self.update_params()
# _axes_class is set in the subplot_class_factory
self._axes_class.__init__(self, fig, self.figbox, **kwargs)
def __reduce__(self):
# get the first axes class which does not inherit from a subplotbase
not_subplotbase = lambda c: issubclass(c, Axes) and \
not issubclass(c, SubplotBase)
axes_class = [c for c in self.__class__.mro() if not_subplotbase(c)][0]
r = [_PicklableSubplotClassConstructor(),
(axes_class,),
self.__getstate__()]
return tuple(r)
def get_geometry(self):
"""get the subplot geometry, eg 2,2,3"""
rows, cols, num1, num2 = self.get_subplotspec().get_geometry()
return rows, cols, num1 + 1 # for compatibility
# COVERAGE NOTE: Never used internally or from examples
def change_geometry(self, numrows, numcols, num):
"""change subplot geometry, e.g., from 1,1,1 to 2,2,3"""
self._subplotspec = GridSpec(numrows, numcols)[num - 1]
self.update_params()
self.set_position(self.figbox)
def get_subplotspec(self):
"""get the SubplotSpec instance associated with the subplot"""
return self._subplotspec
def set_subplotspec(self, subplotspec):
"""set the SubplotSpec instance associated with the subplot"""
self._subplotspec = subplotspec
def update_params(self):
"""update the subplot position from fig.subplotpars"""
self.figbox, self.rowNum, self.colNum, self.numRows, self.numCols = \
self.get_subplotspec().get_position(self.figure,
return_all=True)
def is_first_col(self):
return self.colNum == 0
def is_first_row(self):
return self.rowNum == 0
def is_last_row(self):
return self.rowNum == self.numRows - 1
def is_last_col(self):
return self.colNum == self.numCols - 1
# COVERAGE NOTE: Never used internally or from examples
def label_outer(self):
"""
set the visible property on ticklabels so xticklabels are
visible only if the subplot is in the last row and yticklabels
are visible only if the subplot is in the first column
"""
lastrow = self.is_last_row()
firstcol = self.is_first_col()
for label in self.get_xticklabels():
label.set_visible(lastrow)
for label in self.get_yticklabels():
label.set_visible(firstcol)
def _make_twin_axes(self, *kl, **kwargs):
"""
make a twinx axes of self. This is used for twinx and twiny.
"""
from matplotlib.projections import process_projection_requirements
kl = (self.get_subplotspec(),) + kl
projection_class, kwargs, key = process_projection_requirements(
self.figure, *kl, **kwargs)
ax2 = subplot_class_factory(projection_class)(self.figure,
*kl, **kwargs)
self.figure.add_subplot(ax2)
return ax2
_subplot_classes = {}
def subplot_class_factory(axes_class=None):
# This makes a new class that inherits from SubplotBase and the
# given axes_class (which is assumed to be a subclass of Axes).
# This is perhaps a little bit roundabout to make a new class on
# the fly like this, but it means that a new Subplot class does
# not have to be created for every type of Axes.
if axes_class is None:
axes_class = Axes
new_class = _subplot_classes.get(axes_class)
if new_class is None:
new_class = type("%sSubplot" % (axes_class.__name__),
(SubplotBase, axes_class),
{'_axes_class': axes_class})
_subplot_classes[axes_class] = new_class
return new_class
# This is provided for backward compatibility
Subplot = subplot_class_factory()
class _PicklableSubplotClassConstructor(object):
"""
This stub class exists to return the appropriate subplot
class when __call__-ed with an axes class. This is purely to
allow Pickling of Axes and Subplots.
"""
def __call__(self, axes_class):
# create a dummy object instance
subplot_instance = _PicklableSubplotClassConstructor()
subplot_class = subplot_class_factory(axes_class)
# update the class to the desired subplot class
subplot_instance.__class__ = subplot_class
return subplot_instance
docstring.interpd.update(Axes=martist.kwdoc(Axes))
docstring.interpd.update(Subplot=martist.kwdoc(Axes))
"""
# this is some discarded code I was using to find the minimum positive
# data point for some log scaling fixes. I realized there was a
# cleaner way to do it, but am keeping this around as an example for
# how to get the data out of the axes. Might want to make something
# like this a method one day, or better yet make get_verts an Artist
# method
minx, maxx = self.get_xlim()
if minx<=0 or maxx<=0:
# find the min pos value in the data
xs = []
for line in self.lines:
xs.extend(line.get_xdata(orig=False))
for patch in self.patches:
xs.extend([x for x,y in patch.get_verts()])
for collection in self.collections:
xs.extend([x for x,y in collection.get_verts()])
posx = [x for x in xs if x>0]
if len(posx):
minx = min(posx)
maxx = max(posx)
# warning, probably breaks inverted axis
self.set_xlim((0.1*minx, maxx))
"""
|