/usr/share/pyshared/matplotlib/projections/polar.py is in python-matplotlib 1.3.1-1ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | from __future__ import print_function
import math
import warnings
import numpy as np
import matplotlib
rcParams = matplotlib.rcParams
from matplotlib.axes import Axes
import matplotlib.axis as maxis
from matplotlib import cbook
from matplotlib import docstring
from matplotlib.patches import Circle
from matplotlib.path import Path
from matplotlib.ticker import Formatter, Locator, FormatStrFormatter
from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \
BboxTransformTo, IdentityTransform, Transform, TransformWrapper, \
ScaledTranslation, blended_transform_factory, BboxTransformToMaxOnly
import matplotlib.spines as mspines
class PolarTransform(Transform):
"""
The base polar transform. This handles projection *theta* and
*r* into Cartesian coordinate space *x* and *y*, but does not
perform the ultimate affine transformation into the correct
position.
"""
input_dims = 2
output_dims = 2
is_separable = False
def __init__(self, axis=None, use_rmin=True):
Transform.__init__(self)
self._axis = axis
self._use_rmin = use_rmin
def transform_non_affine(self, tr):
xy = np.empty(tr.shape, np.float_)
if self._axis is not None:
if self._use_rmin:
rmin = self._axis.viewLim.ymin
else:
rmin = 0
theta_offset = self._axis.get_theta_offset()
theta_direction = self._axis.get_theta_direction()
else:
rmin = 0
theta_offset = 0
theta_direction = 1
t = tr[:, 0:1]
r = tr[:, 1:2]
x = xy[:, 0:1]
y = xy[:, 1:2]
t *= theta_direction
t += theta_offset
r = r - rmin
mask = r < 0
x[:] = np.where(mask, np.nan, r * np.cos(t))
y[:] = np.where(mask, np.nan, r * np.sin(t))
return xy
transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__
def transform_path_non_affine(self, path):
vertices = path.vertices
if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]:
return Path(self.transform(vertices), path.codes)
ipath = path.interpolated(path._interpolation_steps)
return Path(self.transform(ipath.vertices), ipath.codes)
transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__
def inverted(self):
return PolarAxes.InvertedPolarTransform(self._axis, self._use_rmin)
inverted.__doc__ = Transform.inverted.__doc__
class PolarAffine(Affine2DBase):
"""
The affine part of the polar projection. Scales the output so
that maximum radius rests on the edge of the axes circle.
"""
def __init__(self, scale_transform, limits):
"""
*limits* is the view limit of the data. The only part of
its bounds that is used is ymax (for the radius maximum).
The theta range is always fixed to (0, 2pi).
"""
Affine2DBase.__init__(self)
self._scale_transform = scale_transform
self._limits = limits
self.set_children(scale_transform, limits)
self._mtx = None
def get_matrix(self):
if self._invalid:
limits_scaled = self._limits.transformed(self._scale_transform)
yscale = limits_scaled.ymax - limits_scaled.ymin
affine = Affine2D() \
.scale(0.5 / yscale) \
.translate(0.5, 0.5)
self._mtx = affine.get_matrix()
self._inverted = None
self._invalid = 0
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
def __getstate__(self):
return {}
class InvertedPolarTransform(Transform):
"""
The inverse of the polar transform, mapping Cartesian
coordinate space *x* and *y* back to *theta* and *r*.
"""
input_dims = 2
output_dims = 2
is_separable = False
def __init__(self, axis=None, use_rmin=True):
Transform.__init__(self)
self._axis = axis
self._use_rmin = use_rmin
def transform_non_affine(self, xy):
if self._axis is not None:
if self._use_rmin:
rmin = self._axis.viewLim.ymin
else:
rmin = 0
theta_offset = self._axis.get_theta_offset()
theta_direction = self._axis.get_theta_direction()
else:
rmin = 0
theta_offset = 0
theta_direction = 1
x = xy[:, 0:1]
y = xy[:, 1:]
r = np.sqrt(x*x + y*y)
theta = np.arccos(x / r)
theta = np.where(y < 0, 2 * np.pi - theta, theta)
theta -= theta_offset
theta *= theta_direction
r += rmin
return np.concatenate((theta, r), 1)
transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__
def inverted(self):
return PolarAxes.PolarTransform(self._axis, self._use_rmin)
inverted.__doc__ = Transform.inverted.__doc__
class ThetaFormatter(Formatter):
"""
Used to format the *theta* tick labels. Converts the native
unit of radians into degrees and adds a degree symbol.
"""
def __call__(self, x, pos=None):
# \u00b0 : degree symbol
if rcParams['text.usetex'] and not rcParams['text.latex.unicode']:
return r"$%0.0f^\circ$" % ((x / np.pi) * 180.0)
else:
# we use unicode, rather than mathtext with \circ, so
# that it will work correctly with any arbitrary font
# (assuming it has a degree sign), whereas $5\circ$
# will only work correctly with one of the supported
# math fonts (Computer Modern and STIX)
return u"%0.0f\u00b0" % ((x / np.pi) * 180.0)
class RadialLocator(Locator):
"""
Used to locate radius ticks.
Ensures that all ticks are strictly positive. For all other
tasks, it delegates to the base
:class:`~matplotlib.ticker.Locator` (which may be different
depending on the scale of the *r*-axis.
"""
def __init__(self, base):
self.base = base
def __call__(self):
ticks = self.base()
return [x for x in ticks if x > 0]
def autoscale(self):
return self.base.autoscale()
def pan(self, numsteps):
return self.base.pan(numsteps)
def zoom(self, direction):
return self.base.zoom(direction)
def refresh(self):
return self.base.refresh()
def view_limits(self, vmin, vmax):
vmin, vmax = self.base.view_limits(vmin, vmax)
return 0, vmax
class PolarAxes(Axes):
"""
A polar graph projection, where the input dimensions are *theta*, *r*.
Theta starts pointing east and goes anti-clockwise.
"""
name = 'polar'
def __init__(self, *args, **kwargs):
"""
Create a new Polar Axes for a polar plot.
The following optional kwargs are supported:
- *resolution*: The number of points of interpolation between
each pair of data points. Set to 1 to disable
interpolation.
"""
self.resolution = kwargs.pop('resolution', 1)
self._default_theta_offset = kwargs.pop('theta_offset', 0)
self._default_theta_direction = kwargs.pop('theta_direction', 1)
if self.resolution not in (None, 1):
warnings.warn(
"""The resolution kwarg to Polar plots is now ignored.
If you need to interpolate data points, consider running
cbook.simple_linear_interpolation on the data before passing to matplotlib.""")
Axes.__init__(self, *args, **kwargs)
self.set_aspect('equal', adjustable='box', anchor='C')
self.cla()
__init__.__doc__ = Axes.__init__.__doc__
def cla(self):
Axes.cla(self)
self.title.set_y(1.05)
self.xaxis.set_major_formatter(self.ThetaFormatter())
self.xaxis.isDefault_majfmt = True
angles = np.arange(0.0, 360.0, 45.0)
self.set_thetagrids(angles)
self.yaxis.set_major_locator(self.RadialLocator(self.yaxis.get_major_locator()))
self.grid(rcParams['polaraxes.grid'])
self.xaxis.set_ticks_position('none')
self.yaxis.set_ticks_position('none')
self.yaxis.set_tick_params(label1On=True)
# Why do we need to turn on yaxis tick labels, but
# xaxis tick labels are already on?
self.set_theta_offset(self._default_theta_offset)
self.set_theta_direction(self._default_theta_direction)
def _init_axis(self):
"move this out of __init__ because non-separable axes don't use it"
self.xaxis = maxis.XAxis(self)
self.yaxis = maxis.YAxis(self)
# Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla()
# results in weird artifacts. Therefore we disable this for
# now.
# self.spines['polar'].register_axis(self.yaxis)
self._update_transScale()
def _set_lim_and_transforms(self):
self.transAxes = BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor
# It is assumed that this part will have non-linear components
self.transScale = TransformWrapper(IdentityTransform())
# A (possibly non-linear) projection on the (already scaled)
# data. This one is aware of rmin
self.transProjection = self.PolarTransform(self)
# This one is not aware of rmin
self.transPureProjection = self.PolarTransform(self, use_rmin=False)
# An affine transformation on the data, generally to limit the
# range of the axes
self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim)
# The complete data transformation stack -- from data all the
# way to display coordinates
self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)
# This is the transform for theta-axis ticks. It is
# equivalent to transData, except it always puts r == 1.0 at
# the edge of the axis circle.
self._xaxis_transform = (
self.transPureProjection +
self.PolarAffine(IdentityTransform(), Bbox.unit()) +
self.transAxes)
# The theta labels are moved from radius == 0.0 to radius == 1.1
self._theta_label1_position = Affine2D().translate(0.0, 1.1)
self._xaxis_text1_transform = (
self._theta_label1_position +
self._xaxis_transform)
self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1)
self._xaxis_text2_transform = (
self._theta_label2_position +
self._xaxis_transform)
# This is the transform for r-axis ticks. It scales the theta
# axis so the gridlines from 0.0 to 1.0, now go from 0.0 to
# 2pi.
self._yaxis_transform = (
Affine2D().scale(np.pi * 2.0, 1.0) +
self.transData)
# The r-axis labels are put at an angle and padded in the r-direction
self._r_label_position = ScaledTranslation(
22.5, 0.0, Affine2D())
self._yaxis_text_transform = (
self._r_label_position +
Affine2D().scale(1.0 / 360.0, 1.0) +
self._yaxis_transform
)
def get_xaxis_transform(self,which='grid'):
assert which in ['tick1','tick2','grid']
return self._xaxis_transform
def get_xaxis_text1_transform(self, pad):
return self._xaxis_text1_transform, 'center', 'center'
def get_xaxis_text2_transform(self, pad):
return self._xaxis_text2_transform, 'center', 'center'
def get_yaxis_transform(self,which='grid'):
assert which in ['tick1','tick2','grid']
return self._yaxis_transform
def get_yaxis_text1_transform(self, pad):
angle = self._r_label_position.to_values()[4]
if angle < 90.:
return self._yaxis_text_transform, 'bottom', 'left'
elif angle < 180.:
return self._yaxis_text_transform, 'bottom', 'right'
elif angle < 270.:
return self._yaxis_text_transform, 'top', 'right'
else:
return self._yaxis_text_transform, 'top', 'left'
def get_yaxis_text2_transform(self, pad):
angle = self._r_label_position.to_values()[4]
if angle < 90.:
return self._yaxis_text_transform, 'top', 'right'
elif angle < 180.:
return self._yaxis_text_transform, 'top', 'left'
elif angle < 270.:
return self._yaxis_text_transform, 'bottom', 'left'
else:
return self._yaxis_text_transform, 'bottom', 'right'
def _gen_axes_patch(self):
return Circle((0.5, 0.5), 0.5)
def _gen_axes_spines(self):
return {'polar':mspines.Spine.circular_spine(self,
(0.5, 0.5), 0.5)}
def set_rmax(self, rmax):
self.viewLim.y1 = rmax
def get_rmax(self):
return self.viewLim.ymax
def set_rmin(self, rmin):
self.viewLim.y0 = rmin
def get_rmin(self):
return self.viewLim.ymin
def set_theta_offset(self, offset):
"""
Set the offset for the location of 0 in radians.
"""
self._theta_offset = offset
def get_theta_offset(self):
"""
Get the offset for the location of 0 in radians.
"""
return self._theta_offset
def set_theta_zero_location(self, loc):
"""
Sets the location of theta's zero. (Calls set_theta_offset
with the correct value in radians under the hood.)
May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE".
"""
mapping = {
'N': np.pi * 0.5,
'NW': np.pi * 0.75,
'W': np.pi,
'SW': np.pi * 1.25,
'S': np.pi * 1.5,
'SE': np.pi * 1.75,
'E': 0,
'NE': np.pi * 0.25 }
return self.set_theta_offset(mapping[loc])
def set_theta_direction(self, direction):
"""
Set the direction in which theta increases.
clockwise, -1:
Theta increases in the clockwise direction
counterclockwise, anticlockwise, 1:
Theta increases in the counterclockwise direction
"""
if direction in ('clockwise',):
self._direction = -1
elif direction in ('counterclockwise', 'anticlockwise'):
self._direction = 1
elif direction in (1, -1):
self._direction = direction
else:
raise ValueError("direction must be 1, -1, clockwise or counterclockwise")
def get_theta_direction(self):
"""
Get the direction in which theta increases.
-1:
Theta increases in the clockwise direction
1:
Theta increases in the counterclockwise direction
"""
return self._direction
def set_rlim(self, *args, **kwargs):
if 'rmin' in kwargs:
kwargs['ymin'] = kwargs.pop('rmin')
if 'rmax' in kwargs:
kwargs['ymax'] = kwargs.pop('rmax')
return self.set_ylim(*args, **kwargs)
def set_yscale(self, *args, **kwargs):
Axes.set_yscale(self, *args, **kwargs)
self.yaxis.set_major_locator(
self.RadialLocator(self.yaxis.get_major_locator()))
def set_rscale(self, *args, **kwargs):
return Axes.set_yscale(self, *args, **kwargs)
def set_rticks(self, *args, **kwargs):
return Axes.set_yticks(self, *args, **kwargs)
@docstring.dedent_interpd
def set_thetagrids(self, angles, labels=None, frac=None, fmt=None,
**kwargs):
"""
Set the angles at which to place the theta grids (these
gridlines are equal along the theta dimension). *angles* is in
degrees.
*labels*, if not None, is a ``len(angles)`` list of strings of
the labels to use at each angle.
If *labels* is None, the labels will be ``fmt %% angle``
*frac* is the fraction of the polar axes radius at which to
place the label (1 is the edge). e.g., 1.05 is outside the axes
and 0.95 is inside the axes.
Return value is a list of tuples (*line*, *label*), where
*line* is :class:`~matplotlib.lines.Line2D` instances and the
*label* is :class:`~matplotlib.text.Text` instances.
kwargs are optional text properties for the labels:
%(Text)s
ACCEPTS: sequence of floats
"""
# Make sure we take into account unitized data
angles = self.convert_yunits(angles)
angles = np.asarray(angles, np.float_)
self.set_xticks(angles * (np.pi / 180.0))
if labels is not None:
self.set_xticklabels(labels)
elif fmt is not None:
self.xaxis.set_major_formatter(FormatStrFormatter(fmt))
if frac is not None:
self._theta_label1_position.clear().translate(0.0, frac)
self._theta_label2_position.clear().translate(0.0, 1.0 / frac)
for t in self.xaxis.get_ticklabels():
t.update(kwargs)
return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels()
@docstring.dedent_interpd
def set_rgrids(self, radii, labels=None, angle=None, fmt=None,
**kwargs):
"""
Set the radial locations and labels of the *r* grids.
The labels will appear at radial distances *radii* at the
given *angle* in degrees.
*labels*, if not None, is a ``len(radii)`` list of strings of the
labels to use at each radius.
If *labels* is None, the built-in formatter will be used.
Return value is a list of tuples (*line*, *label*), where
*line* is :class:`~matplotlib.lines.Line2D` instances and the
*label* is :class:`~matplotlib.text.Text` instances.
kwargs are optional text properties for the labels:
%(Text)s
ACCEPTS: sequence of floats
"""
# Make sure we take into account unitized data
radii = self.convert_xunits(radii)
radii = np.asarray(radii)
rmin = radii.min()
if rmin <= 0:
raise ValueError('radial grids must be strictly positive')
self.set_yticks(radii)
if labels is not None:
self.set_yticklabels(labels)
elif fmt is not None:
self.yaxis.set_major_formatter(FormatStrFormatter(fmt))
if angle is None:
angle = self._r_label_position.to_values()[4]
self._r_label_position._t = (angle, 0.0)
self._r_label_position.invalidate()
for t in self.yaxis.get_ticklabels():
t.update(kwargs)
return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels()
def set_xscale(self, scale, *args, **kwargs):
if scale != 'linear':
raise NotImplementedError("You can not set the xscale on a polar plot.")
def set_xlim(self, *args, **kargs):
# The xlim is fixed, no matter what you do
self.viewLim.intervalx = (0.0, np.pi * 2.0)
def format_coord(self, theta, r):
"""
Return a format string formatting the coordinate using Unicode
characters.
"""
theta /= math.pi
# \u03b8: lower-case theta
# \u03c0: lower-case pi
# \u00b0: degree symbol
return u'\u03b8=%0.3f\u03c0 (%0.3f\u00b0), r=%0.3f' % (theta, theta * 180.0, r)
def get_data_ratio(self):
'''
Return the aspect ratio of the data itself. For a polar plot,
this should always be 1.0
'''
return 1.0
### Interactive panning
def can_zoom(self):
"""
Return *True* if this axes supports the zoom box button functionality.
Polar axes do not support zoom boxes.
"""
return False
def can_pan(self) :
"""
Return *True* if this axes supports the pan/zoom button functionality.
For polar axes, this is slightly misleading. Both panning and
zooming are performed by the same button. Panning is performed
in azimuth while zooming is done along the radial.
"""
return True
def start_pan(self, x, y, button):
angle = np.deg2rad(self._r_label_position.to_values()[4])
mode = ''
if button == 1:
epsilon = np.pi / 45.0
t, r = self.transData.inverted().transform_point((x, y))
if t >= angle - epsilon and t <= angle + epsilon:
mode = 'drag_r_labels'
elif button == 3:
mode = 'zoom'
self._pan_start = cbook.Bunch(
rmax = self.get_rmax(),
trans = self.transData.frozen(),
trans_inverse = self.transData.inverted().frozen(),
r_label_angle = self._r_label_position.to_values()[4],
x = x,
y = y,
mode = mode
)
def end_pan(self):
del self._pan_start
def drag_pan(self, button, key, x, y):
p = self._pan_start
if p.mode == 'drag_r_labels':
startt, startr = p.trans_inverse.transform_point((p.x, p.y))
t, r = p.trans_inverse.transform_point((x, y))
# Deal with theta
dt0 = t - startt
dt1 = startt - t
if abs(dt1) < abs(dt0):
dt = abs(dt1) * sign(dt0) * -1.0
else:
dt = dt0 * -1.0
dt = (dt / np.pi) * 180.0
self._r_label_position._t = (p.r_label_angle - dt, 0.0)
self._r_label_position.invalidate()
trans, vert1, horiz1 = self.get_yaxis_text1_transform(0.0)
trans, vert2, horiz2 = self.get_yaxis_text2_transform(0.0)
for t in self.yaxis.majorTicks + self.yaxis.minorTicks:
t.label1.set_va(vert1)
t.label1.set_ha(horiz1)
t.label2.set_va(vert2)
t.label2.set_ha(horiz2)
elif p.mode == 'zoom':
startt, startr = p.trans_inverse.transform_point((p.x, p.y))
t, r = p.trans_inverse.transform_point((x, y))
dr = r - startr
# Deal with r
scale = r / startr
self.set_rmax(p.rmax / scale)
# to keep things all self contained, we can put aliases to the Polar classes
# defined above. This isn't strictly necessary, but it makes some of the
# code more readable (and provides a backwards compatible Polar API)
PolarAxes.PolarTransform = PolarTransform
PolarAxes.PolarAffine = PolarAffine
PolarAxes.InvertedPolarTransform = InvertedPolarTransform
PolarAxes.ThetaFormatter = ThetaFormatter
PolarAxes.RadialLocator = RadialLocator
# These are a couple of aborted attempts to project a polar plot using
# cubic bezier curves.
# def transform_path(self, path):
# twopi = 2.0 * np.pi
# halfpi = 0.5 * np.pi
# vertices = path.vertices
# t0 = vertices[0:-1, 0]
# t1 = vertices[1: , 0]
# td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1))
# maxtd = td.max()
# interpolate = np.ceil(maxtd / halfpi)
# if interpolate > 1.0:
# vertices = self.interpolate(vertices, interpolate)
# vertices = self.transform(vertices)
# result = np.zeros((len(vertices) * 3 - 2, 2), np.float_)
# codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type)
# result[0] = vertices[0]
# codes[0] = mpath.Path.MOVETO
# kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0)
# kappa = 0.5
# p0 = vertices[0:-1]
# p1 = vertices[1: ]
# x0 = p0[:, 0:1]
# y0 = p0[:, 1: ]
# b0 = ((y0 - x0) - y0) / ((x0 + y0) - x0)
# a0 = y0 - b0*x0
# x1 = p1[:, 0:1]
# y1 = p1[:, 1: ]
# b1 = ((y1 - x1) - y1) / ((x1 + y1) - x1)
# a1 = y1 - b1*x1
# x = -(a0-a1) / (b0-b1)
# y = a0 + b0*x
# xk = (x - x0) * kappa + x0
# yk = (y - y0) * kappa + y0
# result[1::3, 0:1] = xk
# result[1::3, 1: ] = yk
# xk = (x - x1) * kappa + x1
# yk = (y - y1) * kappa + y1
# result[2::3, 0:1] = xk
# result[2::3, 1: ] = yk
# result[3::3] = p1
# print vertices[-2:]
# print result[-2:]
# return mpath.Path(result, codes)
# twopi = 2.0 * np.pi
# halfpi = 0.5 * np.pi
# vertices = path.vertices
# t0 = vertices[0:-1, 0]
# t1 = vertices[1: , 0]
# td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1))
# maxtd = td.max()
# interpolate = np.ceil(maxtd / halfpi)
# print "interpolate", interpolate
# if interpolate > 1.0:
# vertices = self.interpolate(vertices, interpolate)
# result = np.zeros((len(vertices) * 3 - 2, 2), np.float_)
# codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type)
# result[0] = vertices[0]
# codes[0] = mpath.Path.MOVETO
# kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0)
# tkappa = np.arctan(kappa)
# hyp_kappa = np.sqrt(kappa*kappa + 1.0)
# t0 = vertices[0:-1, 0]
# t1 = vertices[1: , 0]
# r0 = vertices[0:-1, 1]
# r1 = vertices[1: , 1]
# td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1))
# td_scaled = td / (np.pi * 0.5)
# rd = r1 - r0
# r0kappa = r0 * kappa * td_scaled
# r1kappa = r1 * kappa * td_scaled
# ravg_kappa = ((r1 + r0) / 2.0) * kappa * td_scaled
# result[1::3, 0] = t0 + (tkappa * td_scaled)
# result[1::3, 1] = r0*hyp_kappa
# # result[1::3, 1] = r0 / np.cos(tkappa * td_scaled) # np.sqrt(r0*r0 + ravg_kappa*ravg_kappa)
# result[2::3, 0] = t1 - (tkappa * td_scaled)
# result[2::3, 1] = r1*hyp_kappa
# # result[2::3, 1] = r1 / np.cos(tkappa * td_scaled) # np.sqrt(r1*r1 + ravg_kappa*ravg_kappa)
# result[3::3, 0] = t1
# result[3::3, 1] = r1
# print vertices[:6], result[:6], t0[:6], t1[:6], td[:6], td_scaled[:6], tkappa
# result = self.transform(result)
# return mpath.Path(result, codes)
# transform_path_non_affine = transform_path
|