/usr/share/pyshared/matplotlib/path.py is in python-matplotlib 1.3.1-1ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 | """
A module for dealing with the polylines used throughout matplotlib.
The primary class for polyline handling in matplotlib is :class:`Path`.
Almost all vector drawing makes use of Paths somewhere in the drawing
pipeline.
Whilst a :class:`Path` instance itself cannot be drawn, there exists
:class:`~matplotlib.artist.Artist` subclasses which can be used for
convenient Path visualisation - the two most frequently used of these are
:class:`~matplotlib.patches.PathPatch` and
:class:`~matplotlib.collections.PathCollection`.
"""
from __future__ import print_function
import math
from weakref import WeakValueDictionary
import numpy as np
from numpy import ma
from matplotlib import _path
from matplotlib.cbook import simple_linear_interpolation, maxdict
from matplotlib import rcParams
class Path(object):
"""
:class:`Path` represents a series of possibly disconnected,
possibly closed, line and curve segments.
The underlying storage is made up of two parallel numpy arrays:
- *vertices*: an Nx2 float array of vertices
- *codes*: an N-length uint8 array of vertex types
These two arrays always have the same length in the first
dimension. For example, to represent a cubic curve, you must
provide three vertices as well as three codes ``CURVE3``.
The code types are:
- ``STOP`` : 1 vertex (ignored)
A marker for the end of the entire path (currently not
required and ignored)
- ``MOVETO`` : 1 vertex
Pick up the pen and move to the given vertex.
- ``LINETO`` : 1 vertex
Draw a line from the current position to the given vertex.
- ``CURVE3`` : 1 control point, 1 endpoint
Draw a quadratic Bezier curve from the current position,
with the given control point, to the given end point.
- ``CURVE4`` : 2 control points, 1 endpoint
Draw a cubic Bezier curve from the current position, with
the given control points, to the given end point.
- ``CLOSEPOLY`` : 1 vertex (ignored)
Draw a line segment to the start point of the current
polyline.
Users of Path objects should not access the vertices and codes
arrays directly. Instead, they should use :meth:`iter_segments`
or :meth:`cleaned` to get the vertex/code pairs. This is important,
since many :class:`Path` objects, as an optimization, do not store a
*codes* at all, but have a default one provided for them by
:meth:`iter_segments`.
.. note::
The vertices and codes arrays should be treated as
immutable -- there are a number of optimizations and assumptions
made up front in the constructor that will not change when the
data changes.
"""
# Path codes
STOP = 0 # 1 vertex
MOVETO = 1 # 1 vertex
LINETO = 2 # 1 vertex
CURVE3 = 3 # 2 vertices
CURVE4 = 4 # 3 vertices
CLOSEPOLY = 79 # 1 vertex
#: A dictionary mapping Path codes to the number of vertices that the
#: code expects.
NUM_VERTICES_FOR_CODE = {STOP: 1,
MOVETO: 1,
LINETO: 1,
CURVE3: 2,
CURVE4: 3,
CLOSEPOLY: 1}
code_type = np.uint8
def __init__(self, vertices, codes=None, _interpolation_steps=1, closed=False,
readonly=False):
"""
Create a new path with the given vertices and codes.
Parameters
----------
vertices : array_like
The ``(n, 2)`` float array, masked array or sequence of pairs
representing the vertices of the path.
If *vertices* contains masked values, they will be converted
to NaNs which are then handled correctly by the Agg
PathIterator and other consumers of path data, such as
:meth:`iter_segments`.
codes : {None, array_like}, optional
n-length array integers representing the codes of the path.
If not None, codes must be the same length as vertices.
If None, *vertices* will be treated as a series of line segments.
_interpolation_steps : int, optional
Used as a hint to certain projections, such as Polar, that this
path should be linearly interpolated immediately before drawing.
This attribute is primarily an implementation detail and is not
intended for public use.
closed : bool, optional
If *codes* is None and closed is True, vertices will be treated as
line segments of a closed polygon.
readonly : bool, optional
Makes the path behave in an immutable way and sets the vertices
and codes as read-only arrays.
"""
if ma.isMaskedArray(vertices):
vertices = vertices.astype(np.float_).filled(np.nan)
else:
vertices = np.asarray(vertices, np.float_)
if codes is not None:
codes = np.asarray(codes, self.code_type)
assert codes.ndim == 1
assert len(codes) == len(vertices)
if len(codes):
assert codes[0] == self.MOVETO
elif closed:
codes = np.empty(len(vertices), dtype=self.code_type)
codes[0] = self.MOVETO
codes[1:-1] = self.LINETO
codes[-1] = self.CLOSEPOLY
assert vertices.ndim == 2
assert vertices.shape[1] == 2
self._vertices = vertices
self._codes = codes
self._interpolation_steps = _interpolation_steps
self._update_values()
if readonly:
self._vertices.flags.writeable = False
if self._codes is not None:
self._codes.flags.writeable = False
self._readonly = True
else:
self._readonly = False
@classmethod
def _fast_from_codes_and_verts(cls, verts, codes, internals=None):
"""
Creates a Path instance without the expense of calling the constructor
Parameters
----------
verts : numpy array
codes : numpy array (may not be None)
internals : dict or None
The attributes that the resulting path should have.
Allowed keys are ``readonly``, ``should_simplify``,
``simplify_threshold``, ``has_nonfinite`` and
``interpolation_steps``.
"""
internals = internals or {}
pth = cls.__new__(cls)
pth._vertices = verts
pth._codes = codes
pth._readonly = internals.pop('readonly', False)
pth.should_simplify = internals.pop('should_simplify', True)
pth.simplify_threshold = internals.pop('simplify_threshold',
rcParams['path.simplify_threshold'])
pth._has_nonfinite = internals.pop('has_nonfinite', False)
pth._interpolation_steps = internals.pop('interpolation_steps', 1)
if internals:
raise ValueError('Unexpected internals provided to '
'_fast_from_codes_and_verts: '
'{0}'.format('\n *'.join(internals.keys())))
return pth
def _update_values(self):
self._should_simplify = (
rcParams['path.simplify'] and
(len(self._vertices) >= 128 and
(self._codes is None or np.all(self._codes <= Path.LINETO))))
self._simplify_threshold = rcParams['path.simplify_threshold']
self._has_nonfinite = not np.isfinite(self._vertices).all()
@property
def vertices(self):
"""
The list of vertices in the `Path` as an Nx2 numpy array.
"""
return self._vertices
@vertices.setter
def vertices(self, vertices):
if self._readonly:
raise AttributeError("Can't set vertices on a readonly Path")
self._vertices = vertices
self._update_values()
@property
def codes(self):
"""
The list of codes in the `Path` as a 1-D numpy array. Each
code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4`
or `CLOSEPOLY`. For codes that correspond to more than one
vertex (`CURVE3` and `CURVE4`), that code will be repeated so
that the length of `self.vertices` and `self.codes` is always
the same.
"""
return self._codes
@codes.setter
def codes(self, codes):
if self._readonly:
raise AttributeError("Can't set codes on a readonly Path")
self._codes = codes
self._update_values()
@property
def simplify_threshold(self):
"""
The fraction of a pixel difference below which vertices will
be simplified out.
"""
return self._simplify_threshold
@simplify_threshold.setter
def simplify_threshold(self, threshold):
self._simplify_threshold = threshold
@property
def has_nonfinite(self):
"""
`True` if the vertices array has nonfinite values.
"""
return self._has_nonfinite
@property
def should_simplify(self):
"""
`True` if the vertices array should be simplified.
"""
return self._should_simplify
@should_simplify.setter
def should_simplify(self, should_simplify):
self._should_simplify = should_simplify
@property
def readonly(self):
"""
`True` if the `Path` is read-only.
"""
return self._readonly
def __copy__(self):
"""
Returns a shallow copy of the `Path`, which will share the
vertices and codes with the source `Path`.
"""
import copy
return copy.copy(self)
copy = __copy__
def __deepcopy__(self):
"""
Returns a deepcopy of the `Path`. The `Path` will not be
readonly, even if the source `Path` is.
"""
return self.__class__(
self.vertices.copy(), self.codes.copy(),
_interpolation_steps=self._interpolation_steps)
deepcopy = __deepcopy__
@classmethod
def make_compound_path_from_polys(cls, XY):
"""
Make a compound path object to draw a number
of polygons with equal numbers of sides XY is a (numpolys x
numsides x 2) numpy array of vertices. Return object is a
:class:`Path`
.. plot:: mpl_examples/api/histogram_path_demo.py
"""
# for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for the
# CLOSEPOLY; the vert for the closepoly is ignored but we still need
# it to keep the codes aligned with the vertices
numpolys, numsides, two = XY.shape
assert(two==2)
stride = numsides + 1
nverts = numpolys * stride
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * cls.LINETO
codes[0::stride] = cls.MOVETO
codes[numsides::stride] = cls.CLOSEPOLY
for i in range(numsides):
verts[i::stride] = XY[:,i]
return cls(verts, codes)
@classmethod
def make_compound_path(cls, *args):
"""Make a compound path from a list of Path objects."""
lengths = [len(x) for x in args]
total_length = sum(lengths)
vertices = np.vstack([x.vertices for x in args])
vertices.reshape((total_length, 2))
codes = np.empty(total_length, dtype=cls.code_type)
i = 0
for path in args:
if path.codes is None:
codes[i] = cls.MOVETO
codes[i + 1:i + len(path.vertices)] = cls.LINETO
else:
codes[i:i + len(path.codes)] = path.codes
i += len(path.vertices)
return cls(vertices, codes)
def __repr__(self):
return "Path(%s, %s)" % (self.vertices, self.codes)
def __len__(self):
return len(self.vertices)
def iter_segments(self, transform=None, remove_nans=True, clip=None,
snap=False, stroke_width=1.0, simplify=None,
curves=True, sketch=None):
"""
Iterates over all of the curve segments in the path. Each
iteration returns a 2-tuple (*vertices*, *code*), where
*vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is
one of the :class:`Path` codes.
Additionally, this method can provide a number of standard
cleanups and conversions to the path.
Parameters
----------
transform : None or :class:`~matplotlib.transforms.Transform` instance
If not None, the given affine transformation will
be applied to the path.
remove_nans : {False, True}, optional
If True, will remove all NaNs from the path and
insert MOVETO commands to skip over them.
clip : None or sequence, optional
If not None, must be a four-tuple (x1, y1, x2, y2)
defining a rectangle in which to clip the path.
snap : None or bool, optional
If None, auto-snap to pixels, to reduce
fuzziness of rectilinear lines. If True, force snapping, and
if False, don't snap.
stroke_width : float, optional
The width of the stroke being drawn. Needed
as a hint for the snapping algorithm.
simplify : None or bool, optional
If True, perform simplification, to remove
vertices that do not affect the appearance of the path. If
False, perform no simplification. If None, use the
should_simplify member variable.
curves : {True, False}, optional
If True, curve segments will be returned as curve
segments. If False, all curves will be converted to line
segments.
sketch : None or sequence, optional
If not None, must be a 3-tuple of the form
(scale, length, randomness), representing the sketch
parameters.
"""
if not len(self):
return
cleaned = self.cleaned(transform=transform,
remove_nans=remove_nans, clip=clip,
snap=snap, stroke_width=stroke_width,
simplify=simplify, curves=curves,
sketch=sketch)
vertices = cleaned.vertices
codes = cleaned.codes
len_vertices = vertices.shape[0]
# Cache these object lookups for performance in the loop.
NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE
STOP = self.STOP
i = 0
while i < len_vertices:
code = codes[i]
if code == STOP:
return
else:
num_vertices = NUM_VERTICES_FOR_CODE[code]
curr_vertices = vertices[i:i+num_vertices].flatten()
yield curr_vertices, code
i += num_vertices
def cleaned(self, transform=None, remove_nans=False, clip=None,
quantize=False, simplify=False, curves=False,
stroke_width=1.0, snap=False, sketch=None):
"""
Cleans up the path according to the parameters returning a new
Path instance.
.. seealso::
See :meth:`iter_segments` for details of the keyword arguments.
Returns
-------
Path instance with cleaned up vertices and codes.
"""
vertices, codes = _path.cleanup_path(self, transform,
remove_nans, clip,
snap, stroke_width,
simplify, curves, sketch)
internals = {'should_simplify': self.should_simplify and not simplify,
'has_nonfinite': self.has_nonfinite and not remove_nans,
'simplify_threshold': self.simplify_threshold,
'interpolation_steps': self._interpolation_steps}
return Path._fast_from_codes_and_verts(vertices, codes, internals)
def transformed(self, transform):
"""
Return a transformed copy of the path.
.. seealso::
:class:`matplotlib.transforms.TransformedPath`
A specialized path class that will cache the
transformed result and automatically update when the
transform changes.
"""
return Path(transform.transform(self.vertices), self.codes,
self._interpolation_steps)
def contains_point(self, point, transform=None, radius=0.0):
"""
Returns *True* if the path contains the given point.
If *transform* is not *None*, the path will be transformed
before performing the test.
*radius* allows the path to be made slightly larger or
smaller.
"""
if transform is not None:
transform = transform.frozen()
result = _path.point_in_path(point[0], point[1], radius, self, transform)
return result
def contains_points(self, points, transform=None, radius=0.0):
"""
Returns a bool array which is *True* if the path contains the
corresponding point.
If *transform* is not *None*, the path will be transformed
before performing the test.
*radius* allows the path to be made slightly larger or
smaller.
"""
if transform is not None:
transform = transform.frozen()
result = _path.points_in_path(points, radius, self, transform)
return result
def contains_path(self, path, transform=None):
"""
Returns *True* if this path completely contains the given path.
If *transform* is not *None*, the path will be transformed
before performing the test.
"""
if transform is not None:
transform = transform.frozen()
return _path.path_in_path(self, None, path, transform)
def get_extents(self, transform=None):
"""
Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the
path.
Unlike computing the extents on the *vertices* alone, this
algorithm will take into account the curves and deal with
control points appropriately.
"""
from transforms import Bbox
path = self
if transform is not None:
transform = transform.frozen()
if not transform.is_affine:
path = self.transformed(transform)
transform = None
return Bbox(_path.get_path_extents(path, transform))
def intersects_path(self, other, filled=True):
"""
Returns *True* if this path intersects another given path.
*filled*, when True, treats the paths as if they were filled.
That is, if one path completely encloses the other,
:meth:`intersects_path` will return True.
"""
return _path.path_intersects_path(self, other, filled)
def intersects_bbox(self, bbox, filled=True):
"""
Returns *True* if this path intersects a given
:class:`~matplotlib.transforms.Bbox`.
*filled*, when True, treats the path as if it was filled.
That is, if one path completely encloses the other,
:meth:`intersects_path` will return True.
"""
from transforms import BboxTransformTo
rectangle = self.unit_rectangle().transformed(
BboxTransformTo(bbox))
result = self.intersects_path(rectangle, filled)
return result
def interpolated(self, steps):
"""
Returns a new path resampled to length N x steps. Does not
currently handle interpolating curves.
"""
if steps == 1:
return self
vertices = simple_linear_interpolation(self.vertices, steps)
codes = self.codes
if codes is not None:
new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, ))
new_codes[0::steps] = codes
else:
new_codes = None
return Path(vertices, new_codes)
def to_polygons(self, transform=None, width=0, height=0):
"""
Convert this path to a list of polygons. Each polygon is an
Nx2 array of vertices. In other words, each polygon has no
``MOVETO`` instructions or curves. This is useful for
displaying in backends that do not support compound paths or
Bezier curves, such as GDK.
If *width* and *height* are both non-zero then the lines will
be simplified so that vertices outside of (0, 0), (width,
height) will be clipped.
"""
if len(self.vertices) == 0:
return []
if transform is not None:
transform = transform.frozen()
if self.codes is None and (width == 0 or height == 0):
if transform is None:
return [self.vertices]
else:
return [transform.transform(self.vertices)]
# Deal with the case where there are curves and/or multiple
# subpaths (using extension code)
return _path.convert_path_to_polygons(self, transform, width, height)
_unit_rectangle = None
@classmethod
def unit_rectangle(cls):
"""
Return a :class:`Path` instance of the unit rectangle
from (0, 0) to (1, 1).
"""
if cls._unit_rectangle is None:
cls._unit_rectangle = \
cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]],
[cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, cls.CLOSEPOLY],
readonly=True)
return cls._unit_rectangle
_unit_regular_polygons = WeakValueDictionary()
@classmethod
def unit_regular_polygon(cls, numVertices):
"""
Return a :class:`Path` instance for a unit regular
polygon with the given *numVertices* and radius of 1.0,
centered at (0, 0).
"""
if numVertices <= 16:
path = cls._unit_regular_polygons.get(numVertices)
else:
path = None
if path is None:
theta = (2*np.pi/numVertices *
np.arange(numVertices + 1).reshape((numVertices + 1, 1)))
# This initial rotation is to make sure the polygon always
# "points-up"
theta += np.pi / 2.0
verts = np.concatenate((np.cos(theta), np.sin(theta)), 1)
codes = np.empty((numVertices + 1,))
codes[0] = cls.MOVETO
codes[1:-1] = cls.LINETO
codes[-1] = cls.CLOSEPOLY
path = cls(verts, codes, readonly=True)
if numVertices <= 16:
cls._unit_regular_polygons[numVertices] = path
return path
_unit_regular_stars = WeakValueDictionary()
@classmethod
def unit_regular_star(cls, numVertices, innerCircle=0.5):
"""
Return a :class:`Path` for a unit regular star
with the given numVertices and radius of 1.0, centered at (0,
0).
"""
if numVertices <= 16:
path = cls._unit_regular_stars.get((numVertices, innerCircle))
else:
path = None
if path is None:
ns2 = numVertices * 2
theta = (2*np.pi/ns2 * np.arange(ns2 + 1))
# This initial rotation is to make sure the polygon always
# "points-up"
theta += np.pi / 2.0
r = np.ones(ns2 + 1)
r[1::2] = innerCircle
verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose()
codes = np.empty((ns2 + 1,))
codes[0] = cls.MOVETO
codes[1:-1] = cls.LINETO
codes[-1] = cls.CLOSEPOLY
path = cls(verts, codes, readonly=True)
if numVertices <= 16:
cls._unit_regular_polygons[(numVertices, innerCircle)] = path
return path
@classmethod
def unit_regular_asterisk(cls, numVertices):
"""
Return a :class:`Path` for a unit regular
asterisk with the given numVertices and radius of 1.0,
centered at (0, 0).
"""
return cls.unit_regular_star(numVertices, 0.0)
_unit_circle = None
@classmethod
def unit_circle(cls):
"""
Return a :class:`Path` of the unit circle.
The circle is approximated using cubic Bezier curves. This
uses 8 splines around the circle using the approach presented
here:
Lancaster, Don. `Approximating a Circle or an Ellipse Using Four
Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
"""
if cls._unit_circle is None:
MAGIC = 0.2652031
SQRTHALF = np.sqrt(0.5)
MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)
vertices = np.array(
[[0.0, -1.0],
[MAGIC, -1.0],
[SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
[SQRTHALF, -SQRTHALF],
[SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
[1.0, -MAGIC],
[1.0, 0.0],
[1.0, MAGIC],
[SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
[SQRTHALF, SQRTHALF],
[SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
[MAGIC, 1.0],
[0.0, 1.0],
[-MAGIC, 1.0],
[-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45],
[-SQRTHALF, SQRTHALF],
[-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45],
[-1.0, MAGIC],
[-1.0, 0.0],
[-1.0, -MAGIC],
[-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45],
[-SQRTHALF, -SQRTHALF],
[-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45],
[-MAGIC, -1.0],
[0.0, -1.0],
[0.0, -1.0]],
np.float_)
codes = cls.CURVE4 * np.ones(26)
codes[0] = cls.MOVETO
codes[-1] = cls.CLOSEPOLY
cls._unit_circle = cls(vertices, codes, readonly=True)
return cls._unit_circle
_unit_circle_righthalf = None
@classmethod
def unit_circle_righthalf(cls):
"""
Return a :class:`Path` of the right half
of a unit circle. The circle is approximated using cubic Bezier
curves. This uses 4 splines around the circle using the approach
presented here:
Lancaster, Don. `Approximating a Circle or an Ellipse Using Four
Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
"""
if cls._unit_circle_righthalf is None:
MAGIC = 0.2652031
SQRTHALF = np.sqrt(0.5)
MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)
vertices = np.array(
[[0.0, -1.0],
[MAGIC, -1.0],
[SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
[SQRTHALF, -SQRTHALF],
[SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
[1.0, -MAGIC],
[1.0, 0.0],
[1.0, MAGIC],
[SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
[SQRTHALF, SQRTHALF],
[SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
[MAGIC, 1.0],
[0.0, 1.0],
[0.0, -1.0]],
np.float_)
codes = cls.CURVE4 * np.ones(14)
codes[0] = cls.MOVETO
codes[-1] = cls.CLOSEPOLY
cls._unit_circle_righthalf = cls(vertices, codes, readonly=True)
return cls._unit_circle_righthalf
@classmethod
def arc(cls, theta1, theta2, n=None, is_wedge=False):
"""
Return an arc on the unit circle from angle
*theta1* to angle *theta2* (in degrees).
If *n* is provided, it is the number of spline segments to make.
If *n* is not provided, the number of spline segments is
determined based on the delta between *theta1* and *theta2*.
Masionobe, L. 2003. `Drawing an elliptical arc using
polylines, quadratic or cubic Bezier curves
<http://www.spaceroots.org/documents/ellipse/index.html>`_.
"""
# degrees to radians
theta1 *= np.pi / 180.0
theta2 *= np.pi / 180.0
twopi = np.pi * 2.0
halfpi = np.pi * 0.5
eta1 = np.arctan2(np.sin(theta1), np.cos(theta1))
eta2 = np.arctan2(np.sin(theta2), np.cos(theta2))
eta2 -= twopi * np.floor((eta2 - eta1) / twopi)
if (theta2 - theta1 > np.pi) and (eta2 - eta1 < np.pi):
eta2 += twopi
# number of curve segments to make
if n is None:
n = int(2 ** np.ceil((eta2 - eta1) / halfpi))
if n < 1:
raise ValueError("n must be >= 1 or None")
deta = (eta2 - eta1) / n
t = np.tan(0.5 * deta)
alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0
steps = np.linspace(eta1, eta2, n + 1, True)
cos_eta = np.cos(steps)
sin_eta = np.sin(steps)
xA = cos_eta[:-1]
yA = sin_eta[:-1]
xA_dot = -yA
yA_dot = xA
xB = cos_eta[1:]
yB = sin_eta[1:]
xB_dot = -yB
yB_dot = xB
if is_wedge:
length = n * 3 + 4
vertices = np.zeros((length, 2), np.float_)
codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
vertices[1] = [xA[0], yA[0]]
codes[0:2] = [cls.MOVETO, cls.LINETO]
codes[-2:] = [cls.LINETO, cls.CLOSEPOLY]
vertex_offset = 2
end = length - 2
else:
length = n * 3 + 1
vertices = np.empty((length, 2), np.float_)
codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
vertices[0] = [xA[0], yA[0]]
codes[0] = cls.MOVETO
vertex_offset = 1
end = length
vertices[vertex_offset :end:3, 0] = xA + alpha * xA_dot
vertices[vertex_offset :end:3, 1] = yA + alpha * yA_dot
vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot
vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot
vertices[vertex_offset+2:end:3, 0] = xB
vertices[vertex_offset+2:end:3, 1] = yB
return cls(vertices, codes, readonly=True)
@classmethod
def wedge(cls, theta1, theta2, n=None):
"""
Return a wedge of the unit circle from angle
*theta1* to angle *theta2* (in degrees).
If *n* is provided, it is the number of spline segments to make.
If *n* is not provided, the number of spline segments is
determined based on the delta between *theta1* and *theta2*.
"""
return cls.arc(theta1, theta2, n, True)
_hatch_dict = maxdict(8)
@classmethod
def hatch(cls, hatchpattern, density=6):
"""
Given a hatch specifier, *hatchpattern*, generates a Path that
can be used in a repeated hatching pattern. *density* is the
number of lines per unit square.
"""
from matplotlib.hatch import get_path
if hatchpattern is None:
return None
hatch_path = cls._hatch_dict.get((hatchpattern, density))
if hatch_path is not None:
return hatch_path
hatch_path = get_path(hatchpattern, density)
cls._hatch_dict[(hatchpattern, density)] = hatch_path
return hatch_path
def clip_to_bbox(self, bbox, inside=True):
"""
Clip the path to the given bounding box.
The path must be made up of one or more closed polygons. This
algorithm will not behave correctly for unclosed paths.
If *inside* is `True`, clip to the inside of the box, otherwise
to the outside of the box.
"""
# Use make_compound_path_from_polys
verts = _path.clip_path_to_rect(self, bbox, inside)
paths = [Path(poly) for poly in verts]
return self.make_compound_path(*paths)
def get_path_collection_extents(
master_transform, paths, transforms, offsets, offset_transform):
"""
Given a sequence of :class:`Path` objects,
:class:`~matplotlib.transforms.Transform` objects and offsets, as
found in a :class:`~matplotlib.collections.PathCollection`,
returns the bounding box that encapsulates all of them.
*master_transform* is a global transformation to apply to all paths
*paths* is a sequence of :class:`Path` instances.
*transforms* is a sequence of
:class:`~matplotlib.transforms.Affine2D` instances.
*offsets* is a sequence of (x, y) offsets (or an Nx2 array)
*offset_transform* is a :class:`~matplotlib.transforms.Affine2D`
to apply to the offsets before applying the offset to the path.
The way that *paths*, *transforms* and *offsets* are combined
follows the same method as for collections. Each is iterated over
independently, so if you have 3 paths, 2 transforms and 1 offset,
their combinations are as follows:
(A, A, A), (B, B, A), (C, A, A)
"""
from transforms import Bbox
if len(paths) == 0:
raise ValueError("No paths provided")
return Bbox.from_extents(*_path.get_path_collection_extents(
master_transform, paths, transforms, offsets, offset_transform))
def get_paths_extents(paths, transforms=[]):
"""
Given a sequence of :class:`Path` objects and optional
:class:`~matplotlib.transforms.Transform` objects, returns the
bounding box that encapsulates all of them.
*paths* is a sequence of :class:`Path` instances.
*transforms* is an optional sequence of
:class:`~matplotlib.transforms.Affine2D` instances to apply to
each path.
"""
from transforms import Bbox, Affine2D
if len(paths) == 0:
raise ValueError("No paths provided")
return Bbox.from_extents(*_path.get_path_collection_extents(
Affine2D(), paths, transforms, [], Affine2D()))
def _define_deprecated_functions(ns):
from cbook import deprecated
# The C++ functions are not meant to be used directly.
# Users should use the more pythonic wrappers in the Path
# class instead.
for func, alternative in [
('point_in_path', 'path.Path.contains_point'),
('get_path_extents', 'path.Path.get_extents'),
('point_in_path_collection', 'collection.Collection.contains'),
('path_in_path', 'path.Path.contains_path'),
('path_intersects_path', 'path.Path.intersects_path'),
('convert_path_to_polygons', 'path.Path.to_polygons'),
('cleanup_path', 'path.Path.cleaned'),
('points_in_path', 'path.Path.contains_points'),
('clip_path_to_rect', 'path.Path.clip_to_bbox')]:
ns[func] = deprecated(
since='1.3', alternative=alternative)(getattr(_path, func))
_define_deprecated_functions(locals())
|