This file is indexed.

/usr/share/pyshared/matplotlib/path.py is in python-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
"""
A module for dealing with the polylines used throughout matplotlib.

The primary class for polyline handling in matplotlib is :class:`Path`.
Almost all vector drawing makes use of Paths somewhere in the drawing
pipeline.

Whilst a :class:`Path` instance itself cannot be drawn, there exists
:class:`~matplotlib.artist.Artist` subclasses which can be used for
convenient Path visualisation - the two most frequently used of these are
:class:`~matplotlib.patches.PathPatch` and
:class:`~matplotlib.collections.PathCollection`.
"""

from __future__ import print_function
import math
from weakref import WeakValueDictionary

import numpy as np
from numpy import ma

from matplotlib import _path
from matplotlib.cbook import simple_linear_interpolation, maxdict
from matplotlib import rcParams


class Path(object):
    """
    :class:`Path` represents a series of possibly disconnected,
    possibly closed, line and curve segments.

    The underlying storage is made up of two parallel numpy arrays:
      - *vertices*: an Nx2 float array of vertices
      - *codes*: an N-length uint8 array of vertex types

    These two arrays always have the same length in the first
    dimension.  For example, to represent a cubic curve, you must
    provide three vertices as well as three codes ``CURVE3``.

    The code types are:

       - ``STOP``   :  1 vertex (ignored)
           A marker for the end of the entire path (currently not
           required and ignored)

       - ``MOVETO`` :  1 vertex
            Pick up the pen and move to the given vertex.

       - ``LINETO`` :  1 vertex
            Draw a line from the current position to the given vertex.

       - ``CURVE3`` :  1 control point, 1 endpoint
          Draw a quadratic Bezier curve from the current position,
          with the given control point, to the given end point.

       - ``CURVE4`` :  2 control points, 1 endpoint
          Draw a cubic Bezier curve from the current position, with
          the given control points, to the given end point.

       - ``CLOSEPOLY`` : 1 vertex (ignored)
          Draw a line segment to the start point of the current
          polyline.

    Users of Path objects should not access the vertices and codes
    arrays directly.  Instead, they should use :meth:`iter_segments`
    or :meth:`cleaned` to get the vertex/code pairs.  This is important,
    since many :class:`Path` objects, as an optimization, do not store a
    *codes* at all, but have a default one provided for them by
    :meth:`iter_segments`.

    .. note::

        The vertices and codes arrays should be treated as
        immutable -- there are a number of optimizations and assumptions
        made up front in the constructor that will not change when the
        data changes.

    """

    # Path codes
    STOP      = 0    # 1 vertex
    MOVETO    = 1    # 1 vertex
    LINETO    = 2    # 1 vertex
    CURVE3    = 3    # 2 vertices
    CURVE4    = 4    # 3 vertices
    CLOSEPOLY = 79   # 1 vertex

    #: A dictionary mapping Path codes to the number of vertices that the
    #: code expects.
    NUM_VERTICES_FOR_CODE = {STOP: 1,
                             MOVETO: 1,
                             LINETO: 1,
                             CURVE3: 2,
                             CURVE4: 3,
                             CLOSEPOLY: 1}

    code_type = np.uint8

    def __init__(self, vertices, codes=None, _interpolation_steps=1, closed=False,
                 readonly=False):
        """
        Create a new path with the given vertices and codes.

        Parameters
        ----------
        vertices : array_like
            The ``(n, 2)`` float array, masked array or sequence of pairs
            representing the vertices of the path.

            If *vertices* contains masked values, they will be converted
            to NaNs which are then handled correctly by the Agg
            PathIterator and other consumers of path data, such as
            :meth:`iter_segments`.
        codes : {None, array_like}, optional
            n-length array integers representing the codes of the path.
            If not None, codes must be the same length as vertices.
            If None, *vertices* will be treated as a series of line segments.
        _interpolation_steps : int, optional
            Used as a hint to certain projections, such as Polar, that this
            path should be linearly interpolated immediately before drawing.
            This attribute is primarily an implementation detail and is not
            intended for public use.
        closed : bool, optional
            If *codes* is None and closed is True, vertices will be treated as
            line segments of a closed polygon.
        readonly : bool, optional
            Makes the path behave in an immutable way and sets the vertices
            and codes as read-only arrays.
        """
        if ma.isMaskedArray(vertices):
            vertices = vertices.astype(np.float_).filled(np.nan)
        else:
            vertices = np.asarray(vertices, np.float_)

        if codes is not None:
            codes = np.asarray(codes, self.code_type)
            assert codes.ndim == 1
            assert len(codes) == len(vertices)
            if len(codes):
                assert codes[0] == self.MOVETO
        elif closed:
            codes = np.empty(len(vertices), dtype=self.code_type)
            codes[0] = self.MOVETO
            codes[1:-1] = self.LINETO
            codes[-1] = self.CLOSEPOLY

        assert vertices.ndim == 2
        assert vertices.shape[1] == 2

        self._vertices = vertices
        self._codes = codes
        self._interpolation_steps = _interpolation_steps
        self._update_values()

        if readonly:
            self._vertices.flags.writeable = False
            if self._codes is not None:
                self._codes.flags.writeable = False
            self._readonly = True
        else:
            self._readonly = False

    @classmethod
    def _fast_from_codes_and_verts(cls, verts, codes, internals=None):
        """
        Creates a Path instance without the expense of calling the constructor

        Parameters
        ----------
        verts : numpy array
        codes : numpy array (may not be None)
        internals : dict or None
            The attributes that the resulting path should have.
            Allowed keys are ``readonly``, ``should_simplify``,
            ``simplify_threshold``, ``has_nonfinite`` and
            ``interpolation_steps``.

        """
        internals = internals or {}
        pth = cls.__new__(cls)
        pth._vertices = verts
        pth._codes = codes
        pth._readonly = internals.pop('readonly', False)
        pth.should_simplify = internals.pop('should_simplify', True)
        pth.simplify_threshold = internals.pop('simplify_threshold',
                                          rcParams['path.simplify_threshold'])
        pth._has_nonfinite = internals.pop('has_nonfinite', False)
        pth._interpolation_steps = internals.pop('interpolation_steps', 1)
        if internals:
            raise ValueError('Unexpected internals provided to '
                             '_fast_from_codes_and_verts: '
                             '{0}'.format('\n *'.join(internals.keys())))
        return pth

    def _update_values(self):
        self._should_simplify = (
            rcParams['path.simplify'] and
            (len(self._vertices) >= 128 and
            (self._codes is None or np.all(self._codes <= Path.LINETO))))
        self._simplify_threshold = rcParams['path.simplify_threshold']
        self._has_nonfinite = not np.isfinite(self._vertices).all()

    @property
    def vertices(self):
        """
        The list of vertices in the `Path` as an Nx2 numpy array.
        """
        return self._vertices

    @vertices.setter
    def vertices(self, vertices):
        if self._readonly:
            raise AttributeError("Can't set vertices on a readonly Path")
        self._vertices = vertices
        self._update_values()

    @property
    def codes(self):
        """
        The list of codes in the `Path` as a 1-D numpy array.  Each
        code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4`
        or `CLOSEPOLY`.  For codes that correspond to more than one
        vertex (`CURVE3` and `CURVE4`), that code will be repeated so
        that the length of `self.vertices` and `self.codes` is always
        the same.
        """
        return self._codes

    @codes.setter
    def codes(self, codes):
        if self._readonly:
            raise AttributeError("Can't set codes on a readonly Path")
        self._codes = codes
        self._update_values()

    @property
    def simplify_threshold(self):
        """
        The fraction of a pixel difference below which vertices will
        be simplified out.
        """
        return self._simplify_threshold

    @simplify_threshold.setter
    def simplify_threshold(self, threshold):
        self._simplify_threshold = threshold

    @property
    def has_nonfinite(self):
        """
        `True` if the vertices array has nonfinite values.
        """
        return self._has_nonfinite

    @property
    def should_simplify(self):
        """
        `True` if the vertices array should be simplified.
        """
        return self._should_simplify

    @should_simplify.setter
    def should_simplify(self, should_simplify):
        self._should_simplify = should_simplify

    @property
    def readonly(self):
        """
        `True` if the `Path` is read-only.
        """
        return self._readonly

    def __copy__(self):
        """
        Returns a shallow copy of the `Path`, which will share the
        vertices and codes with the source `Path`.
        """
        import copy
        return copy.copy(self)

    copy = __copy__

    def __deepcopy__(self):
        """
        Returns a deepcopy of the `Path`.  The `Path` will not be
        readonly, even if the source `Path` is.
        """
        return self.__class__(
            self.vertices.copy(), self.codes.copy(),
            _interpolation_steps=self._interpolation_steps)

    deepcopy = __deepcopy__

    @classmethod
    def make_compound_path_from_polys(cls, XY):
        """
        Make a compound path object to draw a number
        of polygons with equal numbers of sides XY is a (numpolys x
        numsides x 2) numpy array of vertices.  Return object is a
        :class:`Path`

        .. plot:: mpl_examples/api/histogram_path_demo.py

        """

        # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for the
        # CLOSEPOLY; the vert for the closepoly is ignored but we still need
        # it to keep the codes aligned with the vertices
        numpolys, numsides, two = XY.shape
        assert(two==2)
        stride = numsides + 1
        nverts = numpolys * stride
        verts = np.zeros((nverts, 2))
        codes = np.ones(nverts, int) * cls.LINETO
        codes[0::stride] = cls.MOVETO
        codes[numsides::stride] = cls.CLOSEPOLY
        for i in range(numsides):
            verts[i::stride] = XY[:,i]

        return cls(verts, codes)

    @classmethod
    def make_compound_path(cls, *args):
        """Make a compound path from a list of Path objects."""
        lengths = [len(x) for x in args]
        total_length = sum(lengths)

        vertices = np.vstack([x.vertices for x in args])
        vertices.reshape((total_length, 2))

        codes = np.empty(total_length, dtype=cls.code_type)
        i = 0
        for path in args:
            if path.codes is None:
                codes[i] = cls.MOVETO
                codes[i + 1:i + len(path.vertices)] = cls.LINETO
            else:
                codes[i:i + len(path.codes)] = path.codes
            i += len(path.vertices)

        return cls(vertices, codes)

    def __repr__(self):
        return "Path(%s, %s)" % (self.vertices, self.codes)

    def __len__(self):
        return len(self.vertices)

    def iter_segments(self, transform=None, remove_nans=True, clip=None,
                      snap=False, stroke_width=1.0, simplify=None,
                      curves=True, sketch=None):
        """
        Iterates over all of the curve segments in the path.  Each
        iteration returns a 2-tuple (*vertices*, *code*), where
        *vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is
        one of the :class:`Path` codes.

        Additionally, this method can provide a number of standard
        cleanups and conversions to the path.

        Parameters
        ----------
        transform : None or :class:`~matplotlib.transforms.Transform` instance
            If not None, the given affine transformation will
            be applied to the path.
        remove_nans : {False, True}, optional
            If True, will remove all NaNs from the path and
            insert MOVETO commands to skip over them.
        clip : None or sequence, optional
            If not None, must be a four-tuple (x1, y1, x2, y2)
            defining a rectangle in which to clip the path.
        snap : None or bool, optional
            If None, auto-snap to pixels, to reduce
            fuzziness of rectilinear lines.  If True, force snapping, and
            if False, don't snap.
        stroke_width : float, optional
            The width of the stroke being drawn.  Needed
             as a hint for the snapping algorithm.
        simplify : None or bool, optional
            If True, perform simplification, to remove
             vertices that do not affect the appearance of the path.  If
             False, perform no simplification.  If None, use the
             should_simplify member variable.
        curves : {True, False}, optional
            If True, curve segments will be returned as curve
            segments.  If False, all curves will be converted to line
            segments.
        sketch : None or sequence, optional
            If not None, must be a 3-tuple of the form
            (scale, length, randomness), representing the sketch
            parameters.
        """
        if not len(self):
            return

        cleaned = self.cleaned(transform=transform,
                               remove_nans=remove_nans, clip=clip,
                               snap=snap, stroke_width=stroke_width,
                               simplify=simplify, curves=curves,
                               sketch=sketch)
        vertices = cleaned.vertices
        codes = cleaned.codes
        len_vertices = vertices.shape[0]

        # Cache these object lookups for performance in the loop.
        NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE
        STOP = self.STOP

        i = 0
        while i < len_vertices:
            code = codes[i]
            if code == STOP:
                return
            else:
                num_vertices = NUM_VERTICES_FOR_CODE[code]
                curr_vertices = vertices[i:i+num_vertices].flatten()
                yield curr_vertices, code
                i += num_vertices

    def cleaned(self, transform=None, remove_nans=False, clip=None,
                  quantize=False, simplify=False, curves=False,
                  stroke_width=1.0, snap=False, sketch=None):
        """
        Cleans up the path according to the parameters returning a new
        Path instance.

        .. seealso::

            See :meth:`iter_segments` for details of the keyword arguments.

        Returns
        -------
        Path instance with cleaned up vertices and codes.

        """
        vertices, codes = _path.cleanup_path(self, transform,
                                             remove_nans, clip,
                                             snap, stroke_width,
                                             simplify, curves, sketch)
        internals = {'should_simplify': self.should_simplify and not simplify,
                     'has_nonfinite': self.has_nonfinite and not remove_nans,
                     'simplify_threshold': self.simplify_threshold,
                     'interpolation_steps': self._interpolation_steps}
        return Path._fast_from_codes_and_verts(vertices, codes, internals)

    def transformed(self, transform):
        """
        Return a transformed copy of the path.

        .. seealso::

            :class:`matplotlib.transforms.TransformedPath`
                A specialized path class that will cache the
                transformed result and automatically update when the
                transform changes.
        """
        return Path(transform.transform(self.vertices), self.codes,
                    self._interpolation_steps)

    def contains_point(self, point, transform=None, radius=0.0):
        """
        Returns *True* if the path contains the given point.

        If *transform* is not *None*, the path will be transformed
        before performing the test.

        *radius* allows the path to be made slightly larger or
        smaller.
        """
        if transform is not None:
            transform = transform.frozen()
        result = _path.point_in_path(point[0], point[1], radius, self, transform)
        return result

    def contains_points(self, points, transform=None, radius=0.0):
        """
        Returns a bool array which is *True* if the path contains the
        corresponding point.

        If *transform* is not *None*, the path will be transformed
        before performing the test.

        *radius* allows the path to be made slightly larger or
        smaller.
        """
        if transform is not None:
            transform = transform.frozen()
        result = _path.points_in_path(points, radius, self, transform)
        return result

    def contains_path(self, path, transform=None):
        """
        Returns *True* if this path completely contains the given path.

        If *transform* is not *None*, the path will be transformed
        before performing the test.
        """
        if transform is not None:
            transform = transform.frozen()
        return _path.path_in_path(self, None, path, transform)

    def get_extents(self, transform=None):
        """
        Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the
        path.

        Unlike computing the extents on the *vertices* alone, this
        algorithm will take into account the curves and deal with
        control points appropriately.
        """
        from transforms import Bbox
        path = self
        if transform is not None:
            transform = transform.frozen()
            if not transform.is_affine:
                path = self.transformed(transform)
                transform = None
        return Bbox(_path.get_path_extents(path, transform))

    def intersects_path(self, other, filled=True):
        """
        Returns *True* if this path intersects another given path.

        *filled*, when True, treats the paths as if they were filled.
        That is, if one path completely encloses the other,
        :meth:`intersects_path` will return True.
        """
        return _path.path_intersects_path(self, other, filled)

    def intersects_bbox(self, bbox, filled=True):
        """
        Returns *True* if this path intersects a given
        :class:`~matplotlib.transforms.Bbox`.

        *filled*, when True, treats the path as if it was filled.
        That is, if one path completely encloses the other,
        :meth:`intersects_path` will return True.
        """
        from transforms import BboxTransformTo
        rectangle = self.unit_rectangle().transformed(
            BboxTransformTo(bbox))
        result = self.intersects_path(rectangle, filled)
        return result

    def interpolated(self, steps):
        """
        Returns a new path resampled to length N x steps.  Does not
        currently handle interpolating curves.
        """
        if steps == 1:
            return self

        vertices = simple_linear_interpolation(self.vertices, steps)
        codes = self.codes
        if codes is not None:
            new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, ))
            new_codes[0::steps] = codes
        else:
            new_codes = None
        return Path(vertices, new_codes)

    def to_polygons(self, transform=None, width=0, height=0):
        """
        Convert this path to a list of polygons.  Each polygon is an
        Nx2 array of vertices.  In other words, each polygon has no
        ``MOVETO`` instructions or curves.  This is useful for
        displaying in backends that do not support compound paths or
        Bezier curves, such as GDK.

        If *width* and *height* are both non-zero then the lines will
        be simplified so that vertices outside of (0, 0), (width,
        height) will be clipped.
        """
        if len(self.vertices) == 0:
            return []

        if transform is not None:
            transform = transform.frozen()

        if self.codes is None and (width == 0 or height == 0):
            if transform is None:
                return [self.vertices]
            else:
                return [transform.transform(self.vertices)]

        # Deal with the case where there are curves and/or multiple
        # subpaths (using extension code)
        return _path.convert_path_to_polygons(self, transform, width, height)

    _unit_rectangle = None
    @classmethod
    def unit_rectangle(cls):
        """
        Return a :class:`Path` instance of the unit rectangle
        from (0, 0) to (1, 1).
        """
        if cls._unit_rectangle is None:
            cls._unit_rectangle = \
                cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]],
                    [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, cls.CLOSEPOLY],
                    readonly=True)
        return cls._unit_rectangle

    _unit_regular_polygons = WeakValueDictionary()

    @classmethod
    def unit_regular_polygon(cls, numVertices):
        """
        Return a :class:`Path` instance for a unit regular
        polygon with the given *numVertices* and radius of 1.0,
        centered at (0, 0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_polygons.get(numVertices)
        else:
            path = None
        if path is None:
            theta = (2*np.pi/numVertices *
                     np.arange(numVertices + 1).reshape((numVertices + 1, 1)))
            # This initial rotation is to make sure the polygon always
            # "points-up"
            theta += np.pi / 2.0
            verts = np.concatenate((np.cos(theta), np.sin(theta)), 1)
            codes = np.empty((numVertices + 1,))
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes, readonly=True)
            if numVertices <= 16:
                cls._unit_regular_polygons[numVertices] = path
        return path

    _unit_regular_stars = WeakValueDictionary()

    @classmethod
    def unit_regular_star(cls, numVertices, innerCircle=0.5):
        """
        Return a :class:`Path` for a unit regular star
        with the given numVertices and radius of 1.0, centered at (0,
        0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_stars.get((numVertices, innerCircle))
        else:
            path = None
        if path is None:
            ns2 = numVertices * 2
            theta = (2*np.pi/ns2 * np.arange(ns2 + 1))
            # This initial rotation is to make sure the polygon always
            # "points-up"
            theta += np.pi / 2.0
            r = np.ones(ns2 + 1)
            r[1::2] = innerCircle
            verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose()
            codes = np.empty((ns2 + 1,))
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes, readonly=True)
            if numVertices <= 16:
                cls._unit_regular_polygons[(numVertices, innerCircle)] = path
        return path

    @classmethod
    def unit_regular_asterisk(cls, numVertices):
        """
        Return a :class:`Path` for a unit regular
        asterisk with the given numVertices and radius of 1.0,
        centered at (0, 0).
        """
        return cls.unit_regular_star(numVertices, 0.0)

    _unit_circle = None

    @classmethod
    def unit_circle(cls):
        """
        Return a :class:`Path` of the unit circle.
        The circle is approximated using cubic Bezier curves.  This
        uses 8 splines around the circle using the approach presented
        here:

          Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
          Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
        """
        if cls._unit_circle is None:
            MAGIC = 0.2652031
            SQRTHALF = np.sqrt(0.5)
            MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)

            vertices = np.array(
                [[0.0, -1.0],

                 [MAGIC, -1.0],
                 [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                 [SQRTHALF, -SQRTHALF],

                 [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                 [1.0, -MAGIC],
                 [1.0, 0.0],

                 [1.0, MAGIC],
                 [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                 [SQRTHALF, SQRTHALF],

                 [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                 [MAGIC, 1.0],
                 [0.0, 1.0],

                 [-MAGIC, 1.0],
                 [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45],
                 [-SQRTHALF, SQRTHALF],

                 [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45],
                 [-1.0, MAGIC],
                 [-1.0, 0.0],

                 [-1.0, -MAGIC],
                 [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45],
                 [-SQRTHALF, -SQRTHALF],

                 [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45],
                 [-MAGIC, -1.0],
                 [0.0, -1.0],

                 [0.0, -1.0]],
                np.float_)

            codes = cls.CURVE4 * np.ones(26)
            codes[0] = cls.MOVETO
            codes[-1] = cls.CLOSEPOLY

            cls._unit_circle = cls(vertices, codes, readonly=True)
        return cls._unit_circle

    _unit_circle_righthalf = None

    @classmethod
    def unit_circle_righthalf(cls):
        """
        Return a :class:`Path` of the right half
        of a unit circle. The circle is approximated using cubic Bezier
        curves.  This uses 4 splines around the circle using the approach
        presented here:

          Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
          Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
        """
        if cls._unit_circle_righthalf is None:
            MAGIC = 0.2652031
            SQRTHALF = np.sqrt(0.5)
            MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)

            vertices = np.array(
                [[0.0, -1.0],

                 [MAGIC, -1.0],
                 [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                 [SQRTHALF, -SQRTHALF],

                 [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                 [1.0, -MAGIC],
                 [1.0, 0.0],

                 [1.0, MAGIC],
                 [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                 [SQRTHALF, SQRTHALF],

                 [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                 [MAGIC, 1.0],
                 [0.0, 1.0],

                 [0.0, -1.0]],

                np.float_)

            codes = cls.CURVE4 * np.ones(14)
            codes[0] = cls.MOVETO
            codes[-1] = cls.CLOSEPOLY

            cls._unit_circle_righthalf = cls(vertices, codes, readonly=True)
        return cls._unit_circle_righthalf

    @classmethod
    def arc(cls, theta1, theta2, n=None, is_wedge=False):
        """
        Return an arc on the unit circle from angle
        *theta1* to angle *theta2* (in degrees).

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.

           Masionobe, L.  2003.  `Drawing an elliptical arc using
           polylines, quadratic or cubic Bezier curves
           <http://www.spaceroots.org/documents/ellipse/index.html>`_.
        """
        # degrees to radians
        theta1 *= np.pi / 180.0
        theta2 *= np.pi / 180.0

        twopi  = np.pi * 2.0
        halfpi = np.pi * 0.5

        eta1 = np.arctan2(np.sin(theta1), np.cos(theta1))
        eta2 = np.arctan2(np.sin(theta2), np.cos(theta2))
        eta2 -= twopi * np.floor((eta2 - eta1) / twopi)
        if (theta2 - theta1 > np.pi) and (eta2 - eta1 < np.pi):
            eta2 += twopi

        # number of curve segments to make
        if n is None:
            n = int(2 ** np.ceil((eta2 - eta1) / halfpi))
        if n < 1:
            raise ValueError("n must be >= 1 or None")

        deta = (eta2 - eta1) / n
        t = np.tan(0.5 * deta)
        alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0

        steps = np.linspace(eta1, eta2, n + 1, True)
        cos_eta = np.cos(steps)
        sin_eta = np.sin(steps)

        xA = cos_eta[:-1]
        yA = sin_eta[:-1]
        xA_dot = -yA
        yA_dot = xA

        xB = cos_eta[1:]
        yB = sin_eta[1:]
        xB_dot = -yB
        yB_dot = xB

        if is_wedge:
            length = n * 3 + 4
            vertices = np.zeros((length, 2), np.float_)
            codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
            vertices[1] = [xA[0], yA[0]]
            codes[0:2] = [cls.MOVETO, cls.LINETO]
            codes[-2:] = [cls.LINETO, cls.CLOSEPOLY]
            vertex_offset = 2
            end = length - 2
        else:
            length = n * 3 + 1
            vertices = np.empty((length, 2), np.float_)
            codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
            vertices[0] = [xA[0], yA[0]]
            codes[0] = cls.MOVETO
            vertex_offset = 1
            end = length

        vertices[vertex_offset  :end:3, 0] = xA + alpha * xA_dot
        vertices[vertex_offset  :end:3, 1] = yA + alpha * yA_dot
        vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot
        vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot
        vertices[vertex_offset+2:end:3, 0] = xB
        vertices[vertex_offset+2:end:3, 1] = yB

        return cls(vertices, codes, readonly=True)

    @classmethod
    def wedge(cls, theta1, theta2, n=None):
        """
        Return a wedge of the unit circle from angle
        *theta1* to angle *theta2* (in degrees).

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.
        """
        return cls.arc(theta1, theta2, n, True)

    _hatch_dict = maxdict(8)

    @classmethod
    def hatch(cls, hatchpattern, density=6):
        """
        Given a hatch specifier, *hatchpattern*, generates a Path that
        can be used in a repeated hatching pattern.  *density* is the
        number of lines per unit square.
        """
        from matplotlib.hatch import get_path

        if hatchpattern is None:
            return None

        hatch_path = cls._hatch_dict.get((hatchpattern, density))
        if hatch_path is not None:
            return hatch_path

        hatch_path = get_path(hatchpattern, density)
        cls._hatch_dict[(hatchpattern, density)] = hatch_path
        return hatch_path

    def clip_to_bbox(self, bbox, inside=True):
        """
        Clip the path to the given bounding box.

        The path must be made up of one or more closed polygons.  This
        algorithm will not behave correctly for unclosed paths.

        If *inside* is `True`, clip to the inside of the box, otherwise
        to the outside of the box.
        """
        # Use make_compound_path_from_polys
        verts = _path.clip_path_to_rect(self, bbox, inside)
        paths = [Path(poly) for poly in verts]
        return self.make_compound_path(*paths)


def get_path_collection_extents(
        master_transform, paths, transforms, offsets, offset_transform):
    """
    Given a sequence of :class:`Path` objects,
    :class:`~matplotlib.transforms.Transform` objects and offsets, as
    found in a :class:`~matplotlib.collections.PathCollection`,
    returns the bounding box that encapsulates all of them.

    *master_transform* is a global transformation to apply to all paths

    *paths* is a sequence of :class:`Path` instances.

    *transforms* is a sequence of
    :class:`~matplotlib.transforms.Affine2D` instances.

    *offsets* is a sequence of (x, y) offsets (or an Nx2 array)

    *offset_transform* is a :class:`~matplotlib.transforms.Affine2D`
    to apply to the offsets before applying the offset to the path.

    The way that *paths*, *transforms* and *offsets* are combined
    follows the same method as for collections.  Each is iterated over
    independently, so if you have 3 paths, 2 transforms and 1 offset,
    their combinations are as follows:

        (A, A, A), (B, B, A), (C, A, A)
    """
    from transforms import Bbox
    if len(paths) == 0:
        raise ValueError("No paths provided")
    return Bbox.from_extents(*_path.get_path_collection_extents(
        master_transform, paths, transforms, offsets, offset_transform))


def get_paths_extents(paths, transforms=[]):
    """
    Given a sequence of :class:`Path` objects and optional
    :class:`~matplotlib.transforms.Transform` objects, returns the
    bounding box that encapsulates all of them.

    *paths* is a sequence of :class:`Path` instances.

    *transforms* is an optional sequence of
    :class:`~matplotlib.transforms.Affine2D` instances to apply to
    each path.
    """
    from transforms import Bbox, Affine2D
    if len(paths) == 0:
        raise ValueError("No paths provided")
    return Bbox.from_extents(*_path.get_path_collection_extents(
        Affine2D(), paths, transforms, [], Affine2D()))


def _define_deprecated_functions(ns):
    from cbook import deprecated

    # The C++ functions are not meant to be used directly.
    # Users should use the more pythonic wrappers in the Path
    # class instead.
    for func, alternative in [
            ('point_in_path', 'path.Path.contains_point'),
            ('get_path_extents', 'path.Path.get_extents'),
            ('point_in_path_collection', 'collection.Collection.contains'),
            ('path_in_path', 'path.Path.contains_path'),
            ('path_intersects_path', 'path.Path.intersects_path'),
            ('convert_path_to_polygons', 'path.Path.to_polygons'),
            ('cleanup_path', 'path.Path.cleaned'),
            ('points_in_path', 'path.Path.contains_points'),
            ('clip_path_to_rect', 'path.Path.clip_to_bbox')]:
        ns[func] = deprecated(
            since='1.3', alternative=alternative)(getattr(_path, func))


_define_deprecated_functions(locals())