This file is indexed.

/usr/share/pyshared/matplotlib/projections/geo.py is in python-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
from __future__ import print_function
import math

import numpy as np
import numpy.ma as ma

import matplotlib
rcParams = matplotlib.rcParams
from matplotlib.axes import Axes
from matplotlib import cbook
from matplotlib.patches import Circle
from matplotlib.path import Path
import matplotlib.spines as mspines
import matplotlib.axis as maxis
from matplotlib.ticker import Formatter, Locator, NullLocator, FixedLocator, NullFormatter
from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \
    BboxTransformTo, IdentityTransform, Transform, TransformWrapper

class GeoAxes(Axes):
    """
    An abstract base class for geographic projections
    """
    class ThetaFormatter(Formatter):
        """
        Used to format the theta tick labels.  Converts the native
        unit of radians into degrees and adds a degree symbol.
        """
        def __init__(self, round_to=1.0):
            self._round_to = round_to

        def __call__(self, x, pos=None):
            degrees = (x / np.pi) * 180.0
            degrees = round(degrees / self._round_to) * self._round_to
            if rcParams['text.usetex'] and not rcParams['text.latex.unicode']:
                return r"$%0.0f^\circ$" % degrees
            else:
                return u"%0.0f\u00b0" % degrees

    RESOLUTION = 75

    def _init_axis(self):
        self.xaxis = maxis.XAxis(self)
        self.yaxis = maxis.YAxis(self)
        # Do not register xaxis or yaxis with spines -- as done in
        # Axes._init_axis() -- until GeoAxes.xaxis.cla() works.
        # self.spines['geo'].register_axis(self.yaxis)
        self._update_transScale()

    def cla(self):
        Axes.cla(self)

        self.set_longitude_grid(30)
        self.set_latitude_grid(15)
        self.set_longitude_grid_ends(75)
        self.xaxis.set_minor_locator(NullLocator())
        self.yaxis.set_minor_locator(NullLocator())
        self.xaxis.set_ticks_position('none')
        self.yaxis.set_ticks_position('none')
        self.yaxis.set_tick_params(label1On=True)
        # Why do we need to turn on yaxis tick labels, but
        # xaxis tick labels are already on?

        self.grid(rcParams['axes.grid'])

        Axes.set_xlim(self, -np.pi, np.pi)
        Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0)

    def _set_lim_and_transforms(self):
        # A (possibly non-linear) projection on the (already scaled) data
        self.transProjection = self._get_core_transform(self.RESOLUTION)

        self.transAffine = self._get_affine_transform()

        self.transAxes = BboxTransformTo(self.bbox)

        # The complete data transformation stack -- from data all the
        # way to display coordinates
        self.transData = \
            self.transProjection + \
            self.transAffine + \
            self.transAxes

        # This is the transform for longitude ticks.
        self._xaxis_pretransform = \
            Affine2D() \
            .scale(1.0, self._longitude_cap * 2.0) \
            .translate(0.0, -self._longitude_cap)
        self._xaxis_transform = \
            self._xaxis_pretransform + \
            self.transData
        self._xaxis_text1_transform = \
            Affine2D().scale(1.0, 0.0) + \
            self.transData + \
            Affine2D().translate(0.0, 4.0)
        self._xaxis_text2_transform = \
            Affine2D().scale(1.0, 0.0) + \
            self.transData + \
            Affine2D().translate(0.0, -4.0)

        # This is the transform for latitude ticks.
        yaxis_stretch = Affine2D().scale(np.pi * 2.0, 1.0).translate(-np.pi, 0.0)
        yaxis_space = Affine2D().scale(1.0, 1.1)
        self._yaxis_transform = \
            yaxis_stretch + \
            self.transData
        yaxis_text_base = \
            yaxis_stretch + \
            self.transProjection + \
            (yaxis_space + \
             self.transAffine + \
             self.transAxes)
        self._yaxis_text1_transform = \
            yaxis_text_base + \
            Affine2D().translate(-8.0, 0.0)
        self._yaxis_text2_transform = \
            yaxis_text_base + \
            Affine2D().translate(8.0, 0.0)

    def _get_affine_transform(self):
        transform = self._get_core_transform(1)
        xscale, _ = transform.transform_point((np.pi, 0))
        _, yscale = transform.transform_point((0, np.pi / 2.0))
        return Affine2D() \
            .scale(0.5 / xscale, 0.5 / yscale) \
            .translate(0.5, 0.5)

    def get_xaxis_transform(self,which='grid'):
        assert which in ['tick1','tick2','grid']
        return self._xaxis_transform

    def get_xaxis_text1_transform(self, pad):
        return self._xaxis_text1_transform, 'bottom', 'center'

    def get_xaxis_text2_transform(self, pad):
        return self._xaxis_text2_transform, 'top', 'center'

    def get_yaxis_transform(self,which='grid'):
        assert which in ['tick1','tick2','grid']
        return self._yaxis_transform

    def get_yaxis_text1_transform(self, pad):
        return self._yaxis_text1_transform, 'center', 'right'

    def get_yaxis_text2_transform(self, pad):
        return self._yaxis_text2_transform, 'center', 'left'

    def _gen_axes_patch(self):
        return Circle((0.5, 0.5), 0.5)

    def _gen_axes_spines(self):
        return {'geo':mspines.Spine.circular_spine(self,
                                                   (0.5, 0.5), 0.5)}

    def set_yscale(self, *args, **kwargs):
        if args[0] != 'linear':
            raise NotImplementedError

    set_xscale = set_yscale

    def set_xlim(self, *args, **kwargs):
        raise TypeError("It is not possible to change axes limits "
                        "for geographic projections. Please consider "
                        "using Basemap or Cartopy.")

    set_ylim = set_xlim

    def format_coord(self, lon, lat):
        'return a format string formatting the coordinate'
        lon = lon * (180.0 / np.pi)
        lat = lat * (180.0 / np.pi)
        if lat >= 0.0:
            ns = 'N'
        else:
            ns = 'S'
        if lon >= 0.0:
            ew = 'E'
        else:
            ew = 'W'
        return u'%f\u00b0%s, %f\u00b0%s' % (abs(lat), ns, abs(lon), ew)

    def set_longitude_grid(self, degrees):
        """
        Set the number of degrees between each longitude grid.
        """
        number = (360.0 / degrees) + 1
        self.xaxis.set_major_locator(
            FixedLocator(
                np.linspace(-np.pi, np.pi, number, True)[1:-1]))
        self._logitude_degrees = degrees
        self.xaxis.set_major_formatter(self.ThetaFormatter(degrees))

    def set_latitude_grid(self, degrees):
        """
        Set the number of degrees between each longitude grid.
        """
        number = (180.0 / degrees) + 1
        self.yaxis.set_major_locator(
            FixedLocator(
                np.linspace(-np.pi / 2.0, np.pi / 2.0, number, True)[1:-1]))
        self._latitude_degrees = degrees
        self.yaxis.set_major_formatter(self.ThetaFormatter(degrees))

    def set_longitude_grid_ends(self, degrees):
        """
        Set the latitude(s) at which to stop drawing the longitude grids.
        """
        self._longitude_cap = degrees * (np.pi / 180.0)
        self._xaxis_pretransform \
            .clear() \
            .scale(1.0, self._longitude_cap * 2.0) \
            .translate(0.0, -self._longitude_cap)

    def get_data_ratio(self):
        '''
        Return the aspect ratio of the data itself.
        '''
        return 1.0

    ### Interactive panning

    def can_zoom(self):
        """
        Return *True* if this axes supports the zoom box button functionality.

        This axes object does not support interactive zoom box.
        """
        return False

    def can_pan(self) :
        """
        Return *True* if this axes supports the pan/zoom button functionality.

        This axes object does not support interactive pan/zoom.
        """
        return False

    def start_pan(self, x, y, button):
        pass

    def end_pan(self):
        pass

    def drag_pan(self, button, key, x, y):
        pass


class AitoffAxes(GeoAxes):
    name = 'aitoff'

    class AitoffTransform(Transform):
        """
        The base Aitoff transform.
        """
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            """
            Create a new Aitoff transform.  Resolution is the number of steps
            to interpolate between each input line segment to approximate its
            path in curved Aitoff space.
            """
            Transform.__init__(self)
            self._resolution = resolution

        def transform_non_affine(self, ll):
            longitude = ll[:, 0:1]
            latitude  = ll[:, 1:2]

            # Pre-compute some values
            half_long = longitude / 2.0
            cos_latitude = np.cos(latitude)

            alpha = np.arccos(cos_latitude * np.cos(half_long))
            # Mask this array or we'll get divide-by-zero errors
            alpha = ma.masked_where(alpha == 0.0, alpha)
            # The numerators also need to be masked so that masked
            # division will be invoked.
            # We want unnormalized sinc.  numpy.sinc gives us normalized
            sinc_alpha = ma.sin(alpha) / alpha

            x = (cos_latitude * ma.sin(half_long)) / sinc_alpha
            y = (ma.sin(latitude) / sinc_alpha)
            return np.concatenate((x.filled(0), y.filled(0)), 1)
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def transform_path_non_affine(self, path):
            vertices = path.vertices
            ipath = path.interpolated(self._resolution)
            return Path(self.transform(ipath.vertices), ipath.codes)
        transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

        def inverted(self):
            return AitoffAxes.InvertedAitoffTransform(self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    class InvertedAitoffTransform(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            Transform.__init__(self)
            self._resolution = resolution

        def transform_non_affine(self, xy):
            # MGDTODO: Math is hard ;(
            return xy
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def inverted(self):
            return AitoffAxes.AitoffTransform(self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.cla()

    def _get_core_transform(self, resolution):
        return self.AitoffTransform(resolution)


class HammerAxes(GeoAxes):
    name = 'hammer'

    class HammerTransform(Transform):
        """
        The base Hammer transform.
        """
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            """
            Create a new Hammer transform.  Resolution is the number of steps
            to interpolate between each input line segment to approximate its
            path in curved Hammer space.
            """
            Transform.__init__(self)
            self._resolution = resolution

        def transform_non_affine(self, ll):
            longitude = ll[:, 0:1]
            latitude  = ll[:, 1:2]

            # Pre-compute some values
            half_long = longitude / 2.0
            cos_latitude = np.cos(latitude)
            sqrt2 = np.sqrt(2.0)

            alpha = np.sqrt(1.0 + cos_latitude * np.cos(half_long))
            x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha
            y = (sqrt2 * np.sin(latitude)) / alpha
            return np.concatenate((x, y), 1)
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def transform_path_non_affine(self, path):
            vertices = path.vertices
            ipath = path.interpolated(self._resolution)
            return Path(self.transform(ipath.vertices), ipath.codes)
        transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

        def inverted(self):
            return HammerAxes.InvertedHammerTransform(self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    class InvertedHammerTransform(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            Transform.__init__(self)
            self._resolution = resolution

        def transform_non_affine(self, xy):
            x = xy[:, 0:1]
            y = xy[:, 1:2]

            quarter_x = 0.25 * x
            half_y = 0.5 * y
            z = np.sqrt(1.0 - quarter_x*quarter_x - half_y*half_y)
            longitude = 2 * np.arctan((z*x) / (2.0 * (2.0*z*z - 1.0)))
            latitude = np.arcsin(y*z)
            return np.concatenate((longitude, latitude), 1)
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def inverted(self):
            return HammerAxes.HammerTransform(self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.cla()

    def _get_core_transform(self, resolution):
        return self.HammerTransform(resolution)


class MollweideAxes(GeoAxes):
    name = 'mollweide'

    class MollweideTransform(Transform):
        """
        The base Mollweide transform.
        """
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            """
            Create a new Mollweide transform.  Resolution is the number of steps
            to interpolate between each input line segment to approximate its
            path in curved Mollweide space.
            """
            Transform.__init__(self)
            self._resolution = resolution

        def transform_non_affine(self, ll):
            def d(theta):
                delta = -(theta + np.sin(theta) - pi_sin_l) / (1 + np.cos(theta))
                return delta, np.abs(delta) > 0.001

            longitude = ll[:, 0]
            latitude  = ll[:, 1]

            clat = np.pi/2 - np.abs(latitude)
            ihigh = clat < 0.087 # within 5 degrees of the poles
            ilow = ~ihigh
            aux = np.empty(latitude.shape, dtype=np.float)

            if ilow.any():  # Newton-Raphson iteration
                pi_sin_l = np.pi * np.sin(latitude[ilow])
                theta = 2.0 * latitude[ilow]
                delta, large_delta = d(theta)
                while np.any(large_delta):
                    theta[large_delta] += delta[large_delta]
                    delta, large_delta = d(theta)
                aux[ilow] = theta / 2

            if ihigh.any(): # Taylor series-based approx. solution
                e = clat[ihigh]
                d = 0.5 * (3 * np.pi * e**2) ** (1.0/3)
                aux[ihigh] = (np.pi/2 - d) * np.sign(latitude[ihigh])

            xy = np.empty(ll.shape, dtype=np.float)
            xy[:,0] = (2.0 * np.sqrt(2.0) / np.pi) * longitude * np.cos(aux)
            xy[:,1] = np.sqrt(2.0) * np.sin(aux)

            return xy
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def transform_path_non_affine(self, path):
            vertices = path.vertices
            ipath = path.interpolated(self._resolution)
            return Path(self.transform(ipath.vertices), ipath.codes)
        transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

        def inverted(self):
            return MollweideAxes.InvertedMollweideTransform(self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    class InvertedMollweideTransform(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, resolution):
            Transform.__init__(self)
            self._resolution = resolution

        def transform_non_affine(self, xy):
            x = xy[:, 0:1]
            y = xy[:, 1:2]

            # from Equations (7, 8) of
            # http://mathworld.wolfram.com/MollweideProjection.html
            theta = np.arcsin(y / np.sqrt(2))
            lon = (np.pi / (2 * np.sqrt(2))) * x / np.cos(theta)
            lat = np.arcsin((2 * theta + np.sin(2 * theta)) / np.pi)

            return np.concatenate((lon, lat), 1)
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def inverted(self):
            return MollweideAxes.MollweideTransform(self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.cla()

    def _get_core_transform(self, resolution):
        return self.MollweideTransform(resolution)


class LambertAxes(GeoAxes):
    name = 'lambert'

    class LambertTransform(Transform):
        """
        The base Lambert transform.
        """
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, center_longitude, center_latitude, resolution):
            """
            Create a new Lambert transform.  Resolution is the number of steps
            to interpolate between each input line segment to approximate its
            path in curved Lambert space.
            """
            Transform.__init__(self)
            self._resolution = resolution
            self._center_longitude = center_longitude
            self._center_latitude = center_latitude

        def transform_non_affine(self, ll):
            longitude = ll[:, 0:1]
            latitude  = ll[:, 1:2]
            clong = self._center_longitude
            clat = self._center_latitude
            cos_lat = np.cos(latitude)
            sin_lat = np.sin(latitude)
            diff_long = longitude - clong
            cos_diff_long = np.cos(diff_long)

            inner_k = (1.0 +
                       np.sin(clat)*sin_lat +
                       np.cos(clat)*cos_lat*cos_diff_long)
            # Prevent divide-by-zero problems
            inner_k = np.where(inner_k == 0.0, 1e-15, inner_k)
            k = np.sqrt(2.0 / inner_k)
            x = k*cos_lat*np.sin(diff_long)
            y = k*(np.cos(clat)*sin_lat -
                   np.sin(clat)*cos_lat*cos_diff_long)

            return np.concatenate((x, y), 1)
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def transform_path_non_affine(self, path):
            vertices = path.vertices
            ipath = path.interpolated(self._resolution)
            return Path(self.transform(ipath.vertices), ipath.codes)
        transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

        def inverted(self):
            return LambertAxes.InvertedLambertTransform(
                self._center_longitude,
                self._center_latitude,
                self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    class InvertedLambertTransform(Transform):
        input_dims = 2
        output_dims = 2
        is_separable = False

        def __init__(self, center_longitude, center_latitude, resolution):
            Transform.__init__(self)
            self._resolution = resolution
            self._center_longitude = center_longitude
            self._center_latitude = center_latitude

        def transform_non_affine(self, xy):
            x = xy[:, 0:1]
            y = xy[:, 1:2]
            clong = self._center_longitude
            clat = self._center_latitude
            p = np.sqrt(x*x + y*y)
            p = np.where(p == 0.0, 1e-9, p)
            c = 2.0 * np.arcsin(0.5 * p)
            sin_c = np.sin(c)
            cos_c = np.cos(c)

            lat = np.arcsin(cos_c*np.sin(clat) +
                             ((y*sin_c*np.cos(clat)) / p))
            lon = clong + np.arctan(
                (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c))

            return np.concatenate((lon, lat), 1)
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def inverted(self):
            return LambertAxes.LambertTransform(
                self._center_longitude,
                self._center_latitude,
                self._resolution)
        inverted.__doc__ = Transform.inverted.__doc__

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        self._center_longitude = kwargs.pop("center_longitude", 0.0)
        self._center_latitude = kwargs.pop("center_latitude", 0.0)
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect('equal', adjustable='box', anchor='C')
        self.cla()

    def cla(self):
        GeoAxes.cla(self)
        self.yaxis.set_major_formatter(NullFormatter())

    def _get_core_transform(self, resolution):
        return self.LambertTransform(
            self._center_longitude,
            self._center_latitude,
            resolution)

    def _get_affine_transform(self):
        return Affine2D() \
            .scale(0.25) \
            .translate(0.5, 0.5)