/usr/share/pyshared/matplotlib/image.py is in python-matplotlib 1.3.1-1ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 | """
The image module supports basic image loading, rescaling and display
operations.
"""
from __future__ import division, print_function
import os
import warnings
import math
import numpy as np
from numpy import ma
from matplotlib import rcParams
import matplotlib.artist as martist
from matplotlib.artist import allow_rasterization
import matplotlib.colors as mcolors
import matplotlib.cm as cm
import matplotlib.cbook as cbook
# For clarity, names from _image are given explicitly in this module:
import matplotlib._image as _image
import matplotlib._png as _png
# For user convenience, the names from _image are also imported into
# the image namespace:
from matplotlib._image import *
from matplotlib.transforms import BboxBase, Bbox, IdentityTransform
import matplotlib.transforms as mtransforms
class _AxesImageBase(martist.Artist, cm.ScalarMappable):
zorder = 0
# map interpolation strings to module constants
_interpd = {
'none': _image.NEAREST, # fall back to nearest when not supported
'nearest': _image.NEAREST,
'bilinear': _image.BILINEAR,
'bicubic': _image.BICUBIC,
'spline16': _image.SPLINE16,
'spline36': _image.SPLINE36,
'hanning': _image.HANNING,
'hamming': _image.HAMMING,
'hermite': _image.HERMITE,
'kaiser': _image.KAISER,
'quadric': _image.QUADRIC,
'catrom': _image.CATROM,
'gaussian': _image.GAUSSIAN,
'bessel': _image.BESSEL,
'mitchell': _image.MITCHELL,
'sinc': _image.SINC,
'lanczos': _image.LANCZOS,
'blackman': _image.BLACKMAN,
}
# reverse interp dict
_interpdr = dict([(v, k) for k, v in _interpd.iteritems()])
interpnames = _interpd.keys()
def __str__(self):
return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds)
def __init__(self, ax,
cmap=None,
norm=None,
interpolation=None,
origin=None,
filternorm=1,
filterrad=4.0,
resample=False,
**kwargs
):
"""
interpolation and cmap default to their rc settings
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
extent is data axes (left, right, bottom, top) for making image plots
registered with data plots. Default is to label the pixel
centers with the zero-based row and column indices.
Additional kwargs are matplotlib.artist properties
"""
martist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
if origin is None:
origin = rcParams['image.origin']
self.origin = origin
self.set_filternorm(filternorm)
self.set_filterrad(filterrad)
self._filterrad = filterrad
self.set_interpolation(interpolation)
self.set_resample(resample)
self.axes = ax
self._imcache = None
# this is an experimental attribute, if True, unsampled image
# will be drawn using the affine transform that are
# appropriately skewed so that the given position
# corresponds to the actual position in the coordinate. -JJL
self._image_skew_coordinate = None
self.update(kwargs)
def get_size(self):
"""Get the numrows, numcols of the input image"""
if self._A is None:
raise RuntimeError('You must first set the image array')
return self._A.shape[:2]
def set_alpha(self, alpha):
"""
Set the alpha value used for blending - not supported on
all backends
ACCEPTS: float
"""
martist.Artist.set_alpha(self, alpha)
self._imcache = None
def changed(self):
"""
Call this whenever the mappable is changed so observers can
update state
"""
self._imcache = None
self._rgbacache = None
cm.ScalarMappable.changed(self)
def make_image(self, magnification=1.0):
raise RuntimeError('The make_image method must be overridden.')
def _get_unsampled_image(self, A, image_extents, viewlim):
"""
convert numpy array A with given extents ([x1, x2, y1, y2] in
data coordinate) into the Image, given the viewlim (should be a
bbox instance). Image will be clipped if the extents is
significantly larger than the viewlim.
"""
xmin, xmax, ymin, ymax = image_extents
dxintv = xmax-xmin
dyintv = ymax-ymin
# the viewport scale factor
if viewlim.width == 0.0 and dxintv == 0.0:
sx = 1.0
else:
sx = dxintv/viewlim.width
if viewlim.height == 0.0 and dyintv == 0.0:
sy = 1.0
else:
sy = dyintv/viewlim.height
numrows, numcols = A.shape[:2]
if sx > 2:
x0 = (viewlim.x0-xmin)/dxintv * numcols
ix0 = max(0, int(x0 - self._filterrad))
x1 = (viewlim.x1-xmin)/dxintv * numcols
ix1 = min(numcols, int(x1 + self._filterrad))
xslice = slice(ix0, ix1)
xmin_old = xmin
xmin = xmin_old + ix0*dxintv/numcols
xmax = xmin_old + ix1*dxintv/numcols
dxintv = xmax - xmin
sx = dxintv/viewlim.width
else:
xslice = slice(0, numcols)
if sy > 2:
y0 = (viewlim.y0-ymin)/dyintv * numrows
iy0 = max(0, int(y0 - self._filterrad))
y1 = (viewlim.y1-ymin)/dyintv * numrows
iy1 = min(numrows, int(y1 + self._filterrad))
if self.origin == 'upper':
yslice = slice(numrows-iy1, numrows-iy0)
else:
yslice = slice(iy0, iy1)
ymin_old = ymin
ymin = ymin_old + iy0*dyintv/numrows
ymax = ymin_old + iy1*dyintv/numrows
dyintv = ymax - ymin
sy = dyintv/viewlim.height
else:
yslice = slice(0, numrows)
if xslice != self._oldxslice or yslice != self._oldyslice:
self._imcache = None
self._oldxslice = xslice
self._oldyslice = yslice
if self._imcache is None:
if self._A.dtype == np.uint8 and self._A.ndim == 3:
im = _image.frombyte(self._A[yslice, xslice, :], 0)
im.is_grayscale = False
else:
if self._rgbacache is None:
x = self.to_rgba(self._A, bytes=False)
# Avoid side effects: to_rgba can return its argument
# unchanged.
if np.may_share_memory(x, self._A):
x = x.copy()
# premultiply the colors
x[..., 0:3] *= x[..., 3:4]
x = (x * 255).astype(np.uint8)
self._rgbacache = x
else:
x = self._rgbacache
im = _image.frombyte(x[yslice, xslice, :], 0)
if self._A.ndim == 2:
im.is_grayscale = self.cmap.is_gray()
else:
im.is_grayscale = False
self._imcache = im
if self.origin == 'upper':
im.flipud_in()
else:
im = self._imcache
return im, xmin, ymin, dxintv, dyintv, sx, sy
@staticmethod
def _get_rotate_and_skew_transform(x1, y1, x2, y2, x3, y3):
"""
Retuen a transform that does
(x1, y1) -> (x1, y1)
(x2, y2) -> (x2, y2)
(x2, y1) -> (x3, y3)
It was intended to derive a skew transform that preserve the
lower-left corner (x1, y1) and top-right corner(x2,y2), but
change the the lower-right-corner(x2, y1) to a new position
(x3, y3).
"""
tr1 = mtransforms.Affine2D()
tr1.translate(-x1, -y1)
x2a, y2a = tr1.transform_point((x2, y2))
x3a, y3a = tr1.transform_point((x3, y3))
inv_mat = 1. / (x2a*y3a-y2a*x3a) * np.mat([[y3a, -y2a], [-x3a, x2a]])
a, b = (inv_mat * np.mat([[x2a], [x2a]])).flat
c, d = (inv_mat * np.mat([[y2a], [0]])).flat
tr2 = mtransforms.Affine2D.from_values(a, c, b, d, 0, 0)
tr = (tr1 + tr2 +
mtransforms.Affine2D().translate(x1, y1)).inverted().get_affine()
return tr
def _draw_unsampled_image(self, renderer, gc):
"""
draw unsampled image. The renderer should support a draw_image method
with scale parameter.
"""
trans = self.get_transform() # axes.transData
# convert the coordinates to the intermediate coordinate (ic).
# The transformation from the ic to the canvas is a pure
# affine transform.
# A straight-forward way is to use the non-affine part of the
# original transform for conversion to the ic.
# firs, convert the image extent to the ic
x_llc, x_trc, y_llc, y_trc = self.get_extent()
xy = trans.transform(np.array([(x_llc, y_llc),
(x_trc, y_trc)]))
_xx1, _yy1 = xy[0]
_xx2, _yy2 = xy[1]
extent_in_ic = _xx1, _xx2, _yy1, _yy2
# define trans_ic_to_canvas : unless _image_skew_coordinate is
# set, it is simply a affine part of the original transform.
if self._image_skew_coordinate:
# skew the image when required.
x_lrc, y_lrc = self._image_skew_coordinate
xy2 = trans.transform(np.array([(x_lrc, y_lrc)]))
_xx3, _yy3 = xy2[0]
tr_rotate_skew = self._get_rotate_and_skew_transform(_xx1, _yy1,
_xx2, _yy2,
_xx3, _yy3)
trans_ic_to_canvas = tr_rotate_skew
else:
trans_ic_to_canvas = IdentityTransform()
# Now, viewLim in the ic. It can be rotated and can be
# skewed. Make it big enough.
x1, y1, x2, y2 = self.axes.bbox.extents
trans_canvas_to_ic = trans_ic_to_canvas.inverted()
xy_ = trans_canvas_to_ic.transform(np.array([(x1, y1),
(x2, y1),
(x2, y2),
(x1, y2)]))
x1_, x2_ = min(xy_[:, 0]), max(xy_[:, 0])
y1_, y2_ = min(xy_[:, 1]), max(xy_[:, 1])
viewLim_in_ic = Bbox.from_extents(x1_, y1_, x2_, y2_)
# get the image, sliced if necessary. This is done in the ic.
im, xmin, ymin, dxintv, dyintv, sx, sy = \
self._get_unsampled_image(self._A, extent_in_ic, viewLim_in_ic)
if im is None:
return # I'm not if this check is required. -JJL
fc = self.axes.patch.get_facecolor()
bg = mcolors.colorConverter.to_rgba(fc, 0)
im.set_bg(*bg)
# image input dimensions
im.reset_matrix()
numrows, numcols = im.get_size()
im.resize(numcols, numrows) # just to create im.bufOut that
# is required by backends. There
# may be better solution -JJL
im._url = self.get_url()
im._gid = self.get_gid()
renderer.draw_image(gc, xmin, ymin, im, dxintv, dyintv,
trans_ic_to_canvas)
def _check_unsampled_image(self, renderer):
"""
return True if the image is better to be drawn unsampled.
The derived class needs to override it.
"""
return False
@allow_rasterization
def draw(self, renderer, *args, **kwargs):
if not self.get_visible():
return
if (self.axes.get_xscale() != 'linear' or
self.axes.get_yscale() != 'linear'):
warnings.warn("Images are not supported on non-linear axes.")
l, b, widthDisplay, heightDisplay = self.axes.bbox.bounds
gc = renderer.new_gc()
gc.set_clip_rectangle(self.axes.bbox.frozen())
gc.set_clip_path(self.get_clip_path())
gc.set_alpha(self.get_alpha())
if self._check_unsampled_image(renderer):
self._draw_unsampled_image(renderer, gc)
else:
if self._image_skew_coordinate is not None:
warnings.warn("Image will not be shown"
" correctly with this backend.")
im = self.make_image(renderer.get_image_magnification())
if im is None:
return
im._url = self.get_url()
im._gid = self.get_gid()
renderer.draw_image(gc, l, b, im)
gc.restore()
def contains(self, mouseevent):
"""
Test whether the mouse event occured within the image.
"""
if callable(self._contains):
return self._contains(self, mouseevent)
# TODO: make sure this is consistent with patch and patch
# collection on nonlinear transformed coordinates.
# TODO: consider returning image coordinates (shouldn't
# be too difficult given that the image is rectilinear
x, y = mouseevent.xdata, mouseevent.ydata
xmin, xmax, ymin, ymax = self.get_extent()
if xmin > xmax:
xmin, xmax = xmax, xmin
if ymin > ymax:
ymin, ymax = ymax, ymin
#print x, y, xmin, xmax, ymin, ymax
if x is not None and y is not None:
inside = ((x >= xmin) and (x <= xmax) and
(y >= ymin) and (y <= ymax))
else:
inside = False
return inside, {}
def write_png(self, fname, noscale=False):
"""Write the image to png file with fname"""
im = self.make_image()
if im is None:
return
if noscale:
numrows, numcols = im.get_size()
im.reset_matrix()
im.set_interpolation(0)
im.resize(numcols, numrows)
im.flipud_out()
rows, cols, buffer = im.as_rgba_str()
_png.write_png(buffer, cols, rows, fname)
def set_data(self, A):
"""
Set the image array
ACCEPTS: numpy/PIL Image A
"""
# check if data is PIL Image without importing Image
if hasattr(A, 'getpixel'):
self._A = pil_to_array(A)
else:
self._A = cbook.safe_masked_invalid(A)
if (self._A.dtype != np.uint8 and
not np.can_cast(self._A.dtype, np.float)):
raise TypeError("Image data can not convert to float")
if (self._A.ndim not in (2, 3) or
(self._A.ndim == 3 and self._A.shape[-1] not in (3, 4))):
raise TypeError("Invalid dimensions for image data")
self._imcache = None
self._rgbacache = None
self._oldxslice = None
self._oldyslice = None
def set_array(self, A):
"""
Retained for backwards compatibility - use set_data instead
ACCEPTS: numpy array A or PIL Image"""
# This also needs to be here to override the inherited
# cm.ScalarMappable.set_array method so it is not invoked
# by mistake.
self.set_data(A)
def get_interpolation(self):
"""
Return the interpolation method the image uses when resizing.
One of 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36',
'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom',
'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', or 'none'.
"""
return self._interpolation
def set_interpolation(self, s):
"""
Set the interpolation method the image uses when resizing.
if None, use a value from rc setting. If 'none', the image is
shown as is without interpolating. 'none' is only supported in
agg, ps and pdf backends and will fall back to 'nearest' mode
for other backends.
ACCEPTS: ['nearest' | 'bilinear' | 'bicubic' | 'spline16' |
'spline36' | 'hanning' | 'hamming' | 'hermite' | 'kaiser' |
'quadric' | 'catrom' | 'gaussian' | 'bessel' | 'mitchell' |
'sinc' | 'lanczos' | 'none' |]
"""
if s is None:
s = rcParams['image.interpolation']
s = s.lower()
if s not in self._interpd:
raise ValueError('Illegal interpolation string')
self._interpolation = s
def set_resample(self, v):
"""
Set whether or not image resampling is used
ACCEPTS: True|False
"""
if v is None:
v = rcParams['image.resample']
self._resample = v
def get_resample(self):
"""Return the image resample boolean"""
return self._resample
def set_filternorm(self, filternorm):
"""
Set whether the resize filter norms the weights -- see
help for imshow
ACCEPTS: 0 or 1
"""
if filternorm:
self._filternorm = 1
else:
self._filternorm = 0
def get_filternorm(self):
"""Return the filternorm setting"""
return self._filternorm
def set_filterrad(self, filterrad):
"""
Set the resize filter radius only applicable to some
interpolation schemes -- see help for imshow
ACCEPTS: positive float
"""
r = float(filterrad)
assert(r > 0)
self._filterrad = r
def get_filterrad(self):
"""return the filterrad setting"""
return self._filterrad
class AxesImage(_AxesImageBase):
def __str__(self):
return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds)
def __init__(self, ax,
cmap=None,
norm=None,
interpolation=None,
origin=None,
extent=None,
filternorm=1,
filterrad=4.0,
resample=False,
**kwargs
):
"""
interpolation and cmap default to their rc settings
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
extent is data axes (left, right, bottom, top) for making image plots
registered with data plots. Default is to label the pixel
centers with the zero-based row and column indices.
Additional kwargs are matplotlib.artist properties
"""
self._extent = extent
_AxesImageBase.__init__(self, ax,
cmap=cmap,
norm=norm,
interpolation=interpolation,
origin=origin,
filternorm=filternorm,
filterrad=filterrad,
resample=resample,
**kwargs
)
def make_image(self, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image'
' array or the image attribute')
# image is created in the canvas coordinate.
x1, x2, y1, y2 = self.get_extent()
trans = self.get_transform()
xy = trans.transform(np.array([(x1, y1),
(x2, y2),
]))
_x1, _y1 = xy[0]
_x2, _y2 = xy[1]
transformed_viewLim = mtransforms.TransformedBbox(self.axes.viewLim,
trans)
im, xmin, ymin, dxintv, dyintv, sx, sy = \
self._get_unsampled_image(self._A, [_x1, _x2, _y1, _y2],
transformed_viewLim)
fc = self.axes.patch.get_facecolor()
bg = mcolors.colorConverter.to_rgba(fc, 0)
im.set_bg(*bg)
# image input dimensions
im.reset_matrix()
numrows, numcols = im.get_size()
if numrows < 1 or numcols < 1: # out of range
return None
im.set_interpolation(self._interpd[self._interpolation])
im.set_resample(self._resample)
# the viewport translation
if dxintv == 0.0:
tx = 0.0
else:
tx = (xmin-transformed_viewLim.x0)/dxintv * numcols
if dyintv == 0.0:
ty = 0.0
else:
ty = (ymin-transformed_viewLim.y0)/dyintv * numrows
im.apply_translation(tx, ty)
l, b, r, t = self.axes.bbox.extents
widthDisplay = ((round(r*magnification) + 0.5) -
(round(l*magnification) - 0.5))
heightDisplay = ((round(t*magnification) + 0.5) -
(round(b*magnification) - 0.5))
# resize viewport to display
rx = widthDisplay / numcols
ry = heightDisplay / numrows
im.apply_scaling(rx*sx, ry*sy)
im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5),
norm=self._filternorm, radius=self._filterrad)
return im
def _check_unsampled_image(self, renderer):
"""
return True if the image is better to be drawn unsampled.
"""
if self.get_interpolation() == "none":
if renderer.option_scale_image():
return True
else:
warnings.warn("The backend (%s) does not support "
"interpolation='none'. The image will be "
"interpolated with 'nearest` "
"mode." % renderer.__class__)
return False
def set_extent(self, extent):
"""
extent is data axes (left, right, bottom, top) for making image plots
This updates ax.dataLim, and, if autoscaling, sets viewLim
to tightly fit the image, regardless of dataLim. Autoscaling
state is not changed, so following this with ax.autoscale_view
will redo the autoscaling in accord with dataLim.
"""
self._extent = extent
xmin, xmax, ymin, ymax = extent
corners = (xmin, ymin), (xmax, ymax)
self.axes.update_datalim(corners)
if self.axes._autoscaleXon:
self.axes.set_xlim((xmin, xmax), auto=None)
if self.axes._autoscaleYon:
self.axes.set_ylim((ymin, ymax), auto=None)
def get_extent(self):
"""Get the image extent: left, right, bottom, top"""
if self._extent is not None:
return self._extent
else:
sz = self.get_size()
#print 'sz', sz
numrows, numcols = sz
if self.origin == 'upper':
return (-0.5, numcols-0.5, numrows-0.5, -0.5)
else:
return (-0.5, numcols-0.5, -0.5, numrows-0.5)
class NonUniformImage(AxesImage):
def __init__(self, ax, **kwargs):
"""
kwargs are identical to those for AxesImage, except
that 'interpolation' defaults to 'nearest', and 'bilinear'
is the only alternative.
"""
interp = kwargs.pop('interpolation', 'nearest')
AxesImage.__init__(self, ax,
**kwargs)
self.set_interpolation(interp)
def _check_unsampled_image(self, renderer):
"""
return False. Do not use unsampled image.
"""
return False
def make_image(self, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image array')
A = self._A
if len(A.shape) == 2:
if A.dtype != np.uint8:
A = self.to_rgba(A, bytes=True)
self.is_grayscale = self.cmap.is_gray()
else:
A = np.repeat(A[:, :, np.newaxis], 4, 2)
A[:, :, 3] = 255
self.is_grayscale = True
else:
if A.dtype != np.uint8:
A = (255*A).astype(np.uint8)
if A.shape[2] == 3:
B = np.zeros(tuple(list(A.shape[0:2]) + [4]), np.uint8)
B[:, :, 0:3] = A
B[:, :, 3] = 255
A = B
self.is_grayscale = False
x0, y0, v_width, v_height = self.axes.viewLim.bounds
l, b, r, t = self.axes.bbox.extents
width = (round(r) + 0.5) - (round(l) - 0.5)
height = (round(t) + 0.5) - (round(b) - 0.5)
width *= magnification
height *= magnification
im = _image.pcolor(self._Ax, self._Ay, A,
height, width,
(x0, x0+v_width, y0, y0+v_height),
self._interpd[self._interpolation])
fc = self.axes.patch.get_facecolor()
bg = mcolors.colorConverter.to_rgba(fc, 0)
im.set_bg(*bg)
im.is_grayscale = self.is_grayscale
return im
def set_data(self, x, y, A):
"""
Set the grid for the pixel centers, and the pixel values.
*x* and *y* are 1-D ndarrays of lengths N and M, respectively,
specifying pixel centers
*A* is an (M,N) ndarray or masked array of values to be
colormapped, or a (M,N,3) RGB array, or a (M,N,4) RGBA
array.
"""
x = np.asarray(x, np.float32)
y = np.asarray(y, np.float32)
A = cbook.safe_masked_invalid(A)
if len(x.shape) != 1 or len(y.shape) != 1\
or A.shape[0:2] != (y.shape[0], x.shape[0]):
raise TypeError("Axes don't match array shape")
if len(A.shape) not in [2, 3]:
raise TypeError("Can only plot 2D or 3D data")
if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]:
raise TypeError("3D arrays must have three (RGB) "
"or four (RGBA) color components")
if len(A.shape) == 3 and A.shape[2] == 1:
A.shape = A.shape[0:2]
self._A = A
self._Ax = x
self._Ay = y
self._imcache = None
# I am adding this in accor with _AxesImageBase.set_data --
# examples/pylab_examples/image_nonuniform.py was breaking on
# the call to _get_unsampled_image when the oldxslice attr was
# accessed - JDH 3/3/2010
self._oldxslice = None
self._oldyslice = None
def set_array(self, *args):
raise NotImplementedError('Method not supported')
def set_interpolation(self, s):
if s is not None and not s in ('nearest', 'bilinear'):
raise NotImplementedError('Only nearest neighbor and '
'bilinear interpolations are supported')
AxesImage.set_interpolation(self, s)
def get_extent(self):
if self._A is None:
raise RuntimeError('Must set data first')
return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1]
def set_filternorm(self, s):
pass
def set_filterrad(self, s):
pass
def set_norm(self, norm):
if self._A is not None:
raise RuntimeError('Cannot change colors after loading data')
cm.ScalarMappable.set_norm(self, norm)
def set_cmap(self, cmap):
if self._A is not None:
raise RuntimeError('Cannot change colors after loading data')
cm.ScalarMappable.set_cmap(self, cmap)
class PcolorImage(martist.Artist, cm.ScalarMappable):
"""
Make a pcolor-style plot with an irregular rectangular grid.
This uses a variation of the original irregular image code,
and it is used by pcolorfast for the corresponding grid type.
"""
def __init__(self, ax,
x=None,
y=None,
A=None,
cmap=None,
norm=None,
**kwargs
):
"""
cmap defaults to its rc setting
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
Additional kwargs are matplotlib.artist properties
"""
martist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
self.axes = ax
self._rgbacache = None
# There is little point in caching the image itself because
# it needs to be remade if the bbox or viewlim change,
# so caching does help with zoom/pan/resize.
self.update(kwargs)
self.set_data(x, y, A)
def make_image(self, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image array')
fc = self.axes.patch.get_facecolor()
bg = mcolors.colorConverter.to_rgba(fc, 0)
bg = (np.array(bg)*255).astype(np.uint8)
l, b, r, t = self.axes.bbox.extents
width = (round(r) + 0.5) - (round(l) - 0.5)
height = (round(t) + 0.5) - (round(b) - 0.5)
width = width * magnification
height = height * magnification
if self._rgbacache is None:
A = self.to_rgba(self._A, bytes=True)
self._rgbacache = A
if self._A.ndim == 2:
self.is_grayscale = self.cmap.is_gray()
else:
A = self._rgbacache
vl = self.axes.viewLim
im = _image.pcolor2(self._Ax, self._Ay, A,
height,
width,
(vl.x0, vl.x1, vl.y0, vl.y1),
bg)
im.is_grayscale = self.is_grayscale
return im
def changed(self):
self._rgbacache = None
cm.ScalarMappable.changed(self)
@allow_rasterization
def draw(self, renderer, *args, **kwargs):
if not self.get_visible():
return
im = self.make_image(renderer.get_image_magnification())
gc = renderer.new_gc()
gc.set_clip_rectangle(self.axes.bbox.frozen())
gc.set_clip_path(self.get_clip_path())
gc.set_alpha(self.get_alpha())
renderer.draw_image(gc,
round(self.axes.bbox.xmin),
round(self.axes.bbox.ymin),
im)
gc.restore()
def set_data(self, x, y, A):
A = cbook.safe_masked_invalid(A)
if x is None:
x = np.arange(0, A.shape[1]+1, dtype=np.float64)
else:
x = np.asarray(x, np.float64).ravel()
if y is None:
y = np.arange(0, A.shape[0]+1, dtype=np.float64)
else:
y = np.asarray(y, np.float64).ravel()
if A.shape[:2] != (y.size-1, x.size-1):
print(A.shape)
print(y.size)
print(x.size)
raise ValueError("Axes don't match array shape")
if A.ndim not in [2, 3]:
raise ValueError("A must be 2D or 3D")
if A.ndim == 3 and A.shape[2] == 1:
A.shape = A.shape[:2]
self.is_grayscale = False
if A.ndim == 3:
if A.shape[2] in [3, 4]:
if ((A[:, :, 0] == A[:, :, 1]).all() and
(A[:, :, 0] == A[:, :, 2]).all()):
self.is_grayscale = True
else:
raise ValueError("3D arrays must have RGB or RGBA as last dim")
self._A = A
self._Ax = x
self._Ay = y
self._rgbacache = None
def set_array(self, *args):
raise NotImplementedError('Method not supported')
def set_alpha(self, alpha):
"""
Set the alpha value used for blending - not supported on
all backends
ACCEPTS: float
"""
martist.Artist.set_alpha(self, alpha)
self.update_dict['array'] = True
class FigureImage(martist.Artist, cm.ScalarMappable):
zorder = 0
def __init__(self, fig,
cmap=None,
norm=None,
offsetx=0,
offsety=0,
origin=None,
**kwargs
):
"""
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
kwargs are an optional list of Artist keyword args
"""
martist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
if origin is None:
origin = rcParams['image.origin']
self.origin = origin
self.figure = fig
self.ox = offsetx
self.oy = offsety
self.update(kwargs)
self.magnification = 1.0
def contains(self, mouseevent):
"""Test whether the mouse event occured within the image."""
if callable(self._contains):
return self._contains(self, mouseevent)
xmin, xmax, ymin, ymax = self.get_extent()
xdata, ydata = mouseevent.x, mouseevent.y
#print xdata, ydata, xmin, xmax, ymin, ymax
if xdata is not None and ydata is not None:
inside = ((xdata >= xmin) and (xdata <= xmax) and
(ydata >= ymin) and (ydata <= ymax))
else:
inside = False
return inside, {}
def get_size(self):
"""Get the numrows, numcols of the input image"""
if self._A is None:
raise RuntimeError('You must first set the image array')
return self._A.shape[:2]
def get_extent(self):
"""Get the image extent: left, right, bottom, top"""
numrows, numcols = self.get_size()
return (-0.5+self.ox, numcols-0.5+self.ox,
-0.5+self.oy, numrows-0.5+self.oy)
def set_data(self, A):
"""Set the image array."""
cm.ScalarMappable.set_array(self, cbook.safe_masked_invalid(A))
def set_array(self, A):
"""Deprecated; use set_data for consistency with other image types."""
self.set_data(A)
def make_image(self, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image array')
x = self.to_rgba(self._A, bytes=True)
self.magnification = magnification
# if magnification is not one, we need to resize
ismag = magnification != 1
#if ismag: raise RuntimeError
if ismag:
isoutput = 0
else:
isoutput = 1
im = _image.frombyte(x, isoutput)
fc = self.figure.get_facecolor()
im.set_bg(*mcolors.colorConverter.to_rgba(fc, 0))
im.is_grayscale = (self.cmap.name == "gray" and
len(self._A.shape) == 2)
if ismag:
numrows, numcols = self.get_size()
numrows *= magnification
numcols *= magnification
im.set_interpolation(_image.NEAREST)
im.resize(numcols, numrows)
if self.origin == 'upper':
im.flipud_out()
return im
@allow_rasterization
def draw(self, renderer, *args, **kwargs):
if not self.get_visible():
return
# todo: we should be able to do some cacheing here
im = self.make_image(renderer.get_image_magnification())
gc = renderer.new_gc()
gc.set_clip_rectangle(self.figure.bbox)
gc.set_clip_path(self.get_clip_path())
gc.set_alpha(self.get_alpha())
renderer.draw_image(gc, round(self.ox), round(self.oy), im)
gc.restore()
def write_png(self, fname):
"""Write the image to png file with fname"""
im = self.make_image()
rows, cols, buffer = im.as_rgba_str()
_png.write_png(buffer, cols, rows, fname)
class BboxImage(_AxesImageBase):
"""The Image class whose size is determined by the given bbox."""
def __init__(self, bbox,
cmap=None,
norm=None,
interpolation=None,
origin=None,
filternorm=1,
filterrad=4.0,
resample=False,
interp_at_native=True,
**kwargs
):
"""
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
interp_at_native is a flag that determines whether or not
interpolation should still be applied when the image is
displayed at its native resolution. A common use case for this
is when displaying an image for annotational purposes; it is
treated similarly to Photoshop (interpolation is only used when
displaying the image at non-native resolutions).
kwargs are an optional list of Artist keyword args
"""
_AxesImageBase.__init__(self, ax=None,
cmap=cmap,
norm=norm,
interpolation=interpolation,
origin=origin,
filternorm=filternorm,
filterrad=filterrad,
resample=resample,
**kwargs
)
self.bbox = bbox
self.interp_at_native = interp_at_native
def get_window_extent(self, renderer=None):
if renderer is None:
renderer = self.get_figure()._cachedRenderer
if isinstance(self.bbox, BboxBase):
return self.bbox
elif callable(self.bbox):
return self.bbox(renderer)
else:
raise ValueError("unknown type of bbox")
def contains(self, mouseevent):
"""Test whether the mouse event occured within the image."""
if callable(self._contains):
return self._contains(self, mouseevent)
if not self.get_visible(): # or self.get_figure()._renderer is None:
return False, {}
x, y = mouseevent.x, mouseevent.y
inside = self.get_window_extent().contains(x, y)
return inside, {}
def get_size(self):
"""Get the numrows, numcols of the input image"""
if self._A is None:
raise RuntimeError('You must first set the image array')
return self._A.shape[:2]
def make_image(self, renderer, magnification=1.0):
if self._A is None:
raise RuntimeError('You must first set the image '
'array or the image attribute')
if self._imcache is None:
if self._A.dtype == np.uint8 and len(self._A.shape) == 3:
im = _image.frombyte(self._A, 0)
im.is_grayscale = False
else:
if self._rgbacache is None:
x = self.to_rgba(self._A, bytes=True)
self._rgbacache = x
else:
x = self._rgbacache
im = _image.frombyte(x, 0)
if len(self._A.shape) == 2:
im.is_grayscale = self.cmap.is_gray()
else:
im.is_grayscale = False
self._imcache = im
if self.origin == 'upper':
im.flipud_in()
else:
im = self._imcache
# image input dimensions
im.reset_matrix()
im.set_interpolation(self._interpd[self._interpolation])
im.set_resample(self._resample)
l, b, r, t = self.get_window_extent(renderer).extents # bbox.extents
widthDisplay = round(r) - round(l)
heightDisplay = round(t) - round(b)
widthDisplay *= magnification
heightDisplay *= magnification
numrows, numcols = self._A.shape[:2]
if (not self.interp_at_native and
widthDisplay == numcols and heightDisplay == numrows):
im.set_interpolation(0)
# resize viewport to display
rx = widthDisplay / numcols
ry = heightDisplay / numrows
#im.apply_scaling(rx*sx, ry*sy)
im.apply_scaling(rx, ry)
#im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5),
# norm=self._filternorm, radius=self._filterrad)
im.resize(int(widthDisplay), int(heightDisplay),
norm=self._filternorm, radius=self._filterrad)
return im
@allow_rasterization
def draw(self, renderer, *args, **kwargs):
if not self.get_visible():
return
# todo: we should be able to do some cacheing here
image_mag = renderer.get_image_magnification()
im = self.make_image(renderer, image_mag)
l, b, r, t = self.get_window_extent(renderer).extents
gc = renderer.new_gc()
self._set_gc_clip(gc)
gc.set_alpha(self.get_alpha())
#gc.set_clip_path(self.get_clip_path())
renderer.draw_image(gc, round(l), round(b), im)
gc.restore()
def imread(fname, format=None):
"""
Read an image from a file into an array.
*fname* may be a string path or a Python file-like object. If
using a file object, it must be opened in binary mode.
If *format* is provided, will try to read file of that type,
otherwise the format is deduced from the filename. If nothing can
be deduced, PNG is tried.
Return value is a :class:`numpy.array`. For grayscale images, the
return array is MxN. For RGB images, the return value is MxNx3.
For RGBA images the return value is MxNx4.
matplotlib can only read PNGs natively, but if `PIL
<http://www.pythonware.com/products/pil/>`_ is installed, it will
use it to load the image and return an array (if possible) which
can be used with :func:`~matplotlib.pyplot.imshow`.
"""
def pilread(fname):
"""try to load the image with PIL or return None"""
try:
from PIL import Image
except ImportError:
return None
if cbook.is_string_like(fname):
# force close the file after reading the image
with open(fname, "rb") as fh:
image = Image.open(fh)
return pil_to_array(image)
else:
image = Image.open(fname)
return pil_to_array(image)
handlers = {'png': _png.read_png, }
if format is None:
if cbook.is_string_like(fname):
basename, ext = os.path.splitext(fname)
ext = ext.lower()[1:]
elif hasattr(fname, 'name'):
basename, ext = os.path.splitext(fname.name)
ext = ext.lower()[1:]
else:
ext = 'png'
else:
ext = format
if ext not in handlers.iterkeys():
im = pilread(fname)
if im is None:
raise ValueError('Only know how to handle extensions: %s; '
'with PIL installed matplotlib can handle '
'more images' % handlers.keys())
return im
handler = handlers[ext]
# To handle Unicode filenames, we pass a file object to the PNG
# reader extension, since Python handles them quite well, but it's
# tricky in C.
if cbook.is_string_like(fname):
with open(fname, 'rb') as fd:
return handler(fd)
else:
return handler(fname)
def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None,
origin=None, dpi=100):
"""
Save an array as in image file.
The output formats available depend on the backend being used.
Arguments:
*fname*:
A string containing a path to a filename, or a Python file-like object.
If *format* is *None* and *fname* is a string, the output
format is deduced from the extension of the filename.
*arr*:
An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.
Keyword arguments:
*vmin*/*vmax*: [ None | scalar ]
*vmin* and *vmax* set the color scaling for the image by fixing the
values that map to the colormap color limits. If either *vmin*
or *vmax* is None, that limit is determined from the *arr*
min/max value.
*cmap*:
cmap is a colors.Colormap instance, eg cm.jet.
If None, default to the rc image.cmap value.
*format*:
One of the file extensions supported by the active
backend. Most backends support png, pdf, ps, eps and svg.
*origin*
[ 'upper' | 'lower' ] Indicates where the [0,0] index of
the array is in the upper left or lower left corner of
the axes. Defaults to the rc image.origin value.
*dpi*
The DPI to store in the metadata of the file. This does not affect the
resolution of the output image.
"""
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
figsize = [x / float(dpi) for x in (arr.shape[1], arr.shape[0])]
fig = Figure(figsize=figsize, dpi=dpi, frameon=False)
canvas = FigureCanvas(fig)
im = fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin)
fig.savefig(fname, dpi=dpi, format=format, transparent=True)
def pil_to_array(pilImage):
"""
Load a PIL image and return it as a numpy array. For grayscale
images, the return array is MxN. For RGB images, the return value
is MxNx3. For RGBA images the return value is MxNx4
"""
def toarray(im, dtype=np.uint8):
"""Teturn a 1D array of dtype."""
x_str = im.tostring('raw', im.mode)
x = np.fromstring(x_str, dtype)
return x
if pilImage.mode in ('RGBA', 'RGBX'):
im = pilImage # no need to convert images
elif pilImage.mode == 'L':
im = pilImage # no need to luminance images
# return MxN luminance array
x = toarray(im)
x.shape = im.size[1], im.size[0]
return x
elif pilImage.mode == 'RGB':
#return MxNx3 RGB array
im = pilImage # no need to RGB images
x = toarray(im)
x.shape = im.size[1], im.size[0], 3
return x
elif pilImage.mode.startswith('I;16'):
# return MxN luminance array of uint16
im = pilImage
if im.mode.endswith('B'):
x = toarray(im, '>u2')
else:
x = toarray(im, '<u2')
x.shape = im.size[1], im.size[0]
return x.astype('=u2')
else: # try to convert to an rgba image
try:
im = pilImage.convert('RGBA')
except ValueError:
raise RuntimeError('Unknown image mode')
# return MxNx4 RGBA array
x = toarray(im)
x.shape = im.size[1], im.size[0], 4
return x
def thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear',
preview=False):
"""
make a thumbnail of image in *infile* with output filename
*thumbfile*.
*infile* the image file -- must be PNG or PIL readable if you
have `PIL <http://www.pythonware.com/products/pil/>`_ installed
*thumbfile*
the thumbnail filename
*scale*
the scale factor for the thumbnail
*interpolation*
the interpolation scheme used in the resampling
*preview*
if True, the default backend (presumably a user interface
backend) will be used which will cause a figure to be raised
if :func:`~matplotlib.pyplot.show` is called. If it is False,
a pure image backend will be used depending on the extension,
'png'->FigureCanvasAgg, 'pdf'->FigureCanvasPdf,
'svg'->FigureCanvasSVG
See examples/misc/image_thumbnail.py.
.. htmlonly::
:ref:`misc-image_thumbnail`
Return value is the figure instance containing the thumbnail
"""
basedir, basename = os.path.split(infile)
baseout, extout = os.path.splitext(thumbfile)
im = imread(infile)
rows, cols, depth = im.shape
# this doesn't really matter, it will cancel in the end, but we
# need it for the mpl API
dpi = 100
height = float(rows)/dpi*scale
width = float(cols)/dpi*scale
extension = extout.lower()
if preview:
# let the UI backend do everything
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(width, height), dpi=dpi)
else:
if extension == '.png':
from matplotlib.backends.backend_agg \
import FigureCanvasAgg as FigureCanvas
elif extension == '.pdf':
from matplotlib.backends.backend_pdf \
import FigureCanvasPdf as FigureCanvas
elif extension == '.svg':
from matplotlib.backends.backend_svg \
import FigureCanvasSVG as FigureCanvas
else:
raise ValueError("Can only handle "
"extensions 'png', 'svg' or 'pdf'")
from matplotlib.figure import Figure
fig = Figure(figsize=(width, height), dpi=dpi)
canvas = FigureCanvas(fig)
ax = fig.add_axes([0, 0, 1, 1], aspect='auto',
frameon=False, xticks=[], yticks=[])
basename, ext = os.path.splitext(basename)
ax.imshow(im, aspect='auto', resample=True, interpolation='bilinear')
fig.savefig(thumbfile, dpi=dpi)
return fig
|