This file is indexed.

/usr/share/pyshared/matplotlib/contour.py is in python-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
"""
These are  classes to support contour plotting and
labelling for the axes class
"""
from __future__ import division, print_function
import warnings
import matplotlib as mpl
import numpy as np
from numpy import ma
import matplotlib._cntr as _cntr
import matplotlib.path as mpath
import matplotlib.ticker as ticker
import matplotlib.cm as cm
import matplotlib.colors as colors
import matplotlib.collections as mcoll
import matplotlib.font_manager as font_manager
import matplotlib.text as text
import matplotlib.cbook as cbook
import matplotlib.mlab as mlab
import matplotlib.mathtext as mathtext
import matplotlib.patches as mpatches
import matplotlib.texmanager as texmanager
import matplotlib.transforms as mtrans

# Import needed for adding manual selection capability to clabel
from matplotlib.blocking_input import BlockingContourLabeler

# We can't use a single line collection for contour because a line
# collection can have only a single line style, and we want to be able to have
# dashed negative contours, for example, and solid positive contours.
# We could use a single polygon collection for filled contours, but it
# seems better to keep line and filled contours similar, with one collection
# per level.


class ClabelText(text.Text):
    """
    Unlike the ordinary text, the get_rotation returns an updated
    angle in the pixel coordinate assuming that the input rotation is
    an angle in data coordinate (or whatever transform set).
    """
    def get_rotation(self):
        angle = text.Text.get_rotation(self)
        trans = self.get_transform()
        x, y = self.get_position()
        new_angles = trans.transform_angles(np.array([angle]),
                                            np.array([[x, y]]))
        return new_angles[0]


class ContourLabeler:
    """Mixin to provide labelling capability to ContourSet"""

    def clabel(self, *args, **kwargs):
        """
        Label a contour plot.

        Call signature::

          clabel(cs, **kwargs)

        Adds labels to line contours in *cs*, where *cs* is a
        :class:`~matplotlib.contour.ContourSet` object returned by
        contour.

        ::

          clabel(cs, v, **kwargs)

        only labels contours listed in *v*.

        Optional keyword arguments:

          *fontsize*:
            size in points or relative size eg 'smaller', 'x-large'

          *colors*:
            - if *None*, the color of each label matches the color of
              the corresponding contour

            - if one string color, e.g., *colors* = 'r' or *colors* =
              'red', all labels will be plotted in this color

            - if a tuple of matplotlib color args (string, float, rgb, etc),
              different labels will be plotted in different colors in the order
              specified

          *inline*:
            controls whether the underlying contour is removed or
            not. Default is *True*.

          *inline_spacing*:
            space in pixels to leave on each side of label when
            placing inline.  Defaults to 5.  This spacing will be
            exact for labels at locations where the contour is
            straight, less so for labels on curved contours.

          *fmt*:
            a format string for the label. Default is '%1.3f'
            Alternatively, this can be a dictionary matching contour
            levels with arbitrary strings to use for each contour level
            (i.e., fmt[level]=string), or it can be any callable, such
            as a :class:`~matplotlib.ticker.Formatter` instance, that
            returns a string when called with a numeric contour level.

          *manual*:
            if *True*, contour labels will be placed manually using
            mouse clicks.  Click the first button near a contour to
            add a label, click the second button (or potentially both
            mouse buttons at once) to finish adding labels.  The third
            button can be used to remove the last label added, but
            only if labels are not inline.  Alternatively, the keyboard
            can be used to select label locations (enter to end label
            placement, delete or backspace act like the third mouse button,
            and any other key will select a label location).

            *manual* can be an iterable object of x,y tuples. Contour labels
            will be created as if mouse is clicked at each x,y positions.

          *rightside_up*:
            if *True* (default), label rotations will always be plus
            or minus 90 degrees from level.

          *use_clabeltext*:
            if *True* (default is False), ClabelText class (instead of
            matplotlib.Text) is used to create labels. ClabelText
            recalculates rotation angles of texts during the drawing time,
            therefore this can be used if aspect of the axes changes.

        .. plot:: mpl_examples/pylab_examples/contour_demo.py
        """

        """
        NOTES on how this all works:

        clabel basically takes the input arguments and uses them to
        add a list of "label specific" attributes to the ContourSet
        object.  These attributes are all of the form label* and names
        should be fairly self explanatory.

        Once these attributes are set, clabel passes control to the
        labels method (case of automatic label placement) or
        BlockingContourLabeler (case of manual label placement).
        """

        fontsize = kwargs.get('fontsize', None)
        inline = kwargs.get('inline', 1)
        inline_spacing = kwargs.get('inline_spacing', 5)
        self.labelFmt = kwargs.get('fmt', '%1.3f')
        _colors = kwargs.get('colors', None)

        self._use_clabeltext = kwargs.get('use_clabeltext', False)

        # Detect if manual selection is desired and remove from argument list
        self.labelManual = kwargs.get('manual', False)

        self.rightside_up = kwargs.get('rightside_up', True)
        if len(args) == 0:
            levels = self.levels
            indices = range(len(self.cvalues))
        elif len(args) == 1:
            levlabs = list(args[0])
            indices, levels = [], []
            for i, lev in enumerate(self.levels):
                if lev in levlabs:
                    indices.append(i)
                    levels.append(lev)
            if len(levels) < len(levlabs):
                msg = "Specified levels " + str(levlabs)
                msg += "\n don't match available levels "
                msg += str(self.levels)
                raise ValueError(msg)
        else:
            raise TypeError("Illegal arguments to clabel, see help(clabel)")
        self.labelLevelList = levels
        self.labelIndiceList = indices

        self.labelFontProps = font_manager.FontProperties()
        if fontsize is None:
            font_size = int(self.labelFontProps.get_size_in_points())
        else:
            if type(fontsize) not in [int, float, str]:
                raise TypeError("Font size must be an integer number.")
                # Can't it be floating point, as indicated in line above?
            else:
                if type(fontsize) == str:
                    font_size = int(self.labelFontProps.get_size_in_points())
                else:
                    self.labelFontProps.set_size(fontsize)
                    font_size = fontsize
        self.labelFontSizeList = [font_size] * len(levels)

        if _colors is None:
            self.labelMappable = self
            self.labelCValueList = np.take(self.cvalues, self.labelIndiceList)
        else:
            cmap = colors.ListedColormap(_colors, N=len(self.labelLevelList))
            self.labelCValueList = range(len(self.labelLevelList))
            self.labelMappable = cm.ScalarMappable(cmap=cmap,
                                                   norm=colors.NoNorm())

        #self.labelTexts = []   # Initialized in ContourSet.__init__
        #self.labelCValues = [] # same
        self.labelXYs = []

        if cbook.iterable(self.labelManual):
            for x, y in self.labelManual:
                self.add_label_near(x, y, inline,
                                    inline_spacing)

        elif self.labelManual:
            print('Select label locations manually using first mouse button.')
            print('End manual selection with second mouse button.')
            if not inline:
                print('Remove last label by clicking third mouse button.')

            blocking_contour_labeler = BlockingContourLabeler(self)
            blocking_contour_labeler(inline, inline_spacing)
        else:
            self.labels(inline, inline_spacing)

        # Hold on to some old attribute names.  These are deprecated and will
        # be removed in the near future (sometime after 2008-08-01), but
        # keeping for now for backwards compatibility
        self.cl = self.labelTexts
        self.cl_xy = self.labelXYs
        self.cl_cvalues = self.labelCValues

        self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts)
        return self.labelTextsList

    def print_label(self, linecontour, labelwidth):
        "Return *False* if contours are too short for a label."
        lcsize = len(linecontour)
        if lcsize > 10 * labelwidth:
            return True

        xmax = np.amax(linecontour[:, 0])
        xmin = np.amin(linecontour[:, 0])
        ymax = np.amax(linecontour[:, 1])
        ymin = np.amin(linecontour[:, 1])

        lw = labelwidth
        if (xmax - xmin) > 1.2 * lw or (ymax - ymin) > 1.2 * lw:
            return True
        else:
            return False

    def too_close(self, x, y, lw):
        "Return *True* if a label is already near this location."
        for loc in self.labelXYs:
            d = np.sqrt((x - loc[0]) ** 2 + (y - loc[1]) ** 2)
            if d < 1.2 * lw:
                return True
        return False

    def get_label_coords(self, distances, XX, YY, ysize, lw):
        """
        Return x, y, and the index of a label location.

        Labels are plotted at a location with the smallest
        deviation of the contour from a straight line
        unless there is another label nearby, in which case
        the next best place on the contour is picked up.
        If all such candidates are rejected, the beginning
        of the contour is chosen.
        """
        hysize = int(ysize / 2)
        adist = np.argsort(distances)

        for ind in adist:
            x, y = XX[ind][hysize], YY[ind][hysize]
            if self.too_close(x, y, lw):
                continue
            return x, y, ind

        ind = adist[0]
        x, y = XX[ind][hysize], YY[ind][hysize]
        return x, y, ind

    def get_label_width(self, lev, fmt, fsize):
        """
        Return the width of the label in points.
        """
        if not cbook.is_string_like(lev):
            lev = self.get_text(lev, fmt)

        lev, ismath = text.Text.is_math_text(lev)
        if ismath == 'TeX':
            if not hasattr(self, '_TeX_manager'):
                self._TeX_manager = texmanager.TexManager()
            lw, _, _ = self._TeX_manager.get_text_width_height_descent(lev,
                                                                       fsize)
        elif ismath:
            if not hasattr(self, '_mathtext_parser'):
                self._mathtext_parser = mathtext.MathTextParser('bitmap')
            img, _ = self._mathtext_parser.parse(lev, dpi=72,
                                                 prop=self.labelFontProps)
            lw = img.get_width()  # at dpi=72, the units are PostScript points
        else:
            # width is much less than "font size"
            lw = (len(lev)) * fsize * 0.6

        return lw

    def get_real_label_width(self, lev, fmt, fsize):
        """
        This computes actual onscreen label width.
        This uses some black magic to determine onscreen extent of non-drawn
        label.  This magic may not be very robust.

        This method is not being used, and may be modified or removed.
        """
        # Find middle of axes
        xx = np.mean(np.asarray(self.ax.axis()).reshape(2, 2), axis=1)

        # Temporarily create text object
        t = text.Text(xx[0], xx[1])
        self.set_label_props(t, self.get_text(lev, fmt), 'k')

        # Some black magic to get onscreen extent
        # NOTE: This will only work for already drawn figures, as the canvas
        # does not have a renderer otherwise.  This is the reason this function
        # can't be integrated into the rest of the code.
        bbox = t.get_window_extent(renderer=self.ax.figure.canvas.renderer)

        # difference in pixel extent of image
        lw = np.diff(bbox.corners()[0::2, 0])[0]

        return lw

    def set_label_props(self, label, text, color):
        "set the label properties - color, fontsize, text"
        label.set_text(text)
        label.set_color(color)
        label.set_fontproperties(self.labelFontProps)
        label.set_clip_box(self.ax.bbox)

    def get_text(self, lev, fmt):
        "get the text of the label"
        if cbook.is_string_like(lev):
            return lev
        else:
            if isinstance(fmt, dict):
                return fmt[lev]
            elif callable(fmt):
                return fmt(lev)
            else:
                return fmt % lev

    def locate_label(self, linecontour, labelwidth):
        """
        Find a good place to plot a label (relatively flat
        part of the contour).
        """

        nsize = len(linecontour)
        if labelwidth > 1:
            xsize = int(np.ceil(nsize / labelwidth))
        else:
            xsize = 1
        if xsize == 1:
            ysize = nsize
        else:
            ysize = int(labelwidth)

        XX = np.resize(linecontour[:, 0], (xsize, ysize))
        YY = np.resize(linecontour[:, 1], (xsize, ysize))
        #I might have fouled up the following:
        yfirst = YY[:, 0].reshape(xsize, 1)
        ylast = YY[:, -1].reshape(xsize, 1)
        xfirst = XX[:, 0].reshape(xsize, 1)
        xlast = XX[:, -1].reshape(xsize, 1)
        s = (yfirst - YY) * (xlast - xfirst) - (xfirst - XX) * (ylast - yfirst)
        L = np.sqrt((xlast - xfirst) ** 2 + (ylast - yfirst) ** 2).ravel()
        dist = np.add.reduce(([(abs(s)[i] / L[i]) for i in range(xsize)]), -1)
        x, y, ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth)
        #print 'ind, x, y', ind, x, y

        # There must be a more efficient way...
        lc = [tuple(l) for l in linecontour]
        dind = lc.index((x, y))
        #print 'dind', dind
        #dind = list(linecontour).index((x,y))

        return x, y, dind

    def calc_label_rot_and_inline(self, slc, ind, lw, lc=None, spacing=5):
        """
        This function calculates the appropriate label rotation given
        the linecontour coordinates in screen units, the index of the
        label location and the label width.

        It will also break contour and calculate inlining if *lc* is
        not empty (lc defaults to the empty list if None).  *spacing*
        is the space around the label in pixels to leave empty.

        Do both of these tasks at once to avoid calling mlab.path_length
        multiple times, which is relatively costly.

        The method used here involves calculating the path length
        along the contour in pixel coordinates and then looking
        approximately label width / 2 away from central point to
        determine rotation and then to break contour if desired.
        """

        if lc is None:
            lc = []
        # Half the label width
        hlw = lw / 2.0

        # Check if closed and, if so, rotate contour so label is at edge
        closed = mlab.is_closed_polygon(slc)
        if closed:
            slc = np.r_[slc[ind:-1], slc[:ind + 1]]

            if len(lc):  # Rotate lc also if not empty
                lc = np.r_[lc[ind:-1], lc[:ind + 1]]

            ind = 0

        # Path length in pixel space
        pl = mlab.path_length(slc)
        pl = pl - pl[ind]

        # Use linear interpolation to get points around label
        xi = np.array([-hlw, hlw])
        if closed:  # Look at end also for closed contours
            dp = np.array([pl[-1], 0])
        else:
            dp = np.zeros_like(xi)

        ll = mlab.less_simple_linear_interpolation(pl, slc, dp + xi,
                                                   extrap=True)

        # get vector in pixel space coordinates from one point to other
        dd = np.diff(ll, axis=0).ravel()

        # Get angle of vector - must be calculated in pixel space for
        # text rotation to work correctly
        if np.all(dd == 0):  # Must deal with case of zero length label
            rotation = 0.0
        else:
            rotation = np.arctan2(dd[1], dd[0]) * 180.0 / np.pi

        if self.rightside_up:
            # Fix angle so text is never upside-down
            if rotation > 90:
                rotation = rotation - 180.0
            if rotation < -90:
                rotation = 180.0 + rotation

        # Break contour if desired
        nlc = []
        if len(lc):
            # Expand range by spacing
            xi = dp + xi + np.array([-spacing, spacing])

            # Get indices near points of interest
            I = mlab.less_simple_linear_interpolation(
                pl, np.arange(len(pl)), xi, extrap=False)

            # If those indices aren't beyond contour edge, find x,y
            if (not np.isnan(I[0])) and int(I[0]) != I[0]:
                xy1 = mlab.less_simple_linear_interpolation(
                    pl, lc, [xi[0]])

            if (not np.isnan(I[1])) and int(I[1]) != I[1]:
                xy2 = mlab.less_simple_linear_interpolation(
                    pl, lc, [xi[1]])

            # Make integer
            I = [np.floor(I[0]), np.ceil(I[1])]

            # Actually break contours
            if closed:
                # This will remove contour if shorter than label
                if np.all(~np.isnan(I)):
                    nlc.append(np.r_[xy2, lc[I[1]:I[0] + 1], xy1])
            else:
                # These will remove pieces of contour if they have length zero
                if not np.isnan(I[0]):
                    nlc.append(np.r_[lc[:I[0] + 1], xy1])
                if not np.isnan(I[1]):
                    nlc.append(np.r_[xy2, lc[I[1]:]])

            # The current implementation removes contours completely
            # covered by labels.  Uncomment line below to keep
            # original contour if this is the preferred behavior.
            #if not len(nlc): nlc = [ lc ]

        return rotation, nlc

    def _get_label_text(self, x, y, rotation):
        dx, dy = self.ax.transData.inverted().transform_point((x, y))
        t = text.Text(dx, dy, rotation=rotation,
                      horizontalalignment='center',
                      verticalalignment='center')
        return t

    def _get_label_clabeltext(self, x, y, rotation):
        # x, y, rotation is given in pixel coordinate. Convert them to
        # the data coordinate and create a label using ClabelText
        # class. This way, the roation of the clabel is along the
        # contour line always.
        transDataInv = self.ax.transData.inverted()
        dx, dy = transDataInv.transform_point((x, y))
        drotation = transDataInv.transform_angles(np.array([rotation]),
                                                  np.array([[x, y]]))
        t = ClabelText(dx, dy, rotation=drotation[0],
                       horizontalalignment='center',
                       verticalalignment='center')

        return t

    def _add_label(self, t, x, y, lev, cvalue):
        color = self.labelMappable.to_rgba(cvalue, alpha=self.alpha)

        _text = self.get_text(lev, self.labelFmt)
        self.set_label_props(t, _text, color)
        self.labelTexts.append(t)
        self.labelCValues.append(cvalue)
        self.labelXYs.append((x, y))

        # Add label to plot here - useful for manual mode label selection
        self.ax.add_artist(t)

    def add_label(self, x, y, rotation, lev, cvalue):
        """
        Add contour label using :class:`~matplotlib.text.Text` class.
        """

        t = self._get_label_text(x, y, rotation)
        self._add_label(t, x, y, lev, cvalue)

    def add_label_clabeltext(self, x, y, rotation, lev, cvalue):
        """
        Add contour label using :class:`ClabelText` class.
        """
        # x, y, rotation is given in pixel coordinate. Convert them to
        # the data coordinate and create a label using ClabelText
        # class. This way, the roation of the clabel is along the
        # contour line always.

        t = self._get_label_clabeltext(x, y, rotation)
        self._add_label(t, x, y, lev, cvalue)

    def add_label_near(self, x, y, inline=True, inline_spacing=5,
                       transform=None):
        """
        Add a label near the point (x, y) of the given transform.
        If transform is None, data transform is used. If transform is
        False, IdentityTransform is used.

        *inline*:
          controls whether the underlying contour is removed or
          not. Default is *True*.

        *inline_spacing*:
          space in pixels to leave on each side of label when
          placing inline.  Defaults to 5.  This spacing will be
          exact for labels at locations where the contour is
          straight, less so for labels on curved contours.
        """

        if transform is None:
            transform = self.ax.transData

        if transform:
            x, y = transform.transform_point((x, y))

        conmin, segmin, imin, xmin, ymin = self.find_nearest_contour(
            x, y, self.labelIndiceList)[:5]

        # The calc_label_rot_and_inline routine requires that (xmin,ymin)
        # be a vertex in the path. So, if it isn't, add a vertex here
        paths = self.collections[conmin].get_paths()
        lc = paths[segmin].vertices
        if transform:
            xcmin = transform.inverted().transform([xmin, ymin])
        else:
            xcmin = np.array([xmin, ymin])
        if not np.allclose(xcmin, lc[imin]):
            lc = np.r_[lc[:imin], np.array(xcmin)[None, :], lc[imin:]]
            paths[segmin] = mpath.Path(lc)

        # Get index of nearest level in subset of levels used for labeling
        lmin = self.labelIndiceList.index(conmin)

        # Coordinates of contour
        paths = self.collections[conmin].get_paths()
        lc = paths[segmin].vertices

        # In pixel/screen space
        slc = self.ax.transData.transform(lc)

        # Get label width for rotating labels and breaking contours
        lw = self.get_label_width(self.labelLevelList[lmin],
                                  self.labelFmt, self.labelFontSizeList[lmin])

        # Figure out label rotation.
        if inline:
            lcarg = lc
        else:
            lcarg = None
        rotation, nlc = self.calc_label_rot_and_inline(
            slc, imin, lw, lcarg,
            inline_spacing)

        self.add_label(xmin, ymin, rotation, self.labelLevelList[lmin],
                       self.labelCValueList[lmin])

        if inline:
            # Remove old, not looping over paths so we can do this up front
            paths.pop(segmin)

            # Add paths if not empty or single point
            for n in nlc:
                if len(n) > 1:
                    paths.append(mpath.Path(n))

    def pop_label(self, index=-1):
        """Defaults to removing last label, but any index can be supplied"""
        self.labelCValues.pop(index)
        t = self.labelTexts.pop(index)
        t.remove()

    def labels(self, inline, inline_spacing):

        if self._use_clabeltext:
            add_label = self.add_label_clabeltext
        else:
            add_label = self.add_label

        for icon, lev, fsize, cvalue in zip(
                self.labelIndiceList, self.labelLevelList,
                self.labelFontSizeList, self.labelCValueList):

            con = self.collections[icon]
            trans = con.get_transform()
            lw = self.get_label_width(lev, self.labelFmt, fsize)
            lw *= self.ax.figure.dpi / 72.0  # scale to screen coordinates
            additions = []
            paths = con.get_paths()
            for segNum, linepath in enumerate(paths):
                lc = linepath.vertices  # Line contour
                slc0 = trans.transform(lc)  # Line contour in screen coords

                # For closed polygons, add extra point to avoid division by
                # zero in print_label and locate_label.  Other than these
                # functions, this is not necessary and should probably be
                # eventually removed.
                if mlab.is_closed_polygon(lc):
                    slc = np.r_[slc0, slc0[1:2, :]]
                else:
                    slc = slc0

                # Check if long enough for a label
                if self.print_label(slc, lw):
                    x, y, ind = self.locate_label(slc, lw)

                    if inline:
                        lcarg = lc
                    else:
                        lcarg = None
                    rotation, new = self.calc_label_rot_and_inline(
                        slc0, ind, lw, lcarg,
                        inline_spacing)

                    # Actually add the label
                    add_label(x, y, rotation, lev, cvalue)

                    # If inline, add new contours
                    if inline:
                        for n in new:
                            # Add path if not empty or single point
                            if len(n) > 1:
                                additions.append(mpath.Path(n))
                else:  # If not adding label, keep old path
                    additions.append(linepath)

            # After looping over all segments on a contour, remove old
            # paths and add new ones if inlining
            if inline:
                del paths[:]
                paths.extend(additions)


def _find_closest_point_on_leg(p1, p2, p0):
    """find closest point to p0 on line segment connecting p1 and p2"""

    # handle degenerate case
    if np.all(p2 == p1):
        d = np.sum((p0 - p1)**2)
        return d, p1

    d21 = p2 - p1
    d01 = p0 - p1

    # project on to line segment to find closest point
    proj = np.dot(d01, d21) / np.dot(d21, d21)
    if proj < 0:
        proj = 0
    if proj > 1:
        proj = 1
    pc = p1 + proj * d21

    # find squared distance
    d = np.sum((pc-p0)**2)

    return d, pc


def _find_closest_point_on_path(lc, point):
    """
    lc: coordinates of vertices
    point: coordinates of test point
    """

    # find index of closest vertex for this segment
    ds = np.sum((lc - point[None, :])**2, 1)
    imin = np.argmin(ds)

    dmin = np.inf
    xcmin = None
    legmin = (None, None)

    closed = mlab.is_closed_polygon(lc)

    # build list of legs before and after this vertex
    legs = []
    if imin > 0 or closed:
        legs.append(((imin-1) % len(lc), imin))
    if imin < len(lc) - 1 or closed:
        legs.append((imin, (imin+1) % len(lc)))

    for leg in legs:
        d, xc = _find_closest_point_on_leg(lc[leg[0]], lc[leg[1]], point)
        if d < dmin:
            dmin = d
            xcmin = xc
            legmin = leg

    return (dmin, xcmin, legmin)


class ContourSet(cm.ScalarMappable, ContourLabeler):
    """
    Store a set of contour lines or filled regions.

    User-callable method: clabel

    Useful attributes:
      ax:
        The axes object in which the contours are drawn

      collections:
        a silent_list of LineCollections or PolyCollections

      levels:
        contour levels

      layers:
        same as levels for line contours; half-way between
        levels for filled contours.  See :meth:`_process_colors`.
    """
    def __init__(self, ax, *args, **kwargs):
        """
        Draw contour lines or filled regions, depending on
        whether keyword arg 'filled' is *False* (default) or *True*.

        The first three arguments must be:

          *ax*: axes object.

          *levels*: [level0, level1, ..., leveln]
            A list of floating point numbers indicating the contour
            levels.

          *allsegs*: [level0segs, level1segs, ...]
            List of all the polygon segments for all the *levels*.
            For contour lines ``len(allsegs) == len(levels)``, and for
            filled contour regions ``len(allsegs) = len(levels)-1``.

            level0segs = [polygon0, polygon1, ...]

            polygon0 = array_like [[x0,y0], [x1,y1], ...]

          *allkinds*: *None* or [level0kinds, level1kinds, ...]
            Optional list of all the polygon vertex kinds (code types), as
            described and used in Path.   This is used to allow multiply-
            connected paths such as holes within filled polygons.
            If not *None*, len(allkinds) == len(allsegs).

            level0kinds = [polygon0kinds, ...]

            polygon0kinds = [vertexcode0, vertexcode1, ...]

            If *allkinds* is not *None*, usually all polygons for a particular
            contour level are grouped together so that

            level0segs = [polygon0] and level0kinds = [polygon0kinds].

        Keyword arguments are as described in
        :class:`~matplotlib.contour.QuadContourSet` object.

        **Examples:**

        .. plot:: mpl_examples/misc/contour_manual.py
        """
        self.ax = ax
        self.levels = kwargs.get('levels', None)
        self.filled = kwargs.get('filled', False)
        self.linewidths = kwargs.get('linewidths', None)
        self.linestyles = kwargs.get('linestyles', None)

        self.hatches = kwargs.get('hatches', [None])

        self.alpha = kwargs.get('alpha', None)
        self.origin = kwargs.get('origin', None)
        self.extent = kwargs.get('extent', None)
        cmap = kwargs.get('cmap', None)
        self.colors = kwargs.get('colors', None)
        norm = kwargs.get('norm', None)
        vmin = kwargs.get('vmin', None)
        vmax = kwargs.get('vmax', None)
        self.extend = kwargs.get('extend', 'neither')
        self.antialiased = kwargs.get('antialiased', None)
        if self.antialiased is None and self.filled:
            self.antialiased = False  # eliminate artifacts; we are not
                                      # stroking the boundaries.
            # The default for line contours will be taken from
            # the LineCollection default, which uses the
            # rcParams['lines.antialiased']

        self.nchunk = kwargs.get('nchunk', 0)
        self.locator = kwargs.get('locator', None)
        if (isinstance(norm, colors.LogNorm)
                or isinstance(self.locator, ticker.LogLocator)):
            self.logscale = True
            if norm is None:
                norm = colors.LogNorm()
            if self.extend is not 'neither':
                raise ValueError('extend kwarg does not work yet with log '
                                 ' scale')
        else:
            self.logscale = False

        if self.origin is not None:
            assert(self.origin in ['lower', 'upper', 'image'])
        if self.extent is not None:
            assert(len(self.extent) == 4)
        if self.colors is not None and cmap is not None:
            raise ValueError('Either colors or cmap must be None')
        if self.origin == 'image':
            self.origin = mpl.rcParams['image.origin']

        self._transform = kwargs.get('transform', None)

        self._process_args(*args, **kwargs)
        self._process_levels()

        if self.colors is not None:
            ncolors = len(self.levels)
            if self.filled:
                ncolors -= 1
            i0 = 0

            # Handle the case where colors are given for the extended
            # parts of the contour.
            extend_min = self.extend in ['min', 'both']
            extend_max = self.extend in ['max', 'both']
            use_set_under_over = False
            # if we are extending the lower end, and we've been given enough
            # colors then skip the first color in the resulting cmap. For the
            # extend_max case we don't need to worry about passing more colors
            # than ncolors as ListedColormap will clip.
            total_levels = ncolors + int(extend_min) + int(extend_max)
            if (len(self.colors) == total_levels and
                    any([extend_min, extend_max])):
                use_set_under_over = True
                if extend_min:
                    i0 = 1

            cmap = colors.ListedColormap(self.colors[i0:None], N=ncolors)

            if use_set_under_over:
                if extend_min:
                    cmap.set_under(self.colors[0])
                if extend_max:
                    cmap.set_over(self.colors[-1])

        if self.filled:
            self.collections = cbook.silent_list('mcoll.PathCollection')
        else:
            self.collections = cbook.silent_list('mcoll.LineCollection')
        # label lists must be initialized here
        self.labelTexts = []
        self.labelCValues = []

        kw = {'cmap': cmap}
        if norm is not None:
            kw['norm'] = norm
        # sets self.cmap, norm if needed;
        cm.ScalarMappable.__init__(self, **kw)
        if vmin is not None:
            self.norm.vmin = vmin
        if vmax is not None:
            self.norm.vmax = vmax
        self._process_colors()

        self.allsegs, self.allkinds = self._get_allsegs_and_allkinds()

        if self.filled:
            if self.linewidths is not None:
                warnings.warn('linewidths is ignored by contourf')

            # Lower and upper contour levels.
            lowers, uppers = self._get_lowers_and_uppers()

            # Ensure allkinds can be zipped below.
            if self.allkinds is None:
                self.allkinds = [None] * len(self.allsegs)

            for level, level_upper, segs, kinds in \
                    zip(lowers, uppers, self.allsegs, self.allkinds):
                paths = self._make_paths(segs, kinds)
                # Default zorder taken from Collection
                zorder = kwargs.get('zorder', 1)
                col = mcoll.PathCollection(
                    paths,
                    antialiaseds=(self.antialiased,),
                    edgecolors='none',
                    alpha=self.alpha,
                    transform=self.get_transform(),
                    zorder=zorder)
                self.ax.add_collection(col)
                self.collections.append(col)
        else:
            tlinewidths = self._process_linewidths()
            self.tlinewidths = tlinewidths
            tlinestyles = self._process_linestyles()
            aa = self.antialiased
            if aa is not None:
                aa = (self.antialiased,)
            for level, width, lstyle, segs in \
                    zip(self.levels, tlinewidths, tlinestyles, self.allsegs):
                # Default zorder taken from LineCollection
                zorder = kwargs.get('zorder', 2)
                col = mcoll.LineCollection(
                    segs,
                    antialiaseds=aa,
                    linewidths=width,
                    linestyle=[lstyle],
                    alpha=self.alpha,
                    transform=self.get_transform(),
                    zorder=zorder)
                col.set_label('_nolegend_')
                self.ax.add_collection(col, False)
                self.collections.append(col)
        self.changed()  # set the colors

    def get_transform(self):
        """
        Return the :class:`~matplotlib.transforms.Transform`
        instance used by this ContourSet.
        """
        if self._transform is None:
            self._transform = self.ax.transData
        elif (not isinstance(self._transform, mtrans.Transform)
              and hasattr(self._transform, '_as_mpl_transform')):
            self._transform = self._transform._as_mpl_transform(self.ax)
        return self._transform

    def __getstate__(self):
        state = self.__dict__.copy()
        # the C object Cntr cannot currently be pickled. This isn't a big issue
        # as it is not actually used once the contour has been calculated
        state['Cntr'] = None
        return state

    def legend_elements(self, variable_name='x', str_format=str):
        """
        Return a list of artist and labels suitable for passing through
        to :func:`plt.legend` which represent this ContourSet.

        Args:

            *variable_name*: the string used inside the inequality used
              on the labels

            *str_format*: function used to format the numbers in the labels
        """
        artists = []
        labels = []

        if self.filled:
            lowers, uppers = self._get_lowers_and_uppers()
            n_levels = len(self.collections)

            for i, (collection, lower, upper) in enumerate(
                    zip(self.collections, lowers, uppers)):
                patch = mpatches.Rectangle(
                    (0, 0), 1, 1,
                    facecolor=collection.get_facecolor()[0],
                    hatch=collection.get_hatch(),
                    alpha=collection.get_alpha())
                artists.append(patch)

                lower = str_format(lower)
                upper = str_format(upper)

                if i == 0 and self.extend in ('min', 'both'):
                    labels.append(r'$%s \leq %s$' % (variable_name,
                                                     lower))
                elif i == n_levels - 1 and self.extend in ('max', 'both'):
                    labels.append(r'$%s > %s$' % (variable_name,
                                                  upper))
                else:
                    labels.append(r'$%s < %s \leq %s$' % (lower,
                                                          variable_name,
                                                          upper))
        else:
            for collection, level in zip(self.collections, self.levels):

                patch = mcoll.LineCollection(None)
                patch.update_from(collection)

                artists.append(patch)
                # format the level for insertion into the labels
                level = str_format(level)
                labels.append(r'$%s = %s$' % (variable_name, level))

        return artists, labels

    def _process_args(self, *args, **kwargs):
        """
        Process *args* and *kwargs*; override in derived classes.

        Must set self.levels, self.zmin and self.zmax, and update axes
        limits.
        """
        self.levels = args[0]
        self.allsegs = args[1]
        self.allkinds = len(args) > 2 and args[2] or None
        self.zmax = np.amax(self.levels)
        self.zmin = np.amin(self.levels)
        self._auto = False

        # Check lengths of levels and allsegs.
        if self.filled:
            if len(self.allsegs) != len(self.levels) - 1:
                raise ValueError('must be one less number of segments as '
                                 'levels')
        else:
            if len(self.allsegs) != len(self.levels):
                raise ValueError('must be same number of segments as levels')

        # Check length of allkinds.
        if (self.allkinds is not None and
                len(self.allkinds) != len(self.allsegs)):
            raise ValueError('allkinds has different length to allsegs')

        # Determine x,y bounds and update axes data limits.
        havelimits = False
        for segs in self.allsegs:
            for seg in segs:
                seg = np.asarray(seg)
                if havelimits:
                    min = np.minimum(min, seg.min(axis=0))
                    max = np.maximum(max, seg.max(axis=0))
                else:
                    min = seg.min(axis=0)
                    max = seg.max(axis=0)
                    havelimits = True

        if havelimits:
            self.ax.update_datalim([min, max])
            self.ax.autoscale_view(tight=True)

    def _get_allsegs_and_allkinds(self):
        """
        Override in derived classes to create and return allsegs and allkinds.
        allkinds can be None.
        """
        return self.allsegs, self.allkinds

    def _get_lowers_and_uppers(self):
        """
        Return (lowers,uppers) for filled contours.
        """
        lowers = self._levels[:-1]
        if self.zmin == lowers[0]:
            # Include minimum values in lowest interval
            lowers = lowers.copy()  # so we don't change self._levels
            if self.logscale:
                lowers[0] = 0.99 * self.zmin
            else:
                lowers[0] -= 1
        uppers = self._levels[1:]
        return (lowers, uppers)

    def _make_paths(self, segs, kinds):
        if kinds is not None:
            return [mpath.Path(seg, codes=kind)
                    for seg, kind in zip(segs, kinds)]
        else:
            return [mpath.Path(seg) for seg in segs]

    def changed(self):
        tcolors = [(tuple(rgba),)
                   for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)]
        self.tcolors = tcolors
        hatches = self.hatches * len(tcolors)
        for color, hatch, collection in zip(tcolors, hatches,
                                            self.collections):
            if self.filled:
                collection.set_facecolor(color)
                # update the collection's hatch (may be None)
                collection.set_hatch(hatch)
            else:
                collection.set_color(color)
        for label, cv in zip(self.labelTexts, self.labelCValues):
            label.set_alpha(self.alpha)
            label.set_color(self.labelMappable.to_rgba(cv))
        # add label colors
        cm.ScalarMappable.changed(self)

    def _autolev(self, z, N):
        """
        Select contour levels to span the data.

        We need two more levels for filled contours than for
        line contours, because for the latter we need to specify
        the lower and upper boundary of each range. For example,
        a single contour boundary, say at z = 0, requires only
        one contour line, but two filled regions, and therefore
        three levels to provide boundaries for both regions.
        """
        if self.locator is None:
            if self.logscale:
                self.locator = ticker.LogLocator()
            else:
                self.locator = ticker.MaxNLocator(N + 1)
        zmax = self.zmax
        zmin = self.zmin
        lev = self.locator.tick_values(zmin, zmax)
        self._auto = True
        if self.filled:
            return lev
        # For line contours, drop levels outside the data range.
        return lev[(lev > zmin) & (lev < zmax)]

    def _contour_level_args(self, z, args):
        """
        Determine the contour levels and store in self.levels.
        """
        if self.filled:
            fn = 'contourf'
        else:
            fn = 'contour'
        self._auto = False
        if self.levels is None:
            if len(args) == 0:
                lev = self._autolev(z, 7)
            else:
                level_arg = args[0]
                try:
                    if type(level_arg) == int:
                        lev = self._autolev(z, level_arg)
                    else:
                        lev = np.asarray(level_arg).astype(np.float64)
                except:
                    raise TypeError(
                        "Last %s arg must give levels; see help(%s)" %
                        (fn, fn))
            self.levels = lev
        if self.filled and len(self.levels) < 2:
            raise ValueError("Filled contours require at least 2 levels.")

    def _process_levels(self):
        """
        Assign values to :attr:`layers` based on :attr:`levels`,
        adding extended layers as needed if contours are filled.

        For line contours, layers simply coincide with levels;
        a line is a thin layer.  No extended levels are needed
        with line contours.
        """
        # The following attributes are no longer needed, and
        # should be deprecated and removed to reduce confusion.
        self.vmin = np.amin(self.levels)
        self.vmax = np.amax(self.levels)

        # Make a private _levels to include extended regions; we
        # want to leave the original levels attribute unchanged.
        # (Colorbar needs this even for line contours.)
        self._levels = list(self.levels)

        if self.extend in ('both', 'min'):
            self._levels.insert(0, min(self.levels[0], self.zmin) - 1)
        if self.extend in ('both', 'max'):
            self._levels.append(max(self.levels[-1], self.zmax) + 1)
        self._levels = np.asarray(self._levels)

        if not self.filled:
            self.layers = self.levels
            return

        # layer values are mid-way between levels
        self.layers = 0.5 * (self._levels[:-1] + self._levels[1:])
        # ...except that extended layers must be outside the
        # normed range:
        if self.extend in ('both', 'min'):
            self.layers[0] = -np.inf
        if self.extend in ('both', 'max'):
            self.layers[-1] = np.inf

    def _process_colors(self):
        """
        Color argument processing for contouring.

        Note that we base the color mapping on the contour levels
        and layers, not on the actual range of the Z values.  This
        means we don't have to worry about bad values in Z, and we
        always have the full dynamic range available for the selected
        levels.

        The color is based on the midpoint of the layer, except for
        extended end layers.  By default, the norm vmin and vmax
        are the extreme values of the non-extended levels.  Hence,
        the layer color extremes are not the extreme values of
        the colormap itself, but approach those values as the number
        of levels increases.  An advantage of this scheme is that
        line contours, when added to filled contours, take on
        colors that are consistent with those of the filled regions;
        for example, a contour line on the boundary between two
        regions will have a color intermediate between those
        of the regions.

        """
        self.monochrome = self.cmap.monochrome
        if self.colors is not None:
            # Generate integers for direct indexing.
            i0, i1 = 0, len(self.levels)
            if self.filled:
                i1 -= 1
            # Out of range indices for over and under:
            if self.extend in ('both', 'min'):
                i0 = -1
            if self.extend in ('both', 'max'):
                i1 += 1
            self.cvalues = list(range(i0, i1))
            self.set_norm(colors.NoNorm())
        else:
            self.cvalues = self.layers
        self.set_array(self.levels)
        self.autoscale_None()
        if self.extend in ('both', 'max', 'min'):
            self.norm.clip = False

        # self.tcolors are set by the "changed" method

    def _process_linewidths(self):
        linewidths = self.linewidths
        Nlev = len(self.levels)
        if linewidths is None:
            tlinewidths = [(mpl.rcParams['lines.linewidth'],)] * Nlev
        else:
            if not cbook.iterable(linewidths):
                linewidths = [linewidths] * Nlev
            else:
                linewidths = list(linewidths)
                if len(linewidths) < Nlev:
                    nreps = int(np.ceil(Nlev / len(linewidths)))
                    linewidths = linewidths * nreps
                if len(linewidths) > Nlev:
                    linewidths = linewidths[:Nlev]
            tlinewidths = [(w,) for w in linewidths]
        return tlinewidths

    def _process_linestyles(self):
        linestyles = self.linestyles
        Nlev = len(self.levels)
        if linestyles is None:
            tlinestyles = ['solid'] * Nlev
            if self.monochrome:
                neg_ls = mpl.rcParams['contour.negative_linestyle']
                eps = - (self.zmax - self.zmin) * 1e-15
                for i, lev in enumerate(self.levels):
                    if lev < eps:
                        tlinestyles[i] = neg_ls
        else:
            if cbook.is_string_like(linestyles):
                tlinestyles = [linestyles] * Nlev
            elif cbook.iterable(linestyles):
                tlinestyles = list(linestyles)
                if len(tlinestyles) < Nlev:
                    nreps = int(np.ceil(Nlev / len(linestyles)))
                    tlinestyles = tlinestyles * nreps
                if len(tlinestyles) > Nlev:
                    tlinestyles = tlinestyles[:Nlev]
            else:
                raise ValueError("Unrecognized type for linestyles kwarg")
        return tlinestyles

    def get_alpha(self):
        """returns alpha to be applied to all ContourSet artists"""
        return self.alpha

    def set_alpha(self, alpha):
        """sets alpha for all ContourSet artists"""
        self.alpha = alpha
        self.changed()

    def find_nearest_contour(self, x, y, indices=None, pixel=True):
        """
        Finds contour that is closest to a point.  Defaults to
        measuring distance in pixels (screen space - useful for manual
        contour labeling), but this can be controlled via a keyword
        argument.

        Returns a tuple containing the contour, segment, index of
        segment, x & y of segment point and distance to minimum point.

        Call signature::

          conmin,segmin,imin,xmin,ymin,dmin = find_nearest_contour(
                     self, x, y, indices=None, pixel=True )

        Optional keyword arguments:

          *indices*:
            Indexes of contour levels to consider when looking for
            nearest point.  Defaults to using all levels.

          *pixel*:
            If *True*, measure distance in pixel space, if not, measure
            distance in axes space.  Defaults to *True*.

        """

        # This function uses a method that is probably quite
        # inefficient based on converting each contour segment to
        # pixel coordinates and then comparing the given point to
        # those coordinates for each contour.  This will probably be
        # quite slow for complex contours, but for normal use it works
        # sufficiently well that the time is not noticeable.
        # Nonetheless, improvements could probably be made.

        if indices is None:
            indices = range(len(self.levels))

        dmin = np.inf
        conmin = None
        segmin = None
        xmin = None
        ymin = None

        point = np.array([x, y])

        for icon in indices:
            con = self.collections[icon]
            trans = con.get_transform()
            paths = con.get_paths()

            for segNum, linepath in enumerate(paths):
                lc = linepath.vertices
                # transfer all data points to screen coordinates if desired
                if pixel:
                    lc = trans.transform(lc)

                d, xc, leg = _find_closest_point_on_path(lc, point)
                if d < dmin:
                    dmin = d
                    conmin = icon
                    segmin = segNum
                    imin = leg[1]
                    xmin = xc[0]
                    ymin = xc[1]

        return (conmin, segmin, imin, xmin, ymin, dmin)


class QuadContourSet(ContourSet):
    """
    Create and store a set of contour lines or filled regions.

    User-callable method: :meth:`clabel`

    Useful attributes:
      ax:
        The axes object in which the contours are drawn

      collections:
        A silent_list of LineCollections or PolyCollections

      levels:
        Contour levels

      layers:
        Same as levels for line contours; half-way between
        levels for filled contours.  See :meth:`_process_colors` method.
    """
    def __init__(self, ax, *args, **kwargs):
        """
        Calculate and draw contour lines or filled regions, depending
        on whether keyword arg 'filled' is False (default) or True.

        The first argument of the initializer must be an axes
        object.  The remaining arguments and keyword arguments
        are described in QuadContourSet.contour_doc.
        """
        ContourSet.__init__(self, ax, *args, **kwargs)

    def _process_args(self, *args, **kwargs):
        """
        Process args and kwargs.
        """
        if isinstance(args[0], QuadContourSet):
            C = args[0].Cntr
            if self.levels is None:
                self.levels = args[0].levels
            self.zmin = args[0].zmin
            self.zmax = args[0].zmax
        else:
            x, y, z = self._contour_args(args, kwargs)

            _mask = ma.getmask(z)
            if _mask is ma.nomask:
                _mask = None
            C = _cntr.Cntr(x, y, z.filled(), _mask)

            t = self.get_transform()

            # if the transform is not trans data, and some part of it
            # contains transData, transform the xs and ys to data coordinates
            if (t != self.ax.transData and
                    any(t.contains_branch_seperately(self.ax.transData))):
                trans_to_data = t - self.ax.transData
                pts = (np.vstack([x.flat, y.flat]).T)
                transformed_pts = trans_to_data.transform(pts)
                x = transformed_pts[..., 0]
                y = transformed_pts[..., 1]

            x0 = ma.minimum(x)
            x1 = ma.maximum(x)
            y0 = ma.minimum(y)
            y1 = ma.maximum(y)
            self.ax.update_datalim([(x0, y0), (x1, y1)])
            self.ax.autoscale_view(tight=True)

        self.Cntr = C

    def _get_allsegs_and_allkinds(self):
        """
        Create and return allsegs and allkinds by calling underlying C code.
        """
        allsegs = []
        if self.filled:
            lowers, uppers = self._get_lowers_and_uppers()
            allkinds = []
            for level, level_upper in zip(lowers, uppers):
                nlist = self.Cntr.trace(level, level_upper,
                                        nchunk=self.nchunk)
                nseg = len(nlist) // 2
                segs = nlist[:nseg]
                kinds = nlist[nseg:]
                allsegs.append(segs)
                allkinds.append(kinds)
        else:
            allkinds = None
            for level in self.levels:
                nlist = self.Cntr.trace(level)
                nseg = len(nlist) // 2
                segs = nlist[:nseg]
                allsegs.append(segs)
        return allsegs, allkinds

    def _contour_args(self, args, kwargs):
        if self.filled:
            fn = 'contourf'
        else:
            fn = 'contour'
        Nargs = len(args)
        if Nargs <= 2:
            z = ma.asarray(args[0], dtype=np.float64)
            x, y = self._initialize_x_y(z)
            args = args[1:]
        elif Nargs <= 4:
            x, y, z = self._check_xyz(args[:3], kwargs)
            args = args[3:]
        else:
            raise TypeError("Too many arguments to %s; see help(%s)" %
                            (fn, fn))
        z = ma.masked_invalid(z, copy=False)
        self.zmax = ma.maximum(z)
        self.zmin = ma.minimum(z)
        if self.logscale and self.zmin <= 0:
            z = ma.masked_where(z <= 0, z)
            warnings.warn('Log scale: values of z <= 0 have been masked')
            self.zmin = z.min()
        self._contour_level_args(z, args)
        return (x, y, z)

    def _check_xyz(self, args, kwargs):
        """
        For functions like contour, check that the dimensions
        of the input arrays match; if x and y are 1D, convert
        them to 2D using meshgrid.

        Possible change: I think we should make and use an ArgumentError
        Exception class (here and elsewhere).
        """
        x, y = args[:2]
        self.ax._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
        x = self.ax.convert_xunits(x)
        y = self.ax.convert_yunits(y)

        x = np.asarray(x, dtype=np.float64)
        y = np.asarray(y, dtype=np.float64)
        z = ma.asarray(args[2], dtype=np.float64)

        if z.ndim != 2:
            raise TypeError("Input z must be a 2D array.")
        else:
            Ny, Nx = z.shape

        if x.ndim != y.ndim:
            raise TypeError("Number of dimensions of x and y should match.")

        if x.ndim == 1:

            nx, = x.shape
            ny, = y.shape

            if nx != Nx:
                raise TypeError("Length of x must be number of columns in z.")

            if ny != Ny:
                raise TypeError("Length of y must be number of rows in z.")

            x, y = np.meshgrid(x, y)

        elif x.ndim == 2:

            if x.shape != z.shape:
                raise TypeError("Shape of x does not match that of z: found "
                                "{0} instead of {1}.".format(x.shape, z.shape))

            if y.shape != z.shape:
                raise TypeError("Shape of y does not match that of z: found "
                                "{0} instead of {1}.".format(y.shape, z.shape))
        else:
            raise TypeError("Inputs x and y must be 1D or 2D.")

        return x, y, z

    def _initialize_x_y(self, z):
        """
        Return X, Y arrays such that contour(Z) will match imshow(Z)
        if origin is not None.
        The center of pixel Z[i,j] depends on origin:
        if origin is None, x = j, y = i;
        if origin is 'lower', x = j + 0.5, y = i + 0.5;
        if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5
        If extent is not None, x and y will be scaled to match,
        as in imshow.
        If origin is None and extent is not None, then extent
        will give the minimum and maximum values of x and y.
        """
        if z.ndim != 2:
            raise TypeError("Input must be a 2D array.")
        else:
            Ny, Nx = z.shape
        if self.origin is None:  # Not for image-matching.
            if self.extent is None:
                return np.meshgrid(np.arange(Nx), np.arange(Ny))
            else:
                x0, x1, y0, y1 = self.extent
                x = np.linspace(x0, x1, Nx)
                y = np.linspace(y0, y1, Ny)
                return np.meshgrid(x, y)
        # Match image behavior:
        if self.extent is None:
            x0, x1, y0, y1 = (0, Nx, 0, Ny)
        else:
            x0, x1, y0, y1 = self.extent
        dx = float(x1 - x0) / Nx
        dy = float(y1 - y0) / Ny
        x = x0 + (np.arange(Nx) + 0.5) * dx
        y = y0 + (np.arange(Ny) + 0.5) * dy
        if self.origin == 'upper':
            y = y[::-1]
        return np.meshgrid(x, y)

    contour_doc = """
        Plot contours.

        :func:`~matplotlib.pyplot.contour` and
        :func:`~matplotlib.pyplot.contourf` draw contour lines and
        filled contours, respectively.  Except as noted, function
        signatures and return values are the same for both versions.

        :func:`~matplotlib.pyplot.contourf` differs from the MATLAB
        version in that it does not draw the polygon edges.
        To draw edges, add line contours with
        calls to :func:`~matplotlib.pyplot.contour`.


        Call signatures::

          contour(Z)

        make a contour plot of an array *Z*. The level values are chosen
        automatically.

        ::

          contour(X,Y,Z)

        *X*, *Y* specify the (x, y) coordinates of the surface

        ::

          contour(Z,N)
          contour(X,Y,Z,N)

        contour *N* automatically-chosen levels.

        ::

          contour(Z,V)
          contour(X,Y,Z,V)

        draw contour lines at the values specified in sequence *V*

        ::

          contourf(..., V)

        fill the ``len(V)-1`` regions between the values in *V*

        ::

          contour(Z, **kwargs)

        Use keyword args to control colors, linewidth, origin, cmap ... see
        below for more details.

        *X* and *Y* must both be 2-D with the same shape as *Z*, or they
        must both be 1-D such that ``len(X)`` is the number of columns in
        *Z* and ``len(Y)`` is the number of rows in *Z*.

        ``C = contour(...)`` returns a
        :class:`~matplotlib.contour.QuadContourSet` object.

        Optional keyword arguments:

          *colors*: [ *None* | string | (mpl_colors) ]
            If *None*, the colormap specified by cmap will be used.

            If a string, like 'r' or 'red', all levels will be plotted in this
            color.

            If a tuple of matplotlib color args (string, float, rgb, etc),
            different levels will be plotted in different colors in the order
            specified.

          *alpha*: float
            The alpha blending value

          *cmap*: [ *None* | Colormap ]
            A cm :class:`~matplotlib.colors.Colormap` instance or
            *None*. If *cmap* is *None* and *colors* is *None*, a
            default Colormap is used.

          *norm*: [ *None* | Normalize ]
            A :class:`matplotlib.colors.Normalize` instance for
            scaling data values to colors. If *norm* is *None* and
            *colors* is *None*, the default linear scaling is used.

          *vmin*, *vmax*: [ *None* | scalar ]
            If not *None*, either or both of these values will be
            supplied to the :class:`matplotlib.colors.Normalize`
            instance, overriding the default color scaling based on
            *levels*.

          *levels*: [level0, level1, ..., leveln]
            A list of floating point numbers indicating the level
            curves to draw; eg to draw just the zero contour pass
            ``levels=[0]``

          *origin*: [ *None* | 'upper' | 'lower' | 'image' ]
            If *None*, the first value of *Z* will correspond to the
            lower left corner, location (0,0). If 'image', the rc
            value for ``image.origin`` will be used.

            This keyword is not active if *X* and *Y* are specified in
            the call to contour.

          *extent*: [ *None* | (x0,x1,y0,y1) ]

            If *origin* is not *None*, then *extent* is interpreted as
            in :func:`matplotlib.pyplot.imshow`: it gives the outer
            pixel boundaries. In this case, the position of Z[0,0]
            is the center of the pixel, not a corner. If *origin* is
            *None*, then (*x0*, *y0*) is the position of Z[0,0], and
            (*x1*, *y1*) is the position of Z[-1,-1].

            This keyword is not active if *X* and *Y* are specified in
            the call to contour.

          *locator*: [ *None* | ticker.Locator subclass ]
            If *locator* is *None*, the default
            :class:`~matplotlib.ticker.MaxNLocator` is used. The
            locator is used to determine the contour levels if they
            are not given explicitly via the *V* argument.

          *extend*: [ 'neither' | 'both' | 'min' | 'max' ]
            Unless this is 'neither', contour levels are automatically
            added to one or both ends of the range so that all data
            are included. These added ranges are then mapped to the
            special colormap values which default to the ends of the
            colormap range, but can be set via
            :meth:`matplotlib.colors.Colormap.set_under` and
            :meth:`matplotlib.colors.Colormap.set_over` methods.

          *xunits*, *yunits*: [ *None* | registered units ]
            Override axis units by specifying an instance of a
            :class:`matplotlib.units.ConversionInterface`.

          *antialiased*: [ *True* | *False* ]
            enable antialiasing, overriding the defaults.  For
            filled contours, the default is *True*.  For line contours,
            it is taken from rcParams['lines.antialiased'].

        contour-only keyword arguments:

          *linewidths*: [ *None* | number | tuple of numbers ]
            If *linewidths* is *None*, the default width in
            ``lines.linewidth`` in ``matplotlibrc`` is used.

            If a number, all levels will be plotted with this linewidth.

            If a tuple, different levels will be plotted with different
            linewidths in the order specified

          *linestyles*: [ *None* | 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
            If *linestyles* is *None*, the default is 'solid' unless
            the lines are monochrome.  In that case, negative
            contours will take their linestyle from the ``matplotlibrc``
            ``contour.negative_linestyle`` setting.

            *linestyles* can also be an iterable of the above strings
            specifying a set of linestyles to be used. If this
            iterable is shorter than the number of contour levels
            it will be repeated as necessary.

        contourf-only keyword arguments:

          *nchunk*: [ 0 | integer ]
            If 0, no subdivision of the domain. Specify a positive integer to
            divide the domain into subdomains of roughly *nchunk* by *nchunk*
            points. This may never actually be advantageous, so this option may
            be removed. Chunking introduces artifacts at the chunk boundaries
            unless *antialiased* is *False*.

          *hatches*:
            A list of cross hatch patterns to use on the filled areas.
            If None, no hatching will be added to the contour.
            Hatching is supported in the PostScript, PDF, SVG and Agg
            backends only.


        Note: contourf fills intervals that are closed at the top; that
        is, for boundaries *z1* and *z2*, the filled region is::

            z1 < z <= z2

        There is one exception: if the lowest boundary coincides with
        the minimum value of the *z* array, then that minimum value
        will be included in the lowest interval.

        **Examples:**

        .. plot:: mpl_examples/pylab_examples/contour_demo.py

        .. plot:: mpl_examples/pylab_examples/contourf_demo.py
        """