/usr/share/pyshared/matplotlib/transforms.py is in python-matplotlib 1.3.1-1ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 | """
matplotlib includes a framework for arbitrary geometric
transformations that is used determine the final position of all
elements drawn on the canvas.
Transforms are composed into trees of :class:`TransformNode` objects
whose actual value depends on their children. When the contents of
children change, their parents are automatically invalidated. The
next time an invalidated transform is accessed, it is recomputed to
reflect those changes. This invalidation/caching approach prevents
unnecessary recomputations of transforms, and contributes to better
interactive performance.
For example, here is a graph of the transform tree used to plot data
to the graph:
.. image:: ../_static/transforms.png
The framework can be used for both affine and non-affine
transformations. However, for speed, we want use the backend
renderers to perform affine transformations whenever possible.
Therefore, it is possible to perform just the affine or non-affine
part of a transformation on a set of data. The affine is always
assumed to occur after the non-affine. For any transform::
full transform == non-affine part + affine part
The backends are not expected to handle non-affine transformations
themselves.
"""
from __future__ import print_function, division
import numpy as np
from numpy import ma
from matplotlib._path import (affine_transform, count_bboxes_overlapping_bbox,
update_path_extents)
from numpy.linalg import inv
from weakref import WeakValueDictionary
import warnings
try:
set
except NameError:
from sets import Set as set
from path import Path
DEBUG = False
MaskedArray = ma.MaskedArray
class TransformNode(object):
"""
:class:`TransformNode` is the base class for anything that
participates in the transform tree and needs to invalidate its
parents or be invalidated. This includes classes that are not
really transforms, such as bounding boxes, since some transforms
depend on bounding boxes to compute their values.
"""
_gid = 0
# Invalidation may affect only the affine part. If the
# invalidation was "affine-only", the _invalid member is set to
# INVALID_AFFINE_ONLY
INVALID_NON_AFFINE = 1
INVALID_AFFINE = 2
INVALID = INVALID_NON_AFFINE | INVALID_AFFINE
# Some metadata about the transform, used to determine whether an
# invalidation is affine-only
is_affine = False
is_bbox = False
pass_through = False
"""
If pass_through is True, all ancestors will always be
invalidated, even if 'self' is already invalid.
"""
def __init__(self, shorthand_name=None):
"""
Creates a new :class:`TransformNode`.
**shorthand_name** - a string representing the "name" of this
transform. The name carries no significance
other than to improve the readability of
``str(transform)`` when DEBUG=True.
"""
# Parents are stored in a WeakValueDictionary, so that if the
# parents are deleted, references from the children won't keep
# them alive.
self._parents = WeakValueDictionary()
# TransformNodes start out as invalid until their values are
# computed for the first time.
self._invalid = 1
self._shorthand_name = shorthand_name or ''
if DEBUG:
def __str__(self):
# either just return the name of this TransformNode, or it's repr
return self._shorthand_name or repr(self)
def __getstate__(self):
d = self.__dict__.copy()
# turn the weakkey dictionary into a normal dictionary
d['_parents'] = dict(self._parents.iteritems())
return d
def __setstate__(self, data_dict):
self.__dict__ = data_dict
# turn the normal dictionary back into a WeakValueDictionary
self._parents = WeakValueDictionary(self._parents)
def __copy__(self, *args):
raise NotImplementedError(
"TransformNode instances can not be copied. " +
"Consider using frozen() instead.")
__deepcopy__ = __copy__
def invalidate(self):
"""
Invalidate this :class:`TransformNode` and triggers an
invalidation of its ancestors. Should be called any
time the transform changes.
"""
value = self.INVALID
if self.is_affine:
value = self.INVALID_AFFINE
return self._invalidate_internal(value, invalidating_node=self)
def _invalidate_internal(self, value, invalidating_node):
"""
Called by :meth:`invalidate` and subsequently ascends the transform
stack calling each TransformNode's _invalidate_internal method.
"""
# determine if this call will be an extension to the invalidation
# status. If not, then a shortcut means that we needn't invoke an
# invalidation up the transform stack as it will already have been
# invalidated.
# N.B This makes the invalidation sticky, once a transform has been
# invalidated as NON_AFFINE, then it will always be invalidated as
# NON_AFFINE even when triggered with a AFFINE_ONLY invalidation.
# In most cases this is not a problem (i.e. for interactive panning and
# zooming) and the only side effect will be on performance.
status_changed = self._invalid < value
if self.pass_through or status_changed:
self._invalid = value
for parent in self._parents.values():
parent._invalidate_internal(value=value,
invalidating_node=self)
def set_children(self, *children):
"""
Set the children of the transform, to let the invalidation
system know which transforms can invalidate this transform.
Should be called from the constructor of any transforms that
depend on other transforms.
"""
for child in children:
child._parents[id(self)] = self
if DEBUG:
_set_children = set_children
def set_children(self, *children):
self._set_children(*children)
self._children = children
set_children.__doc__ = _set_children.__doc__
def frozen(self):
"""
Returns a frozen copy of this transform node. The frozen copy
will not update when its children change. Useful for storing
a previously known state of a transform where
``copy.deepcopy()`` might normally be used.
"""
return self
if DEBUG:
def write_graphviz(self, fobj, highlight=[]):
"""
For debugging purposes.
Writes the transform tree rooted at 'self' to a graphviz "dot"
format file. This file can be run through the "dot" utility
to produce a graph of the transform tree.
Affine transforms are marked in blue. Bounding boxes are
marked in yellow.
*fobj*: A Python file-like object
Once the "dot" file has been created, it can be turned into a
png easily with::
$> dot -Tpng -o $OUTPUT_FILE $DOT_FILE
"""
seen = set()
def recurse(root):
if root in seen:
return
seen.add(root)
props = {}
label = root.__class__.__name__
if root._invalid:
label = '[%s]' % label
if root in highlight:
props['style'] = 'bold'
props['shape'] = 'box'
props['label'] = '"%s"' % label
props = ' '.join(['%s=%s' % (key, val)
for key, val
in props.iteritems()])
fobj.write('%s [%s];\n' %
(hash(root), props))
if hasattr(root, '_children'):
for child in root._children:
name = '?'
for key, val in root.__dict__.iteritems():
if val is child:
name = key
break
fobj.write('"%s" -> "%s" [label="%s", fontsize=10];\n'
% (hash(root),
hash(child),
name))
recurse(child)
fobj.write("digraph G {\n")
recurse(self)
fobj.write("}\n")
class BboxBase(TransformNode):
"""
This is the base class of all bounding boxes, and provides
read-only access to its data. A mutable bounding box is provided
by the :class:`Bbox` class.
The canonical representation is as two points, with no
restrictions on their ordering. Convenience properties are
provided to get the left, bottom, right and top edges and width
and height, but these are not stored explicitly.
"""
is_bbox = True
is_affine = True
#* Redundant: Removed for performance
#
# def __init__(self):
# TransformNode.__init__(self)
if DEBUG:
def _check(points):
if ma.isMaskedArray(points):
warnings.warn("Bbox bounds are a masked array.")
points = np.asarray(points)
if (points[1, 0] - points[0, 0] == 0 or
points[1, 1] - points[0, 1] == 0):
warnings.warn("Singular Bbox.")
_check = staticmethod(_check)
def frozen(self):
return Bbox(self.get_points().copy())
frozen.__doc__ = TransformNode.__doc__
def __array__(self, *args, **kwargs):
return self.get_points()
def is_unit(self):
"""
Returns True if the :class:`Bbox` is the unit bounding box
from (0, 0) to (1, 1).
"""
return list(self.get_points().flatten()) == [0., 0., 1., 1.]
def _get_x0(self):
return self.get_points()[0, 0]
x0 = property(_get_x0, None, None, """
(property) :attr:`x0` is the first of the pair of *x* coordinates that
define the bounding box. :attr:`x0` is not guaranteed to be
less than :attr:`x1`. If you require that, use :attr:`xmin`.""")
def _get_y0(self):
return self.get_points()[0, 1]
y0 = property(_get_y0, None, None, """
(property) :attr:`y0` is the first of the pair of *y* coordinates that
define the bounding box. :attr:`y0` is not guaranteed to be
less than :attr:`y1`. If you require that, use :attr:`ymin`.""")
def _get_x1(self):
return self.get_points()[1, 0]
x1 = property(_get_x1, None, None, """
(property) :attr:`x1` is the second of the pair of *x* coordinates
that define the bounding box. :attr:`x1` is not guaranteed to be
greater than :attr:`x0`. If you require that, use :attr:`xmax`.""")
def _get_y1(self):
return self.get_points()[1, 1]
y1 = property(_get_y1, None, None, """
(property) :attr:`y1` is the second of the pair of *y* coordinates
that define the bounding box. :attr:`y1` is not guaranteed to be
greater than :attr:`y0`. If you require that, use :attr:`ymax`.""")
def _get_p0(self):
return self.get_points()[0]
p0 = property(_get_p0, None, None, """
(property) :attr:`p0` is the first pair of (*x*, *y*) coordinates
that define the bounding box. It is not guaranteed to be the
bottom-left corner. For that, use :attr:`min`.""")
def _get_p1(self):
return self.get_points()[1]
p1 = property(_get_p1, None, None, """
(property) :attr:`p1` is the second pair of (*x*, *y*) coordinates
that define the bounding box. It is not guaranteed to be the
top-right corner. For that, use :attr:`max`.""")
def _get_xmin(self):
return min(self.get_points()[:, 0])
xmin = property(_get_xmin, None, None, """
(property) :attr:`xmin` is the left edge of the bounding box.""")
def _get_ymin(self):
return min(self.get_points()[:, 1])
ymin = property(_get_ymin, None, None, """
(property) :attr:`ymin` is the bottom edge of the bounding box.""")
def _get_xmax(self):
return max(self.get_points()[:, 0])
xmax = property(_get_xmax, None, None, """
(property) :attr:`xmax` is the right edge of the bounding box.""")
def _get_ymax(self):
return max(self.get_points()[:, 1])
ymax = property(_get_ymax, None, None, """
(property) :attr:`ymax` is the top edge of the bounding box.""")
def _get_min(self):
return [min(self.get_points()[:, 0]),
min(self.get_points()[:, 1])]
min = property(_get_min, None, None, """
(property) :attr:`min` is the bottom-left corner of the bounding
box.""")
def _get_max(self):
return [max(self.get_points()[:, 0]),
max(self.get_points()[:, 1])]
max = property(_get_max, None, None, """
(property) :attr:`max` is the top-right corner of the bounding box.""")
def _get_intervalx(self):
return self.get_points()[:, 0]
intervalx = property(_get_intervalx, None, None, """
(property) :attr:`intervalx` is the pair of *x* coordinates that define
the bounding box. It is not guaranteed to be sorted from left to
right.""")
def _get_intervaly(self):
return self.get_points()[:, 1]
intervaly = property(_get_intervaly, None, None, """
(property) :attr:`intervaly` is the pair of *y* coordinates that define
the bounding box. It is not guaranteed to be sorted from bottom to
top.""")
def _get_width(self):
points = self.get_points()
return points[1, 0] - points[0, 0]
width = property(_get_width, None, None, """
(property) The width of the bounding box. It may be negative if
:attr:`x1` < :attr:`x0`.""")
def _get_height(self):
points = self.get_points()
return points[1, 1] - points[0, 1]
height = property(_get_height, None, None, """
(property) The height of the bounding box. It may be negative if
:attr:`y1` < :attr:`y0`.""")
def _get_size(self):
points = self.get_points()
return points[1] - points[0]
size = property(_get_size, None, None, """
(property) The width and height of the bounding box. May be negative,
in the same way as :attr:`width` and :attr:`height`.""")
def _get_bounds(self):
x0, y0, x1, y1 = self.get_points().flatten()
return (x0, y0, x1 - x0, y1 - y0)
bounds = property(_get_bounds, None, None, """
(property) Returns (:attr:`x0`, :attr:`y0`, :attr:`width`,
:attr:`height`).""")
def _get_extents(self):
return self.get_points().flatten().copy()
extents = property(_get_extents, None, None, """
(property) Returns (:attr:`x0`, :attr:`y0`, :attr:`x1`,
:attr:`y1`).""")
def get_points(self):
return NotImplementedError()
def containsx(self, x):
"""
Returns True if *x* is between or equal to :attr:`x0` and
:attr:`x1`.
"""
x0, x1 = self.intervalx
return ((x0 < x1
and (x >= x0 and x <= x1))
or (x >= x1 and x <= x0))
def containsy(self, y):
"""
Returns True if *y* is between or equal to :attr:`y0` and
:attr:`y1`.
"""
y0, y1 = self.intervaly
return ((y0 < y1
and (y >= y0 and y <= y1))
or (y >= y1 and y <= y0))
def contains(self, x, y):
"""
Returns *True* if (*x*, *y*) is a coordinate inside the
bounding box or on its edge.
"""
return self.containsx(x) and self.containsy(y)
def overlaps(self, other):
"""
Returns True if this bounding box overlaps with the given
bounding box *other*.
"""
ax1, ay1, ax2, ay2 = self._get_extents()
bx1, by1, bx2, by2 = other._get_extents()
if ax2 < ax1:
ax2, ax1 = ax1, ax2
if ay2 < ay1:
ay2, ay1 = ay1, ay2
if bx2 < bx1:
bx2, bx1 = bx1, bx2
if by2 < by1:
by2, by1 = by1, by2
return not ((bx2 < ax1) or
(by2 < ay1) or
(bx1 > ax2) or
(by1 > ay2))
def fully_containsx(self, x):
"""
Returns True if *x* is between but not equal to :attr:`x0` and
:attr:`x1`.
"""
x0, x1 = self.intervalx
return ((x0 < x1
and (x > x0 and x < x1))
or (x > x1 and x < x0))
def fully_containsy(self, y):
"""
Returns True if *y* is between but not equal to :attr:`y0` and
:attr:`y1`.
"""
y0, y1 = self.intervaly
return ((y0 < y1
and (y > y0 and y < y1))
or (y > y1 and y < y0))
def fully_contains(self, x, y):
"""
Returns True if (*x*, *y*) is a coordinate inside the bounding
box, but not on its edge.
"""
return self.fully_containsx(x) \
and self.fully_containsy(y)
def fully_overlaps(self, other):
"""
Returns True if this bounding box overlaps with the given
bounding box *other*, but not on its edge alone.
"""
ax1, ay1, ax2, ay2 = self._get_extents()
bx1, by1, bx2, by2 = other._get_extents()
if ax2 < ax1:
ax2, ax1 = ax1, ax2
if ay2 < ay1:
ay2, ay1 = ay1, ay2
if bx2 < bx1:
bx2, bx1 = bx1, bx2
if by2 < by1:
by2, by1 = by1, by2
return not ((bx2 <= ax1) or
(by2 <= ay1) or
(bx1 >= ax2) or
(by1 >= ay2))
def transformed(self, transform):
"""
Return a new :class:`Bbox` object, statically transformed by
the given transform.
"""
return Bbox(transform.transform(self.get_points()))
def inverse_transformed(self, transform):
"""
Return a new :class:`Bbox` object, statically transformed by
the inverse of the given transform.
"""
return Bbox(transform.inverted().transform(self.get_points()))
coefs = {'C': (0.5, 0.5),
'SW': (0, 0),
'S': (0.5, 0),
'SE': (1.0, 0),
'E': (1.0, 0.5),
'NE': (1.0, 1.0),
'N': (0.5, 1.0),
'NW': (0, 1.0),
'W': (0, 0.5)}
def anchored(self, c, container=None):
"""
Return a copy of the :class:`Bbox`, shifted to position *c*
within a container.
*c*: may be either:
* a sequence (*cx*, *cy*) where *cx* and *cy* range from 0
to 1, where 0 is left or bottom and 1 is right or top
* a string:
- 'C' for centered
- 'S' for bottom-center
- 'SE' for bottom-left
- 'E' for left
- etc.
Optional argument *container* is the box within which the
:class:`Bbox` is positioned; it defaults to the initial
:class:`Bbox`.
"""
if container is None:
container = self
l, b, w, h = container.bounds
if isinstance(c, basestring):
cx, cy = self.coefs[c]
else:
cx, cy = c
L, B, W, H = self.bounds
return Bbox(self._points +
[(l + cx * (w - W)) - L,
(b + cy * (h - H)) - B])
def shrunk(self, mx, my):
"""
Return a copy of the :class:`Bbox`, shrunk by the factor *mx*
in the *x* direction and the factor *my* in the *y* direction.
The lower left corner of the box remains unchanged. Normally
*mx* and *my* will be less than 1, but this is not enforced.
"""
w, h = self.size
return Bbox([self._points[0],
self._points[0] + [mx * w, my * h]])
def shrunk_to_aspect(self, box_aspect, container=None, fig_aspect=1.0):
"""
Return a copy of the :class:`Bbox`, shrunk so that it is as
large as it can be while having the desired aspect ratio,
*box_aspect*. If the box coordinates are relative---that
is, fractions of a larger box such as a figure---then the
physical aspect ratio of that figure is specified with
*fig_aspect*, so that *box_aspect* can also be given as a
ratio of the absolute dimensions, not the relative dimensions.
"""
assert box_aspect > 0 and fig_aspect > 0
if container is None:
container = self
w, h = container.size
H = w * box_aspect / fig_aspect
if H <= h:
W = w
else:
W = h * fig_aspect / box_aspect
H = h
return Bbox([self._points[0],
self._points[0] + (W, H)])
def splitx(self, *args):
"""
e.g., ``bbox.splitx(f1, f2, ...)``
Returns a list of new :class:`Bbox` objects formed by
splitting the original one with vertical lines at fractional
positions *f1*, *f2*, ...
"""
boxes = []
xf = [0] + list(args) + [1]
x0, y0, x1, y1 = self._get_extents()
w = x1 - x0
for xf0, xf1 in zip(xf[:-1], xf[1:]):
boxes.append(Bbox([[x0 + xf0 * w, y0], [x0 + xf1 * w, y1]]))
return boxes
def splity(self, *args):
"""
e.g., ``bbox.splitx(f1, f2, ...)``
Returns a list of new :class:`Bbox` objects formed by
splitting the original one with horizontal lines at fractional
positions *f1*, *f2*, ...
"""
boxes = []
yf = [0] + list(args) + [1]
x0, y0, x1, y1 = self._get_extents()
h = y1 - y0
for yf0, yf1 in zip(yf[:-1], yf[1:]):
boxes.append(Bbox([[x0, y0 + yf0 * h], [x1, y0 + yf1 * h]]))
return boxes
def count_contains(self, vertices):
"""
Count the number of vertices contained in the :class:`Bbox`.
*vertices* is a Nx2 Numpy array.
"""
if len(vertices) == 0:
return 0
vertices = np.asarray(vertices)
x0, y0, x1, y1 = self._get_extents()
dx0 = np.sign(vertices[:, 0] - x0)
dy0 = np.sign(vertices[:, 1] - y0)
dx1 = np.sign(vertices[:, 0] - x1)
dy1 = np.sign(vertices[:, 1] - y1)
inside = ((abs(dx0 + dx1) + abs(dy0 + dy1)) == 0)
return np.sum(inside)
def count_overlaps(self, bboxes):
"""
Count the number of bounding boxes that overlap this one.
bboxes is a sequence of :class:`BboxBase` objects
"""
return count_bboxes_overlapping_bbox(self, bboxes)
def expanded(self, sw, sh):
"""
Return a new :class:`Bbox` which is this :class:`Bbox`
expanded around its center by the given factors *sw* and
*sh*.
"""
width = self.width
height = self.height
deltaw = (sw * width - width) / 2.0
deltah = (sh * height - height) / 2.0
a = np.array([[-deltaw, -deltah], [deltaw, deltah]])
return Bbox(self._points + a)
def padded(self, p):
"""
Return a new :class:`Bbox` that is padded on all four sides by
the given value.
"""
points = self.get_points()
return Bbox(points + [[-p, -p], [p, p]])
def translated(self, tx, ty):
"""
Return a copy of the :class:`Bbox`, statically translated by
*tx* and *ty*.
"""
return Bbox(self._points + (tx, ty))
def corners(self):
"""
Return an array of points which are the four corners of this
rectangle. For example, if this :class:`Bbox` is defined by
the points (*a*, *b*) and (*c*, *d*), :meth:`corners` returns
(*a*, *b*), (*a*, *d*), (*c*, *b*) and (*c*, *d*).
"""
l, b, r, t = self.get_points().flatten()
return np.array([[l, b], [l, t], [r, b], [r, t]])
def rotated(self, radians):
"""
Return a new bounding box that bounds a rotated version of
this bounding box by the given radians. The new bounding box
is still aligned with the axes, of course.
"""
corners = self.corners()
corners_rotated = Affine2D().rotate(radians).transform(corners)
bbox = Bbox.unit()
bbox.update_from_data_xy(corners_rotated, ignore=True)
return bbox
@staticmethod
def union(bboxes):
"""
Return a :class:`Bbox` that contains all of the given bboxes.
"""
assert(len(bboxes))
if len(bboxes) == 1:
return bboxes[0]
x0 = np.inf
y0 = np.inf
x1 = -np.inf
y1 = -np.inf
for bbox in bboxes:
points = bbox.get_points()
xs = points[:, 0]
ys = points[:, 1]
x0 = min(x0, np.min(xs))
y0 = min(y0, np.min(ys))
x1 = max(x1, np.max(xs))
y1 = max(y1, np.max(ys))
return Bbox.from_extents(x0, y0, x1, y1)
@staticmethod
def intersection(bbox1, bbox2):
"""
Return the intersection of the two bboxes or None
if they do not intersect.
Implements the algorithm described at:
http://www.tekpool.com/node/2687
"""
intersects = not (bbox2.xmin > bbox1.xmax or
bbox2.xmax < bbox1.xmin or
bbox2.ymin > bbox1.ymax or
bbox2.ymax < bbox1.ymin)
if intersects:
x0 = max([bbox1.xmin, bbox2.xmin])
x1 = min([bbox1.xmax, bbox2.xmax])
y0 = max([bbox1.ymin, bbox2.ymin])
y1 = min([bbox1.ymax, bbox2.ymax])
return Bbox.from_extents(x0, y0, x1, y1)
return None
class Bbox(BboxBase):
"""
A mutable bounding box.
"""
def __init__(self, points, **kwargs):
"""
*points*: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]
If you need to create a :class:`Bbox` object from another form
of data, consider the static methods :meth:`unit`,
:meth:`from_bounds` and :meth:`from_extents`.
"""
BboxBase.__init__(self, **kwargs)
points = np.asarray(points, np.float_)
if points.shape != (2, 2):
raise ValueError('Bbox points must be of the form '
'"[[x0, y0], [x1, y1]]".')
self._points = points
self._minpos = np.array([0.0000001, 0.0000001])
self._ignore = True
# it is helpful in some contexts to know if the bbox is a
# default or has been mutated; we store the orig points to
# support the mutated methods
self._points_orig = self._points.copy()
if DEBUG:
___init__ = __init__
def __init__(self, points, **kwargs):
self._check(points)
self.___init__(points, **kwargs)
def invalidate(self):
self._check(self._points)
TransformNode.invalidate(self)
@staticmethod
def unit():
"""
(staticmethod) Create a new unit :class:`Bbox` from (0, 0) to
(1, 1).
"""
return Bbox(np.array([[0.0, 0.0], [1.0, 1.0]], np.float))
@staticmethod
def null():
"""
(staticmethod) Create a new null :class:`Bbox` from (inf, inf) to
(-inf, -inf).
"""
return Bbox(np.array([[np.inf, np.inf], [-np.inf, -np.inf]], np.float))
@staticmethod
def from_bounds(x0, y0, width, height):
"""
(staticmethod) Create a new :class:`Bbox` from *x0*, *y0*,
*width* and *height*.
*width* and *height* may be negative.
"""
return Bbox.from_extents(x0, y0, x0 + width, y0 + height)
@staticmethod
def from_extents(*args):
"""
(staticmethod) Create a new Bbox from *left*, *bottom*,
*right* and *top*.
The *y*-axis increases upwards.
"""
points = np.array(args, dtype=np.float_).reshape(2, 2)
return Bbox(points)
def __repr__(self):
return 'Bbox(%r)' % repr(self._points)
def ignore(self, value):
"""
Set whether the existing bounds of the box should be ignored
by subsequent calls to :meth:`update_from_data` or
:meth:`update_from_data_xy`.
*value*:
- When True, subsequent calls to :meth:`update_from_data`
will ignore the existing bounds of the :class:`Bbox`.
- When False, subsequent calls to :meth:`update_from_data`
will include the existing bounds of the :class:`Bbox`.
"""
self._ignore = value
def update_from_data(self, x, y, ignore=None):
"""
Update the bounds of the :class:`Bbox` based on the passed in
data. After updating, the bounds will have positive *width*
and *height*; *x0* and *y0* will be the minimal values.
*x*: a numpy array of *x*-values
*y*: a numpy array of *y*-values
*ignore*:
- when True, ignore the existing bounds of the :class:`Bbox`.
- when False, include the existing bounds of the :class:`Bbox`.
- when None, use the last value passed to :meth:`ignore`.
"""
warnings.warn(
"update_from_data requires a memory copy -- please replace with "
"update_from_data_xy")
xy = np.hstack((x.reshape((len(x), 1)), y.reshape((len(y), 1))))
return self.update_from_data_xy(xy, ignore)
def update_from_path(self, path, ignore=None, updatex=True, updatey=True):
"""
Update the bounds of the :class:`Bbox` based on the passed in
data. After updating, the bounds will have positive *width*
and *height*; *x0* and *y0* will be the minimal values.
*path*: a :class:`~matplotlib.path.Path` instance
*ignore*:
- when True, ignore the existing bounds of the :class:`Bbox`.
- when False, include the existing bounds of the :class:`Bbox`.
- when None, use the last value passed to :meth:`ignore`.
*updatex*: when True, update the x values
*updatey*: when True, update the y values
"""
if ignore is None:
ignore = self._ignore
if path.vertices.size == 0:
return
points, minpos, changed = update_path_extents(
path, None, self._points, self._minpos, ignore)
if changed:
self.invalidate()
if updatex:
self._points[:, 0] = points[:, 0]
self._minpos[0] = minpos[0]
if updatey:
self._points[:, 1] = points[:, 1]
self._minpos[1] = minpos[1]
def update_from_data_xy(self, xy, ignore=None, updatex=True, updatey=True):
"""
Update the bounds of the :class:`Bbox` based on the passed in
data. After updating, the bounds will have positive *width*
and *height*; *x0* and *y0* will be the minimal values.
*xy*: a numpy array of 2D points
*ignore*:
- when True, ignore the existing bounds of the :class:`Bbox`.
- when False, include the existing bounds of the :class:`Bbox`.
- when None, use the last value passed to :meth:`ignore`.
*updatex*: when True, update the x values
*updatey*: when True, update the y values
"""
if len(xy) == 0:
return
path = Path(xy)
self.update_from_path(path, ignore=ignore,
updatex=updatex, updatey=updatey)
def _set_x0(self, val):
self._points[0, 0] = val
self.invalidate()
x0 = property(BboxBase._get_x0, _set_x0)
def _set_y0(self, val):
self._points[0, 1] = val
self.invalidate()
y0 = property(BboxBase._get_y0, _set_y0)
def _set_x1(self, val):
self._points[1, 0] = val
self.invalidate()
x1 = property(BboxBase._get_x1, _set_x1)
def _set_y1(self, val):
self._points[1, 1] = val
self.invalidate()
y1 = property(BboxBase._get_y1, _set_y1)
def _set_p0(self, val):
self._points[0] = val
self.invalidate()
p0 = property(BboxBase._get_p0, _set_p0)
def _set_p1(self, val):
self._points[1] = val
self.invalidate()
p1 = property(BboxBase._get_p1, _set_p1)
def _set_intervalx(self, interval):
self._points[:, 0] = interval
self.invalidate()
intervalx = property(BboxBase._get_intervalx, _set_intervalx)
def _set_intervaly(self, interval):
self._points[:, 1] = interval
self.invalidate()
intervaly = property(BboxBase._get_intervaly, _set_intervaly)
def _set_bounds(self, bounds):
l, b, w, h = bounds
points = np.array([[l, b], [l + w, b + h]], np.float_)
if np.any(self._points != points):
self._points = points
self.invalidate()
bounds = property(BboxBase._get_bounds, _set_bounds)
def _get_minpos(self):
return self._minpos
minpos = property(_get_minpos)
def _get_minposx(self):
return self._minpos[0]
minposx = property(_get_minposx)
def _get_minposy(self):
return self._minpos[1]
minposy = property(_get_minposy)
def get_points(self):
"""
Get the points of the bounding box directly as a numpy array
of the form: [[x0, y0], [x1, y1]].
"""
self._invalid = 0
return self._points
def set_points(self, points):
"""
Set the points of the bounding box directly from a numpy array
of the form: [[x0, y0], [x1, y1]]. No error checking is
performed, as this method is mainly for internal use.
"""
if np.any(self._points != points):
self._points = points
self.invalidate()
def set(self, other):
"""
Set this bounding box from the "frozen" bounds of another
:class:`Bbox`.
"""
if np.any(self._points != other.get_points()):
self._points = other.get_points()
self.invalidate()
def mutated(self):
'return whether the bbox has changed since init'
return self.mutatedx() or self.mutatedy()
def mutatedx(self):
'return whether the x-limits have changed since init'
return (self._points[0, 0] != self._points_orig[0, 0] or
self._points[1, 0] != self._points_orig[1, 0])
def mutatedy(self):
'return whether the y-limits have changed since init'
return (self._points[0, 1] != self._points_orig[0, 1] or
self._points[1, 1] != self._points_orig[1, 1])
class TransformedBbox(BboxBase):
"""
A :class:`Bbox` that is automatically transformed by a given
transform. When either the child bounding box or transform
changes, the bounds of this bbox will update accordingly.
"""
def __init__(self, bbox, transform, **kwargs):
"""
*bbox*: a child :class:`Bbox`
*transform*: a 2D :class:`Transform`
"""
assert bbox.is_bbox
assert isinstance(transform, Transform)
assert transform.input_dims == 2
assert transform.output_dims == 2
BboxBase.__init__(self, **kwargs)
self._bbox = bbox
self._transform = transform
self.set_children(bbox, transform)
self._points = None
def __repr__(self):
return "TransformedBbox(%r, %r)" % (self._bbox, self._transform)
def get_points(self):
if self._invalid:
points = self._transform.transform(self._bbox.get_points())
points = np.ma.filled(points, 0.0)
self._points = points
self._invalid = 0
return self._points
get_points.__doc__ = Bbox.get_points.__doc__
if DEBUG:
_get_points = get_points
def get_points(self):
points = self._get_points()
self._check(points)
return points
class Transform(TransformNode):
"""
The base class of all :class:`TransformNode` instances that
actually perform a transformation.
All non-affine transformations should be subclasses of this class.
New affine transformations should be subclasses of
:class:`Affine2D`.
Subclasses of this class should override the following members (at
minimum):
- :attr:`input_dims`
- :attr:`output_dims`
- :meth:`transform`
- :attr:`is_separable`
- :attr:`has_inverse`
- :meth:`inverted` (if :attr:`has_inverse` is True)
If the transform needs to do something non-standard with
:class:`matplotlib.path.Path` objects, such as adding curves
where there were once line segments, it should override:
- :meth:`transform_path`
"""
input_dims = None
"""
The number of input dimensions of this transform.
Must be overridden (with integers) in the subclass.
"""
output_dims = None
"""
The number of output dimensions of this transform.
Must be overridden (with integers) in the subclass.
"""
has_inverse = False
"""True if this transform has a corresponding inverse transform."""
is_separable = False
"""True if this transform is separable in the x- and y- dimensions."""
def __add__(self, other):
"""
Composes two transforms together such that *self* is followed
by *other*.
"""
if isinstance(other, Transform):
return composite_transform_factory(self, other)
raise TypeError(
"Can not add Transform to object of type '%s'" % type(other))
def __radd__(self, other):
"""
Composes two transforms together such that *self* is followed
by *other*.
"""
if isinstance(other, Transform):
return composite_transform_factory(other, self)
raise TypeError(
"Can not add Transform to object of type '%s'" % type(other))
def __eq__(self, other):
# equality is based on transform object id. Hence:
# Transform() != Transform().
# Some classes, such as TransformWrapper & AffineBase, will override.
return self is other
def _iter_break_from_left_to_right(self):
"""
Returns an iterator breaking down this transform stack from left to
right recursively. If self == ((A, N), A) then the result will be an
iterator which yields I : ((A, N), A), followed by A : (N, A),
followed by (A, N) : (A), but not ((A, N), A) : I.
This is equivalent to flattening the stack then yielding
``flat_stack[:i], flat_stack[i:]`` where i=0..(n-1).
"""
yield IdentityTransform(), self
@property
def depth(self):
"""
Returns the number of transforms which have been chained
together to form this Transform instance.
.. note::
For the special case of a Composite transform, the maximum depth
of the two is returned.
"""
return 1
def contains_branch(self, other):
"""
Return whether the given transform is a sub-tree of this transform.
This routine uses transform equality to identify sub-trees, therefore
in many situations it is object id which will be used.
For the case where the given transform represents the whole
of this transform, returns True.
"""
if self.depth < other.depth:
return False
# check that a subtree is equal to other (starting from self)
for _, sub_tree in self._iter_break_from_left_to_right():
if sub_tree == other:
return True
return False
def contains_branch_seperately(self, other_transform):
"""
Returns whether the given branch is a sub-tree of this transform on
each seperate dimension.
A common use for this method is to identify if a transform is a blended
transform containing an axes' data transform. e.g.::
x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)
"""
if self.output_dims != 2:
raise ValueError('contains_branch_seperately only supports '
'transforms with 2 output dimensions')
# for a non-blended transform each seperate dimension is the same, so
# just return the appropriate shape.
return [self.contains_branch(other_transform)] * 2
def __sub__(self, other):
"""
Returns a transform stack which goes all the way down self's transform
stack, and then ascends back up other's stack. If it can, this is
optimised::
# normally
A - B == a + b.inverted()
# sometimes, when A contains the tree B there is no need to
# descend all the way down to the base of A (via B), instead we
# can just stop at B.
(A + B) - (B)^-1 == A
# similarly, when B contains tree A, we can avoid decending A at
# all, basically:
A - (A + B) == ((B + A) - A).inverted() or B^-1
For clarity, the result of ``(A + B) - B + B == (A + B)``.
"""
# we only know how to do this operation if other is a Transform.
if not isinstance(other, Transform):
return NotImplemented
for remainder, sub_tree in self._iter_break_from_left_to_right():
if sub_tree == other:
return remainder
for remainder, sub_tree in other._iter_break_from_left_to_right():
if sub_tree == self:
if not remainder.has_inverse:
raise ValueError("The shortcut cannot be computed since "
"other's transform includes a non-invertable component.")
return remainder.inverted()
# if we have got this far, then there was no shortcut possible
if other.has_inverse:
return self + other.inverted()
else:
raise ValueError('It is not possible to compute transA - transB '
'since transB cannot be inverted and there is no '
'shortcut possible.')
def __array__(self, *args, **kwargs):
"""
Array interface to get at this Transform's affine matrix.
"""
return self.get_affine().get_matrix()
def transform(self, values):
"""
Performs the transformation on the given array of values.
Accepts a numpy array of shape (N x :attr:`input_dims`) and
returns a numpy array of shape (N x :attr:`output_dims`).
"""
return self.transform_affine(self.transform_non_affine(values))
def transform_affine(self, values):
"""
Performs only the affine part of this transformation on the
given array of values.
``transform(values)`` is always equivalent to
``transform_affine(transform_non_affine(values))``.
In non-affine transformations, this is generally a no-op. In
affine transformations, this is equivalent to
``transform(values)``.
Accepts a numpy array of shape (N x :attr:`input_dims`) and
returns a numpy array of shape (N x :attr:`output_dims`).
"""
return self.get_affine().transform(values)
def transform_non_affine(self, values):
"""
Performs only the non-affine part of the transformation.
``transform(values)`` is always equivalent to
``transform_affine(transform_non_affine(values))``.
In non-affine transformations, this is generally equivalent to
``transform(values)``. In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x :attr:`input_dims`) and
returns a numpy array of shape (N x :attr:`output_dims`).
"""
return values
def get_affine(self):
"""
Get the affine part of this transform.
"""
return IdentityTransform()
def get_matrix(self):
"""
Get the Affine transformation array for the affine part
of this transform.
"""
return self.get_affine().get_matrix()
def transform_point(self, point):
"""
A convenience function that returns the transformed copy of a
single point.
The point is given as a sequence of length :attr:`input_dims`.
The transformed point is returned as a sequence of length
:attr:`output_dims`.
"""
assert len(point) == self.input_dims
return self.transform(np.asarray([point]))[0]
def transform_path(self, path):
"""
Returns a transformed path.
*path*: a :class:`~matplotlib.path.Path` instance.
In some cases, this transform may insert curves into the path
that began as line segments.
"""
return self.transform_path_affine(self.transform_path_non_affine(path))
def transform_path_affine(self, path):
"""
Returns a path, transformed only by the affine part of
this transform.
*path*: a :class:`~matplotlib.path.Path` instance.
``transform_path(path)`` is equivalent to
``transform_path_affine(transform_path_non_affine(values))``.
"""
return self.get_affine().transform_path_affine(path)
def transform_path_non_affine(self, path):
"""
Returns a path, transformed only by the non-affine
part of this transform.
*path*: a :class:`~matplotlib.path.Path` instance.
``transform_path(path)`` is equivalent to
``transform_path_affine(transform_path_non_affine(values))``.
"""
return Path(self.transform_non_affine(path.vertices), path.codes,
path._interpolation_steps)
def transform_angles(self, angles, pts, radians=False, pushoff=1e-5):
"""
Performs transformation on a set of angles anchored at
specific locations.
The *angles* must be a column vector (i.e., numpy array).
The *pts* must be a two-column numpy array of x,y positions
(angle transforms currently only work in 2D). This array must
have the same number of rows as *angles*.
*radians* indicates whether or not input angles are given in
radians (True) or degrees (False; the default).
*pushoff* is the distance to move away from *pts* for
determining transformed angles (see discussion of method
below).
The transformed angles are returned in an array with the same
size as *angles*.
The generic version of this method uses a very generic
algorithm that transforms *pts*, as well as locations very
close to *pts*, to find the angle in the transformed system.
"""
# Must be 2D
if self.input_dims != 2 or self.output_dims != 2:
raise NotImplementedError('Only defined in 2D')
# pts must be array with 2 columns for x,y
assert pts.shape[1] == 2
# angles must be a column vector and have same number of
# rows as pts
assert np.prod(angles.shape) == angles.shape[0] == pts.shape[0]
# Convert to radians if desired
if not radians:
angles = angles / 180.0 * np.pi
# Move a short distance away
pts2 = pts + pushoff * np.c_[np.cos(angles), np.sin(angles)]
# Transform both sets of points
tpts = self.transform(pts)
tpts2 = self.transform(pts2)
# Calculate transformed angles
d = tpts2 - tpts
a = np.arctan2(d[:, 1], d[:, 0])
# Convert back to degrees if desired
if not radians:
a = a * 180.0 / np.pi
return a
def inverted(self):
"""
Return the corresponding inverse transformation.
The return value of this method should be treated as
temporary. An update to *self* does not cause a corresponding
update to its inverted copy.
``x === self.inverted().transform(self.transform(x))``
"""
raise NotImplementedError()
class TransformWrapper(Transform):
"""
A helper class that holds a single child transform and acts
equivalently to it.
This is useful if a node of the transform tree must be replaced at
run time with a transform of a different type. This class allows
that replacement to correctly trigger invalidation.
Note that :class:`TransformWrapper` instances must have the same
input and output dimensions during their entire lifetime, so the
child transform may only be replaced with another child transform
of the same dimensions.
"""
pass_through = True
def __init__(self, child):
"""
*child*: A class:`Transform` instance. This child may later
be replaced with :meth:`set`.
"""
assert isinstance(child, Transform)
Transform.__init__(self)
self.input_dims = child.input_dims
self.output_dims = child.output_dims
self._set(child)
self._invalid = 0
def __eq__(self, other):
return self._child.__eq__(other)
if DEBUG:
def __str__(self):
return str(self._child)
def __getstate__(self):
# only store the child
return {'child': self._child}
def __setstate__(self, state):
# re-initialise the TransformWrapper with the state's child
self.__init__(state['child'])
def __repr__(self):
return "TransformWrapper(%r)" % self._child
def frozen(self):
return self._child.frozen()
frozen.__doc__ = Transform.frozen.__doc__
def _set(self, child):
self._child = child
self.set_children(child)
self.transform = child.transform
self.transform_affine = child.transform_affine
self.transform_non_affine = child.transform_non_affine
self.transform_path = child.transform_path
self.transform_path_affine = child.transform_path_affine
self.transform_path_non_affine = child.transform_path_non_affine
self.get_affine = child.get_affine
self.inverted = child.inverted
self.get_matrix = child.get_matrix
# note we do not wrap other properties here since the transform's
# child can be changed with WrappedTransform.set and so checking
# is_affine and other such properties may be dangerous.
def set(self, child):
"""
Replace the current child of this transform with another one.
The new child must have the same number of input and output
dimensions as the current child.
"""
assert child.input_dims == self.input_dims
assert child.output_dims == self.output_dims
self._set(child)
self._invalid = 0
self.invalidate()
self._invalid = 0
def _get_is_affine(self):
return self._child.is_affine
is_affine = property(_get_is_affine)
def _get_is_separable(self):
return self._child.is_separable
is_separable = property(_get_is_separable)
def _get_has_inverse(self):
return self._child.has_inverse
has_inverse = property(_get_has_inverse)
class AffineBase(Transform):
"""
The base class of all affine transformations of any number of
dimensions.
"""
is_affine = True
def __init__(self, *args, **kwargs):
Transform.__init__(self, *args, **kwargs)
self._inverted = None
def __array__(self, *args, **kwargs):
# optimises the access of the transform matrix vs the superclass
return self.get_matrix()
@staticmethod
def _concat(a, b):
"""
Concatenates two transformation matrices (represented as numpy
arrays) together.
"""
return np.dot(b, a)
def __eq__(self, other):
if other.is_affine:
return np.all(self.get_matrix() == other.get_matrix())
return NotImplemented
def transform(self, values):
return self.transform_affine(values)
transform.__doc__ = Transform.transform.__doc__
def transform_affine(self, values):
raise NotImplementedError('Affine subclasses should override this '
'method.')
transform_affine.__doc__ = Transform.transform_affine.__doc__
def transform_non_affine(self, points):
return points
transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__
def transform_path(self, path):
return self.transform_path_affine(path)
transform_path.__doc__ = Transform.transform_path.__doc__
def transform_path_affine(self, path):
return Path(self.transform_affine(path.vertices),
path.codes, path._interpolation_steps)
transform_path_affine.__doc__ = Transform.transform_path_affine.__doc__
def transform_path_non_affine(self, path):
return path
transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__
def get_affine(self):
return self
get_affine.__doc__ = Transform.get_affine.__doc__
class Affine2DBase(AffineBase):
"""
The base class of all 2D affine transformations.
2D affine transformations are performed using a 3x3 numpy array::
a c e
b d f
0 0 1
This class provides the read-only interface. For a mutable 2D
affine transformation, use :class:`Affine2D`.
Subclasses of this class will generally only need to override a
constructor and :meth:`get_matrix` that generates a custom 3x3 matrix.
"""
has_inverse = True
input_dims = 2
output_dims = 2
def frozen(self):
return Affine2D(self.get_matrix().copy())
frozen.__doc__ = AffineBase.frozen.__doc__
def _get_is_separable(self):
mtx = self.get_matrix()
return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0
is_separable = property(_get_is_separable)
def to_values(self):
"""
Return the values of the matrix as a sequence (a,b,c,d,e,f)
"""
mtx = self.get_matrix()
return tuple(mtx[:2].swapaxes(0, 1).flatten())
@staticmethod
def matrix_from_values(a, b, c, d, e, f):
"""
(staticmethod) Create a new transformation matrix as a 3x3
numpy array of the form::
a c e
b d f
0 0 1
"""
return np.array([[a, c, e], [b, d, f], [0.0, 0.0, 1.0]], np.float_)
def transform_affine(self, points):
mtx = self.get_matrix()
if isinstance(points, MaskedArray):
tpoints = affine_transform(points.data, mtx)
return ma.MaskedArray(tpoints, mask=ma.getmask(points))
return affine_transform(points, mtx)
def transform_point(self, point):
mtx = self.get_matrix()
return affine_transform(point, mtx)
transform_point.__doc__ = AffineBase.transform_point.__doc__
if DEBUG:
_transform_affine = transform_affine
def transform_affine(self, points):
# The major speed trap here is just converting to the
# points to an array in the first place. If we can use
# more arrays upstream, that should help here.
if (not ma.isMaskedArray(points) and
not isinstance(points, np.ndarray)):
warnings.warn(
('A non-numpy array of type %s was passed in for ' +
'transformation. Please correct this.')
% type(points))
return self._transform_affine(points)
transform_affine.__doc__ = AffineBase.transform_affine.__doc__
def inverted(self):
if self._inverted is None or self._invalid:
mtx = self.get_matrix()
shorthand_name = None
if self._shorthand_name:
shorthand_name = '(%s)-1' % self._shorthand_name
self._inverted = Affine2D(inv(mtx), shorthand_name=shorthand_name)
self._invalid = 0
return self._inverted
inverted.__doc__ = AffineBase.inverted.__doc__
class Affine2D(Affine2DBase):
"""
A mutable 2D affine transformation.
"""
def __init__(self, matrix=None, **kwargs):
"""
Initialize an Affine transform from a 3x3 numpy float array::
a c e
b d f
0 0 1
If *matrix* is None, initialize with the identity transform.
"""
Affine2DBase.__init__(self, **kwargs)
if matrix is None:
matrix = np.identity(3)
elif DEBUG:
matrix = np.asarray(matrix, np.float_)
assert matrix.shape == (3, 3)
self._mtx = matrix
self._invalid = 0
def __repr__(self):
return "Affine2D(%s)" % repr(self._mtx)
# def __cmp__(self, other):
# # XXX redundant. this only tells us eq.
# if (isinstance(other, Affine2D) and
# (self.get_matrix() == other.get_matrix()).all()):
# return 0
# return -1
@staticmethod
def from_values(a, b, c, d, e, f):
"""
(staticmethod) Create a new Affine2D instance from the given
values::
a c e
b d f
0 0 1
.
"""
return Affine2D(
np.array([a, c, e, b, d, f, 0.0, 0.0, 1.0], np.float_)
.reshape((3, 3)))
def get_matrix(self):
"""
Get the underlying transformation matrix as a 3x3 numpy array::
a c e
b d f
0 0 1
.
"""
self._invalid = 0
return self._mtx
def set_matrix(self, mtx):
"""
Set the underlying transformation matrix from a 3x3 numpy array::
a c e
b d f
0 0 1
.
"""
self._mtx = mtx
self.invalidate()
def set(self, other):
"""
Set this transformation from the frozen copy of another
:class:`Affine2DBase` object.
"""
assert isinstance(other, Affine2DBase)
self._mtx = other.get_matrix()
self.invalidate()
@staticmethod
def identity():
"""
(staticmethod) Return a new :class:`Affine2D` object that is
the identity transform.
Unless this transform will be mutated later on, consider using
the faster :class:`IdentityTransform` class instead.
"""
return Affine2D(np.identity(3))
def clear(self):
"""
Reset the underlying matrix to the identity transform.
"""
self._mtx = np.identity(3)
self.invalidate()
return self
def rotate(self, theta):
"""
Add a rotation (in radians) to this transform in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
a = np.cos(theta)
b = np.sin(theta)
rotate_mtx = np.array(
[[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0, 1.0]],
np.float_)
self._mtx = np.dot(rotate_mtx, self._mtx)
self.invalidate()
return self
def rotate_deg(self, degrees):
"""
Add a rotation (in degrees) to this transform in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.rotate(degrees * np.pi / 180.)
def rotate_around(self, x, y, theta):
"""
Add a rotation (in radians) around the point (x, y) in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.translate(-x, -y).rotate(theta).translate(x, y)
def rotate_deg_around(self, x, y, degrees):
"""
Add a rotation (in degrees) around the point (x, y) in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.translate(-x, -y).rotate_deg(degrees).translate(x, y)
def translate(self, tx, ty):
"""
Adds a translation in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
translate_mtx = np.array(
[[1.0, 0.0, tx], [0.0, 1.0, ty], [0.0, 0.0, 1.0]],
np.float_)
self._mtx = np.dot(translate_mtx, self._mtx)
self.invalidate()
return self
def scale(self, sx, sy=None):
"""
Adds a scale in place.
If *sy* is None, the same scale is applied in both the *x*- and
*y*-directions.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
if sy is None:
sy = sx
scale_mtx = np.array(
[[sx, 0.0, 0.0], [0.0, sy, 0.0], [0.0, 0.0, 1.0]],
np.float_)
self._mtx = np.dot(scale_mtx, self._mtx)
self.invalidate()
return self
def _get_is_separable(self):
mtx = self.get_matrix()
return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0
is_separable = property(_get_is_separable)
class IdentityTransform(Affine2DBase):
"""
A special class that does on thing, the identity transform, in a
fast way.
"""
_mtx = np.identity(3)
def frozen(self):
return self
frozen.__doc__ = Affine2DBase.frozen.__doc__
def __repr__(self):
return "IdentityTransform()"
def get_matrix(self):
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
def transform(self, points):
return points
transform.__doc__ = Affine2DBase.transform.__doc__
transform_affine = transform
transform_affine.__doc__ = Affine2DBase.transform_affine.__doc__
transform_non_affine = transform
transform_non_affine.__doc__ = Affine2DBase.transform_non_affine.__doc__
def transform_path(self, path):
return path
transform_path.__doc__ = Affine2DBase.transform_path.__doc__
transform_path_affine = transform_path
transform_path_affine.__doc__ = Affine2DBase.transform_path_affine.__doc__
transform_path_non_affine = transform_path
transform_path_non_affine.__doc__ = Affine2DBase.transform_path_non_affine.__doc__
def get_affine(self):
return self
get_affine.__doc__ = Affine2DBase.get_affine.__doc__
inverted = get_affine
inverted.__doc__ = Affine2DBase.inverted.__doc__
class BlendedGenericTransform(Transform):
"""
A "blended" transform uses one transform for the *x*-direction, and
another transform for the *y*-direction.
This "generic" version can handle any given child transform in the
*x*- and *y*-directions.
"""
input_dims = 2
output_dims = 2
is_separable = True
pass_through = True
def __init__(self, x_transform, y_transform, **kwargs):
"""
Create a new "blended" transform using *x_transform* to
transform the *x*-axis and *y_transform* to transform the
*y*-axis.
You will generally not call this constructor directly but use
the :func:`blended_transform_factory` function instead, which
can determine automatically which kind of blended transform to
create.
"""
# Here we ask: "Does it blend?"
Transform.__init__(self, **kwargs)
self._x = x_transform
self._y = y_transform
self.set_children(x_transform, y_transform)
self._affine = None
def __eq__(self, other):
# Note, this is an exact copy of BlendedAffine2D.__eq__
if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)):
return (self._x == other._x) and (self._y == other._y)
elif self._x == self._y:
return self._x == other
else:
return NotImplemented
def contains_branch_seperately(self, transform):
# Note, this is an exact copy of BlendedAffine2D.contains_branch_seperately
return self._x.contains_branch(transform), self._y.contains_branch(transform)
@property
def depth(self):
return max([self._x.depth, self._y.depth])
def contains_branch(self, other):
# a blended transform cannot possibly contain a branch from two different transforms.
return False
def _get_is_affine(self):
return self._x.is_affine and self._y.is_affine
is_affine = property(_get_is_affine)
def _get_has_inverse(self):
return self._x.has_inverse and self._y.has_inverse
has_inverse = property(_get_has_inverse)
def frozen(self):
return blended_transform_factory(self._x.frozen(), self._y.frozen())
frozen.__doc__ = Transform.frozen.__doc__
def __repr__(self):
return "BlendedGenericTransform(%s,%s)" % (self._x, self._y)
def transform_non_affine(self, points):
if self._x.is_affine and self._y.is_affine:
return points
x = self._x
y = self._y
if x == y and x.input_dims == 2:
return x.transform_non_affine(points)
if x.input_dims == 2:
x_points = x.transform_non_affine(points)[:, 0:1]
else:
x_points = x.transform_non_affine(points[:, 0])
x_points = x_points.reshape((len(x_points), 1))
if y.input_dims == 2:
y_points = y.transform_non_affine(points)[:, 1:]
else:
y_points = y.transform_non_affine(points[:, 1])
y_points = y_points.reshape((len(y_points), 1))
if isinstance(x_points, MaskedArray) or isinstance(y_points, MaskedArray):
return ma.concatenate((x_points, y_points), 1)
else:
return np.concatenate((x_points, y_points), 1)
transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__
def inverted(self):
return BlendedGenericTransform(self._x.inverted(), self._y.inverted())
inverted.__doc__ = Transform.inverted.__doc__
def get_affine(self):
if self._invalid or self._affine is None:
if self._x == self._y:
self._affine = self._x.get_affine()
else:
x_mtx = self._x.get_affine().get_matrix()
y_mtx = self._y.get_affine().get_matrix()
# This works because we already know the transforms are
# separable, though normally one would want to set b and
# c to zero.
mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]))
self._affine = Affine2D(mtx)
self._invalid = 0
return self._affine
get_affine.__doc__ = Transform.get_affine.__doc__
class BlendedAffine2D(Affine2DBase):
"""
A "blended" transform uses one transform for the *x*-direction, and
another transform for the *y*-direction.
This version is an optimization for the case where both child
transforms are of type :class:`Affine2DBase`.
"""
is_separable = True
def __init__(self, x_transform, y_transform, **kwargs):
"""
Create a new "blended" transform using *x_transform* to
transform the *x*-axis and *y_transform* to transform the
*y*-axis.
Both *x_transform* and *y_transform* must be 2D affine
transforms.
You will generally not call this constructor directly but use
the :func:`blended_transform_factory` function instead, which
can determine automatically which kind of blended transform to
create.
"""
assert x_transform.is_affine
assert y_transform.is_affine
assert x_transform.is_separable
assert y_transform.is_separable
Transform.__init__(self, **kwargs)
self._x = x_transform
self._y = y_transform
self.set_children(x_transform, y_transform)
Affine2DBase.__init__(self)
self._mtx = None
def __eq__(self, other):
# Note, this is an exact copy of BlendedGenericTransform.__eq__
if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)):
return (self._x == other._x) and (self._y == other._y)
elif self._x == self._y:
return self._x == other
else:
return NotImplemented
def contains_branch_seperately(self, transform):
# Note, this is an exact copy of BlendedTransform.contains_branch_seperately
return self._x.contains_branch(transform), self._y.contains_branch(transform)
def __repr__(self):
return "BlendedAffine2D(%s,%s)" % (self._x, self._y)
def get_matrix(self):
if self._invalid:
if self._x == self._y:
self._mtx = self._x.get_matrix()
else:
x_mtx = self._x.get_matrix()
y_mtx = self._y.get_matrix()
# This works because we already know the transforms are
# separable, though normally one would want to set b and
# c to zero.
self._mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]))
self._inverted = None
self._invalid = 0
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
def blended_transform_factory(x_transform, y_transform):
"""
Create a new "blended" transform using *x_transform* to transform
the *x*-axis and *y_transform* to transform the *y*-axis.
A faster version of the blended transform is returned for the case
where both child transforms are affine.
"""
if (isinstance(x_transform, Affine2DBase)
and isinstance(y_transform, Affine2DBase)):
return BlendedAffine2D(x_transform, y_transform)
return BlendedGenericTransform(x_transform, y_transform)
class CompositeGenericTransform(Transform):
"""
A composite transform formed by applying transform *a* then
transform *b*.
This "generic" version can handle any two arbitrary
transformations.
"""
pass_through = True
def __init__(self, a, b, **kwargs):
"""
Create a new composite transform that is the result of
applying transform *a* then transform *b*.
You will generally not call this constructor directly but use
the :func:`composite_transform_factory` function instead,
which can automatically choose the best kind of composite
transform instance to create.
"""
assert a.output_dims == b.input_dims
self.input_dims = a.input_dims
self.output_dims = b.output_dims
Transform.__init__(self, **kwargs)
self._a = a
self._b = b
self.set_children(a, b)
is_affine = property(lambda self: self._a.is_affine and self._b.is_affine)
def frozen(self):
self._invalid = 0
frozen = composite_transform_factory(self._a.frozen(), self._b.frozen())
if not isinstance(frozen, CompositeGenericTransform):
return frozen.frozen()
return frozen
frozen.__doc__ = Transform.frozen.__doc__
def _invalidate_internal(self, value, invalidating_node):
# In some cases for a composite transform, an invalidating call to AFFINE_ONLY needs
# to be extended to invalidate the NON_AFFINE part too. These cases are when the right
# hand transform is non-affine and either:
# (a) the left hand transform is non affine
# (b) it is the left hand node which has triggered the invalidation
if value == Transform.INVALID_AFFINE \
and not self._b.is_affine \
and (not self._a.is_affine or invalidating_node is self._a):
value = Transform.INVALID
Transform._invalidate_internal(self, value=value,
invalidating_node=invalidating_node)
def __eq__(self, other):
if isinstance(other, (CompositeGenericTransform, CompositeAffine2D)):
return self is other or (self._a == other._a and self._b == other._b)
else:
return False
def _iter_break_from_left_to_right(self):
for lh_compliment, rh_compliment in self._a._iter_break_from_left_to_right():
yield lh_compliment, rh_compliment + self._b
for lh_compliment, rh_compliment in self._b._iter_break_from_left_to_right():
yield self._a + lh_compliment, rh_compliment
@property
def depth(self):
return self._a.depth + self._b.depth
def _get_is_affine(self):
return self._a.is_affine and self._b.is_affine
is_affine = property(_get_is_affine)
def _get_is_separable(self):
return self._a.is_separable and self._b.is_separable
is_separable = property(_get_is_separable)
if DEBUG:
def __str__(self):
return '(%s, %s)' % (self._a, self._b)
def __repr__(self):
return "CompositeGenericTransform(%r, %r)" % (self._a, self._b)
def transform_affine(self, points):
return self.get_affine().transform(points)
transform_affine.__doc__ = Transform.transform_affine.__doc__
def transform_non_affine(self, points):
if self._a.is_affine and self._b.is_affine:
return points
elif not self._a.is_affine and self._b.is_affine:
return self._a.transform_non_affine(points)
else:
return self._b.transform_non_affine(
self._a.transform(points))
transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__
def transform_path_non_affine(self, path):
if self._a.is_affine and self._b.is_affine:
return path
elif not self._a.is_affine and self._b.is_affine:
return self._a.transform_path_non_affine(path)
else:
return self._b.transform_path_non_affine(
self._a.transform_path(path))
transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__
def get_affine(self):
if not self._b.is_affine:
return self._b.get_affine()
else:
return Affine2D(np.dot(self._b.get_affine().get_matrix(),
self._a.get_affine().get_matrix()))
get_affine.__doc__ = Transform.get_affine.__doc__
def inverted(self):
return CompositeGenericTransform(self._b.inverted(), self._a.inverted())
inverted.__doc__ = Transform.inverted.__doc__
def _get_has_inverse(self):
return self._a.has_inverse and self._b.has_inverse
has_inverse = property(_get_has_inverse)
class CompositeAffine2D(Affine2DBase):
"""
A composite transform formed by applying transform *a* then transform *b*.
This version is an optimization that handles the case where both *a*
and *b* are 2D affines.
"""
def __init__(self, a, b, **kwargs):
"""
Create a new composite transform that is the result of
applying transform *a* then transform *b*.
Both *a* and *b* must be instances of :class:`Affine2DBase`.
You will generally not call this constructor directly but use
the :func:`composite_transform_factory` function instead,
which can automatically choose the best kind of composite
transform instance to create.
"""
assert a.output_dims == b.input_dims
self.input_dims = a.input_dims
self.output_dims = b.output_dims
assert a.is_affine
assert b.is_affine
Affine2DBase.__init__(self, **kwargs)
self._a = a
self._b = b
self.set_children(a, b)
self._mtx = None
if DEBUG:
def __str__(self):
return '(%s, %s)' % (self._a, self._b)
@property
def depth(self):
return self._a.depth + self._b.depth
def _iter_break_from_left_to_right(self):
for lh_compliment, rh_compliment in self._a._iter_break_from_left_to_right():
yield lh_compliment, rh_compliment + self._b
for lh_compliment, rh_compliment in self._b._iter_break_from_left_to_right():
yield self._a + lh_compliment, rh_compliment
def __repr__(self):
return "CompositeAffine2D(%r, %r)" % (self._a, self._b)
def get_matrix(self):
if self._invalid:
self._mtx = np.dot(
self._b.get_matrix(),
self._a.get_matrix())
self._inverted = None
self._invalid = 0
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
def composite_transform_factory(a, b):
"""
Create a new composite transform that is the result of applying
transform a then transform b.
Shortcut versions of the blended transform are provided for the
case where both child transforms are affine, or one or the other
is the identity transform.
Composite transforms may also be created using the '+' operator,
e.g.::
c = a + b
"""
# check to see if any of a or b are IdentityTransforms. We use
# isinstance here to guarantee that the transforms will *always*
# be IdentityTransforms. Since TransformWrappers are mutable,
# use of equality here would be wrong.
if isinstance(a, IdentityTransform):
return b
elif isinstance(b, IdentityTransform):
return a
elif isinstance(a, Affine2D) and isinstance(b, Affine2D):
return CompositeAffine2D(a, b)
return CompositeGenericTransform(a, b)
class BboxTransform(Affine2DBase):
"""
:class:`BboxTransform` linearly transforms points from one
:class:`Bbox` to another :class:`Bbox`.
"""
is_separable = True
def __init__(self, boxin, boxout, **kwargs):
"""
Create a new :class:`BboxTransform` that linearly transforms
points from *boxin* to *boxout*.
"""
assert boxin.is_bbox
assert boxout.is_bbox
Affine2DBase.__init__(self, **kwargs)
self._boxin = boxin
self._boxout = boxout
self.set_children(boxin, boxout)
self._mtx = None
self._inverted = None
def __repr__(self):
return "BboxTransform(%r, %r)" % (self._boxin, self._boxout)
def get_matrix(self):
if self._invalid:
inl, inb, inw, inh = self._boxin.bounds
outl, outb, outw, outh = self._boxout.bounds
x_scale = outw / inw
y_scale = outh / inh
if DEBUG and (x_scale == 0 or y_scale == 0):
raise ValueError("Transforming from or to a singular bounding box.")
self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale+outl)],
[0.0 , y_scale, (-inb*y_scale+outb)],
[0.0 , 0.0 , 1.0 ]],
np.float_)
self._inverted = None
self._invalid = 0
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
class BboxTransformTo(Affine2DBase):
"""
:class:`BboxTransformTo` is a transformation that linearly
transforms points from the unit bounding box to a given
:class:`Bbox`.
"""
is_separable = True
def __init__(self, boxout, **kwargs):
"""
Create a new :class:`BboxTransformTo` that linearly transforms
points from the unit bounding box to *boxout*.
"""
assert boxout.is_bbox
Affine2DBase.__init__(self, **kwargs)
self._boxout = boxout
self.set_children(boxout)
self._mtx = None
self._inverted = None
def __repr__(self):
return "BboxTransformTo(%r)" % (self._boxout)
def get_matrix(self):
if self._invalid:
outl, outb, outw, outh = self._boxout.bounds
if DEBUG and (outw == 0 or outh == 0):
raise ValueError("Transforming to a singular bounding box.")
self._mtx = np.array([[outw, 0.0, outl],
[ 0.0, outh, outb],
[ 0.0, 0.0, 1.0]],
np.float_)
self._inverted = None
self._invalid = 0
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
class BboxTransformToMaxOnly(BboxTransformTo):
"""
:class:`BboxTransformTo` is a transformation that linearly
transforms points from the unit bounding box to a given
:class:`Bbox` with a fixed upper left of (0, 0).
"""
def __repr__(self):
return "BboxTransformToMaxOnly(%r)" % (self._boxout)
def get_matrix(self):
if self._invalid:
xmax, ymax = self._boxout.max
if DEBUG and (xmax == 0 or ymax == 0):
raise ValueError("Transforming to a singular bounding box.")
self._mtx = np.array([[xmax, 0.0, 0.0],
[ 0.0, ymax, 0.0],
[ 0.0, 0.0, 1.0]],
np.float_)
self._inverted = None
self._invalid = 0
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
class BboxTransformFrom(Affine2DBase):
"""
:class:`BboxTransformFrom` linearly transforms points from a given
:class:`Bbox` to the unit bounding box.
"""
is_separable = True
def __init__(self, boxin, **kwargs):
assert boxin.is_bbox
Affine2DBase.__init__(self, **kwargs)
self._boxin = boxin
self.set_children(boxin)
self._mtx = None
self._inverted = None
def __repr__(self):
return "BboxTransformFrom(%r)" % (self._boxin)
def get_matrix(self):
if self._invalid:
inl, inb, inw, inh = self._boxin.bounds
if DEBUG and (inw == 0 or inh == 0):
raise ValueError("Transforming from a singular bounding box.")
x_scale = 1.0 / inw
y_scale = 1.0 / inh
self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale)],
[0.0 , y_scale, (-inb*y_scale)],
[0.0 , 0.0 , 1.0 ]],
np.float_)
self._inverted = None
self._invalid = 0
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
class ScaledTranslation(Affine2DBase):
"""
A transformation that translates by *xt* and *yt*, after *xt* and *yt*
have been transformad by the given transform *scale_trans*.
"""
def __init__(self, xt, yt, scale_trans, **kwargs):
Affine2DBase.__init__(self, **kwargs)
self._t = (xt, yt)
self._scale_trans = scale_trans
self.set_children(scale_trans)
self._mtx = None
self._inverted = None
def __repr__(self):
return "ScaledTranslation(%r)" % (self._t,)
def get_matrix(self):
if self._invalid:
xt, yt = self._scale_trans.transform_point(self._t)
self._mtx = np.array([[1.0, 0.0, xt],
[0.0, 1.0, yt],
[0.0, 0.0, 1.0]],
np.float_)
self._invalid = 0
self._inverted = None
return self._mtx
get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__
class TransformedPath(TransformNode):
"""
A :class:`TransformedPath` caches a non-affine transformed copy of
the :class:`~matplotlib.path.Path`. This cached copy is
automatically updated when the non-affine part of the transform
changes.
.. note::
Paths are considered immutable by this class. Any update to the
path's vertices/codes will not trigger a transform recomputation.
"""
def __init__(self, path, transform):
"""
Create a new :class:`TransformedPath` from the given
:class:`~matplotlib.path.Path` and :class:`Transform`.
"""
assert isinstance(transform, Transform)
TransformNode.__init__(self)
self._path = path
self._transform = transform
self.set_children(transform)
self._transformed_path = None
self._transformed_points = None
def _revalidate(self):
# only recompute if the invalidation includes the non_affine part of the transform
if ((self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE)
or self._transformed_path is None):
self._transformed_path = \
self._transform.transform_path_non_affine(self._path)
self._transformed_points = \
Path(self._transform.transform_non_affine(self._path.vertices),
None, self._path._interpolation_steps)
self._invalid = 0
def get_transformed_points_and_affine(self):
"""
Return a copy of the child path, with the non-affine part of
the transform already applied, along with the affine part of
the path necessary to complete the transformation. Unlike
:meth:`get_transformed_path_and_affine`, no interpolation will
be performed.
"""
self._revalidate()
return self._transformed_points, self.get_affine()
def get_transformed_path_and_affine(self):
"""
Return a copy of the child path, with the non-affine part of
the transform already applied, along with the affine part of
the path necessary to complete the transformation.
"""
self._revalidate()
return self._transformed_path, self.get_affine()
def get_fully_transformed_path(self):
"""
Return a fully-transformed copy of the child path.
"""
self._revalidate()
return self._transform.transform_path_affine(self._transformed_path)
def get_affine(self):
return self._transform.get_affine()
def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True):
'''
Modify the endpoints of a range as needed to avoid singularities.
*vmin*, *vmax*
the initial endpoints.
*tiny*
threshold for the ratio of the interval to the maximum absolute
value of its endpoints. If the interval is smaller than
this, it will be expanded. This value should be around
1e-15 or larger; otherwise the interval will be approaching
the double precision resolution limit.
*expander*
fractional amount by which *vmin* and *vmax* are expanded if
the original interval is too small, based on *tiny*.
*increasing*: [True | False]
If True (default), swap *vmin*, *vmax* if *vmin* > *vmax*
Returns *vmin*, *vmax*, expanded and/or swapped if necessary.
If either input is inf or NaN, or if both inputs are 0,
returns -*expander*, *expander*.
'''
if (not np.isfinite(vmin)) or (not np.isfinite(vmax)):
return -expander, expander
swapped = False
if vmax < vmin:
vmin, vmax = vmax, vmin
swapped = True
if vmax - vmin <= max(abs(vmin), abs(vmax)) * tiny:
if vmax == 0 and vmin == 0:
vmin = -expander
vmax = expander
else:
vmin -= expander*abs(vmin)
vmax += expander*abs(vmax)
if swapped and not increasing:
vmin, vmax = vmax, vmin
return vmin, vmax
def interval_contains(interval, val):
a, b = interval
return (
((a < b) and (a <= val and b >= val))
or (b <= val and a >= val))
def interval_contains_open(interval, val):
a, b = interval
return (
((a < b) and (a < val and b > val))
or (b < val and a > val))
def offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches'):
'''
Return a new transform with an added offset.
args:
trans is any transform
kwargs:
fig is the current figure; it can be None if units are 'dots'
x, y give the offset
units is 'inches', 'points' or 'dots'
'''
if units == 'dots':
return trans + Affine2D().translate(x, y)
if fig is None:
raise ValueError('For units of inches or points a fig kwarg is needed')
if units == 'points':
x /= 72.0
y /= 72.0
elif not units == 'inches':
raise ValueError('units must be dots, points, or inches')
return trans + ScaledTranslation(x, y, fig.dpi_scale_trans)
|