This file is indexed.

/usr/share/pyshared/matplotlib/transforms.py is in python-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
"""
matplotlib includes a framework for arbitrary geometric
transformations that is used determine the final position of all
elements drawn on the canvas.

Transforms are composed into trees of :class:`TransformNode` objects
whose actual value depends on their children.  When the contents of
children change, their parents are automatically invalidated.  The
next time an invalidated transform is accessed, it is recomputed to
reflect those changes.  This invalidation/caching approach prevents
unnecessary recomputations of transforms, and contributes to better
interactive performance.

For example, here is a graph of the transform tree used to plot data
to the graph:

.. image:: ../_static/transforms.png

The framework can be used for both affine and non-affine
transformations.  However, for speed, we want use the backend
renderers to perform affine transformations whenever possible.
Therefore, it is possible to perform just the affine or non-affine
part of a transformation on a set of data.  The affine is always
assumed to occur after the non-affine.  For any transform::

  full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations
themselves.
"""

from __future__ import print_function, division
import numpy as np
from numpy import ma
from matplotlib._path import (affine_transform, count_bboxes_overlapping_bbox,
    update_path_extents)
from numpy.linalg import inv

from weakref import WeakValueDictionary
import warnings
try:
    set
except NameError:
    from sets import Set as set

from path import Path

DEBUG = False

MaskedArray = ma.MaskedArray


class TransformNode(object):
    """
    :class:`TransformNode` is the base class for anything that
    participates in the transform tree and needs to invalidate its
    parents or be invalidated.  This includes classes that are not
    really transforms, such as bounding boxes, since some transforms
    depend on bounding boxes to compute their values.
    """
    _gid = 0

    # Invalidation may affect only the affine part.  If the
    # invalidation was "affine-only", the _invalid member is set to
    # INVALID_AFFINE_ONLY
    INVALID_NON_AFFINE = 1
    INVALID_AFFINE = 2
    INVALID = INVALID_NON_AFFINE | INVALID_AFFINE

    # Some metadata about the transform, used to determine whether an
    # invalidation is affine-only
    is_affine = False
    is_bbox = False

    pass_through = False
    """
    If pass_through is True, all ancestors will always be
    invalidated, even if 'self' is already invalid.
    """

    def __init__(self, shorthand_name=None):
        """
        Creates a new :class:`TransformNode`.

        **shorthand_name** - a string representing the "name" of this
                             transform. The name carries no significance
                             other than to improve the readability of
                             ``str(transform)`` when DEBUG=True.
        """
        # Parents are stored in a WeakValueDictionary, so that if the
        # parents are deleted, references from the children won't keep
        # them alive.
        self._parents = WeakValueDictionary()

        # TransformNodes start out as invalid until their values are
        # computed for the first time.
        self._invalid = 1
        self._shorthand_name = shorthand_name or ''

    if DEBUG:
        def __str__(self):
            # either just return the name of this TransformNode, or it's repr
            return self._shorthand_name or repr(self)

    def __getstate__(self):
        d = self.__dict__.copy()
        # turn the weakkey dictionary into a normal dictionary
        d['_parents'] = dict(self._parents.iteritems())
        return d

    def __setstate__(self, data_dict):
        self.__dict__ = data_dict
        # turn the normal dictionary back into a WeakValueDictionary
        self._parents = WeakValueDictionary(self._parents)

    def __copy__(self, *args):
        raise NotImplementedError(
            "TransformNode instances can not be copied. " +
            "Consider using frozen() instead.")
    __deepcopy__ = __copy__

    def invalidate(self):
        """
        Invalidate this :class:`TransformNode` and triggers an
        invalidation of its ancestors.  Should be called any
        time the transform changes.
        """
        value = self.INVALID
        if self.is_affine:
            value = self.INVALID_AFFINE
        return self._invalidate_internal(value, invalidating_node=self)

    def _invalidate_internal(self, value, invalidating_node):
        """
        Called by :meth:`invalidate` and subsequently ascends the transform
        stack calling each TransformNode's _invalidate_internal method.
        """
        # determine if this call will be an extension to the invalidation
        # status. If not, then a shortcut means that we needn't invoke an
        # invalidation up the transform stack as it will already have been
        # invalidated.

        # N.B This makes the invalidation sticky, once a transform has been
        # invalidated as NON_AFFINE, then it will always be invalidated as
        # NON_AFFINE even when triggered with a AFFINE_ONLY invalidation.
        # In most cases this is not a problem (i.e. for interactive panning and
        # zooming) and the only side effect will be on performance.
        status_changed = self._invalid < value

        if self.pass_through or status_changed:
            self._invalid = value

            for parent in self._parents.values():
                parent._invalidate_internal(value=value,
                                            invalidating_node=self)

    def set_children(self, *children):
        """
        Set the children of the transform, to let the invalidation
        system know which transforms can invalidate this transform.
        Should be called from the constructor of any transforms that
        depend on other transforms.
        """
        for child in children:
            child._parents[id(self)] = self

    if DEBUG:
        _set_children = set_children

        def set_children(self, *children):
            self._set_children(*children)
            self._children = children
        set_children.__doc__ = _set_children.__doc__

    def frozen(self):
        """
        Returns a frozen copy of this transform node.  The frozen copy
        will not update when its children change.  Useful for storing
        a previously known state of a transform where
        ``copy.deepcopy()`` might normally be used.
        """
        return self

    if DEBUG:
        def write_graphviz(self, fobj, highlight=[]):
            """
            For debugging purposes.

            Writes the transform tree rooted at 'self' to a graphviz "dot"
            format file.  This file can be run through the "dot" utility
            to produce a graph of the transform tree.

            Affine transforms are marked in blue.  Bounding boxes are
            marked in yellow.

            *fobj*: A Python file-like object

            Once the "dot" file has been created, it can be turned into a
            png easily with::

                $> dot -Tpng -o $OUTPUT_FILE $DOT_FILE

            """
            seen = set()

            def recurse(root):
                if root in seen:
                    return
                seen.add(root)
                props = {}
                label = root.__class__.__name__
                if root._invalid:
                    label = '[%s]' % label
                if root in highlight:
                    props['style'] = 'bold'
                props['shape'] = 'box'
                props['label'] = '"%s"' % label
                props = ' '.join(['%s=%s' % (key, val)
                                  for key, val
                                  in props.iteritems()])

                fobj.write('%s [%s];\n' %
                           (hash(root), props))

                if hasattr(root, '_children'):
                    for child in root._children:
                        name = '?'
                        for key, val in root.__dict__.iteritems():
                            if val is child:
                                name = key
                                break
                        fobj.write('"%s" -> "%s" [label="%s", fontsize=10];\n'
                                    % (hash(root),
                                    hash(child),
                                    name))
                        recurse(child)

            fobj.write("digraph G {\n")
            recurse(self)
            fobj.write("}\n")


class BboxBase(TransformNode):
    """
    This is the base class of all bounding boxes, and provides
    read-only access to its data.  A mutable bounding box is provided
    by the :class:`Bbox` class.

    The canonical representation is as two points, with no
    restrictions on their ordering.  Convenience properties are
    provided to get the left, bottom, right and top edges and width
    and height, but these are not stored explicitly.
    """
    is_bbox = True
    is_affine = True

    #* Redundant: Removed for performance
    #
    # def __init__(self):
    #     TransformNode.__init__(self)

    if DEBUG:
        def _check(points):
            if ma.isMaskedArray(points):
                warnings.warn("Bbox bounds are a masked array.")
            points = np.asarray(points)
            if (points[1, 0] - points[0, 0] == 0 or
                points[1, 1] - points[0, 1] == 0):
                warnings.warn("Singular Bbox.")
        _check = staticmethod(_check)

    def frozen(self):
        return Bbox(self.get_points().copy())
    frozen.__doc__ = TransformNode.__doc__

    def __array__(self, *args, **kwargs):
        return self.get_points()

    def is_unit(self):
        """
        Returns True if the :class:`Bbox` is the unit bounding box
        from (0, 0) to (1, 1).
        """
        return list(self.get_points().flatten()) == [0., 0., 1., 1.]

    def _get_x0(self):
        return self.get_points()[0, 0]
    x0 = property(_get_x0, None, None, """
         (property) :attr:`x0` is the first of the pair of *x* coordinates that
         define the bounding box.  :attr:`x0` is not guaranteed to be
         less than :attr:`x1`.  If you require that, use :attr:`xmin`.""")

    def _get_y0(self):
        return self.get_points()[0, 1]
    y0 = property(_get_y0, None, None, """
         (property) :attr:`y0` is the first of the pair of *y* coordinates that
         define the bounding box.  :attr:`y0` is not guaranteed to be
         less than :attr:`y1`.  If you require that, use :attr:`ymin`.""")

    def _get_x1(self):
        return self.get_points()[1, 0]
    x1 = property(_get_x1, None, None, """
         (property) :attr:`x1` is the second of the pair of *x* coordinates
         that define the bounding box.  :attr:`x1` is not guaranteed to be
         greater than :attr:`x0`.  If you require that, use :attr:`xmax`.""")

    def _get_y1(self):
        return self.get_points()[1, 1]
    y1 = property(_get_y1, None, None, """
         (property) :attr:`y1` is the second of the pair of *y* coordinates
         that define the bounding box.  :attr:`y1` is not guaranteed to be
         greater than :attr:`y0`.  If you require that, use :attr:`ymax`.""")

    def _get_p0(self):
        return self.get_points()[0]
    p0 = property(_get_p0, None, None, """
         (property) :attr:`p0` is the first pair of (*x*, *y*) coordinates
         that define the bounding box.  It is not guaranteed to be the
         bottom-left corner.  For that, use :attr:`min`.""")

    def _get_p1(self):
        return self.get_points()[1]
    p1 = property(_get_p1, None, None, """
         (property) :attr:`p1` is the second pair of (*x*, *y*) coordinates
         that define the bounding box.  It is not guaranteed to be the
         top-right corner.  For that, use :attr:`max`.""")

    def _get_xmin(self):
        return min(self.get_points()[:, 0])
    xmin = property(_get_xmin, None, None, """
        (property) :attr:`xmin` is the left edge of the bounding box.""")

    def _get_ymin(self):
        return min(self.get_points()[:, 1])
    ymin = property(_get_ymin, None, None, """
        (property) :attr:`ymin` is the bottom edge of the bounding box.""")

    def _get_xmax(self):
        return max(self.get_points()[:, 0])
    xmax = property(_get_xmax, None, None, """
        (property) :attr:`xmax` is the right edge of the bounding box.""")

    def _get_ymax(self):
        return max(self.get_points()[:, 1])
    ymax = property(_get_ymax, None, None, """
        (property) :attr:`ymax` is the top edge of the bounding box.""")

    def _get_min(self):
        return [min(self.get_points()[:, 0]),
                min(self.get_points()[:, 1])]
    min = property(_get_min, None, None, """
        (property) :attr:`min` is the bottom-left corner of the bounding
        box.""")

    def _get_max(self):
        return [max(self.get_points()[:, 0]),
                max(self.get_points()[:, 1])]
    max = property(_get_max, None, None, """
        (property) :attr:`max` is the top-right corner of the bounding box.""")

    def _get_intervalx(self):
        return self.get_points()[:, 0]
    intervalx = property(_get_intervalx, None, None, """
        (property) :attr:`intervalx` is the pair of *x* coordinates that define
        the bounding box. It is not guaranteed to be sorted from left to
        right.""")

    def _get_intervaly(self):
        return self.get_points()[:, 1]
    intervaly = property(_get_intervaly, None, None, """
        (property) :attr:`intervaly` is the pair of *y* coordinates that define
        the bounding box.  It is not guaranteed to be sorted from bottom to
        top.""")

    def _get_width(self):
        points = self.get_points()
        return points[1, 0] - points[0, 0]
    width = property(_get_width, None, None, """
        (property) The width of the bounding box.  It may be negative if
        :attr:`x1` < :attr:`x0`.""")

    def _get_height(self):
        points = self.get_points()
        return points[1, 1] - points[0, 1]
    height = property(_get_height, None, None, """
        (property) The height of the bounding box.  It may be negative if
        :attr:`y1` < :attr:`y0`.""")

    def _get_size(self):
        points = self.get_points()
        return points[1] - points[0]
    size = property(_get_size, None, None, """
        (property) The width and height of the bounding box.  May be negative,
        in the same way as :attr:`width` and :attr:`height`.""")

    def _get_bounds(self):
        x0, y0, x1, y1 = self.get_points().flatten()
        return (x0, y0, x1 - x0, y1 - y0)
    bounds = property(_get_bounds, None, None, """
        (property) Returns (:attr:`x0`, :attr:`y0`, :attr:`width`,
        :attr:`height`).""")

    def _get_extents(self):
        return self.get_points().flatten().copy()
    extents = property(_get_extents, None, None, """
        (property) Returns (:attr:`x0`, :attr:`y0`, :attr:`x1`,
        :attr:`y1`).""")

    def get_points(self):
        return NotImplementedError()

    def containsx(self, x):
        """
        Returns True if *x* is between or equal to :attr:`x0` and
        :attr:`x1`.
        """
        x0, x1 = self.intervalx
        return ((x0 < x1
                 and (x >= x0 and x <= x1))
                or (x >= x1 and x <= x0))

    def containsy(self, y):
        """
        Returns True if *y* is between or equal to :attr:`y0` and
        :attr:`y1`.
        """
        y0, y1 = self.intervaly
        return ((y0 < y1
                 and (y >= y0 and y <= y1))
                or (y >= y1 and y <= y0))

    def contains(self, x, y):
        """
        Returns *True* if (*x*, *y*) is a coordinate inside the
        bounding box or on its edge.
        """
        return self.containsx(x) and self.containsy(y)

    def overlaps(self, other):
        """
        Returns True if this bounding box overlaps with the given
        bounding box *other*.
        """
        ax1, ay1, ax2, ay2 = self._get_extents()
        bx1, by1, bx2, by2 = other._get_extents()

        if ax2 < ax1:
            ax2, ax1 = ax1, ax2
        if ay2 < ay1:
            ay2, ay1 = ay1, ay2
        if bx2 < bx1:
            bx2, bx1 = bx1, bx2
        if by2 < by1:
            by2, by1 = by1, by2

        return not ((bx2 < ax1) or
                    (by2 < ay1) or
                    (bx1 > ax2) or
                    (by1 > ay2))

    def fully_containsx(self, x):
        """
        Returns True if *x* is between but not equal to :attr:`x0` and
        :attr:`x1`.
        """
        x0, x1 = self.intervalx
        return ((x0 < x1
                 and (x > x0 and x < x1))
                or (x > x1 and x < x0))

    def fully_containsy(self, y):
        """
        Returns True if *y* is between but not equal to :attr:`y0` and
        :attr:`y1`.
        """
        y0, y1 = self.intervaly
        return ((y0 < y1
                 and (y > y0 and y < y1))
                or (y > y1 and y < y0))

    def fully_contains(self, x, y):
        """
        Returns True if (*x*, *y*) is a coordinate inside the bounding
        box, but not on its edge.
        """
        return self.fully_containsx(x) \
            and self.fully_containsy(y)

    def fully_overlaps(self, other):
        """
        Returns True if this bounding box overlaps with the given
        bounding box *other*, but not on its edge alone.
        """
        ax1, ay1, ax2, ay2 = self._get_extents()
        bx1, by1, bx2, by2 = other._get_extents()

        if ax2 < ax1:
            ax2, ax1 = ax1, ax2
        if ay2 < ay1:
            ay2, ay1 = ay1, ay2
        if bx2 < bx1:
            bx2, bx1 = bx1, bx2
        if by2 < by1:
            by2, by1 = by1, by2

        return not ((bx2 <= ax1) or
                    (by2 <= ay1) or
                    (bx1 >= ax2) or
                    (by1 >= ay2))

    def transformed(self, transform):
        """
        Return a new :class:`Bbox` object, statically transformed by
        the given transform.
        """
        return Bbox(transform.transform(self.get_points()))

    def inverse_transformed(self, transform):
        """
        Return a new :class:`Bbox` object, statically transformed by
        the inverse of the given transform.
        """
        return Bbox(transform.inverted().transform(self.get_points()))

    coefs = {'C':  (0.5, 0.5),
             'SW': (0, 0),
             'S':  (0.5, 0),
             'SE': (1.0, 0),
             'E':  (1.0, 0.5),
             'NE': (1.0, 1.0),
             'N':  (0.5, 1.0),
             'NW': (0, 1.0),
             'W':  (0, 0.5)}

    def anchored(self, c, container=None):
        """
        Return a copy of the :class:`Bbox`, shifted to position *c*
        within a container.

        *c*: may be either:

          * a sequence (*cx*, *cy*) where *cx* and *cy* range from 0
            to 1, where 0 is left or bottom and 1 is right or top

          * a string:
            - 'C' for centered
            - 'S' for bottom-center
            - 'SE' for bottom-left
            - 'E' for left
            - etc.

        Optional argument *container* is the box within which the
        :class:`Bbox` is positioned; it defaults to the initial
        :class:`Bbox`.
        """
        if container is None:
            container = self
        l, b, w, h = container.bounds
        if isinstance(c, basestring):
            cx, cy = self.coefs[c]
        else:
            cx, cy = c
        L, B, W, H = self.bounds
        return Bbox(self._points +
                    [(l + cx * (w - W)) - L,
                     (b + cy * (h - H)) - B])

    def shrunk(self, mx, my):
        """
        Return a copy of the :class:`Bbox`, shrunk by the factor *mx*
        in the *x* direction and the factor *my* in the *y* direction.
        The lower left corner of the box remains unchanged.  Normally
        *mx* and *my* will be less than 1, but this is not enforced.
        """
        w, h = self.size
        return Bbox([self._points[0],
                    self._points[0] + [mx * w, my * h]])

    def shrunk_to_aspect(self, box_aspect, container=None, fig_aspect=1.0):
        """
        Return a copy of the :class:`Bbox`, shrunk so that it is as
        large as it can be while having the desired aspect ratio,
        *box_aspect*.  If the box coordinates are relative---that
        is, fractions of a larger box such as a figure---then the
        physical aspect ratio of that figure is specified with
        *fig_aspect*, so that *box_aspect* can also be given as a
        ratio of the absolute dimensions, not the relative dimensions.
        """
        assert box_aspect > 0 and fig_aspect > 0
        if container is None:
            container = self
        w, h = container.size
        H = w * box_aspect / fig_aspect
        if H <= h:
            W = w
        else:
            W = h * fig_aspect / box_aspect
            H = h
        return Bbox([self._points[0],
                     self._points[0] + (W, H)])

    def splitx(self, *args):
        """
        e.g., ``bbox.splitx(f1, f2, ...)``

        Returns a list of new :class:`Bbox` objects formed by
        splitting the original one with vertical lines at fractional
        positions *f1*, *f2*, ...
        """
        boxes = []
        xf = [0] + list(args) + [1]
        x0, y0, x1, y1 = self._get_extents()
        w = x1 - x0
        for xf0, xf1 in zip(xf[:-1], xf[1:]):
            boxes.append(Bbox([[x0 + xf0 * w, y0], [x0 + xf1 * w, y1]]))
        return boxes

    def splity(self, *args):
        """
        e.g., ``bbox.splitx(f1, f2, ...)``

        Returns a list of new :class:`Bbox` objects formed by
        splitting the original one with horizontal lines at fractional
        positions *f1*, *f2*, ...
        """
        boxes = []
        yf = [0] + list(args) + [1]
        x0, y0, x1, y1 = self._get_extents()
        h = y1 - y0
        for yf0, yf1 in zip(yf[:-1], yf[1:]):
            boxes.append(Bbox([[x0, y0 + yf0 * h], [x1, y0 + yf1 * h]]))
        return boxes

    def count_contains(self, vertices):
        """
        Count the number of vertices contained in the :class:`Bbox`.

        *vertices* is a Nx2 Numpy array.
        """
        if len(vertices) == 0:
            return 0
        vertices = np.asarray(vertices)
        x0, y0, x1, y1 = self._get_extents()
        dx0 = np.sign(vertices[:, 0] - x0)
        dy0 = np.sign(vertices[:, 1] - y0)
        dx1 = np.sign(vertices[:, 0] - x1)
        dy1 = np.sign(vertices[:, 1] - y1)
        inside = ((abs(dx0 + dx1) + abs(dy0 + dy1)) == 0)
        return np.sum(inside)

    def count_overlaps(self, bboxes):
        """
        Count the number of bounding boxes that overlap this one.

        bboxes is a sequence of :class:`BboxBase` objects
        """
        return count_bboxes_overlapping_bbox(self, bboxes)

    def expanded(self, sw, sh):
        """
        Return a new :class:`Bbox` which is this :class:`Bbox`
        expanded around its center by the given factors *sw* and
        *sh*.
        """
        width = self.width
        height = self.height
        deltaw = (sw * width - width) / 2.0
        deltah = (sh * height - height) / 2.0
        a = np.array([[-deltaw, -deltah], [deltaw, deltah]])
        return Bbox(self._points + a)

    def padded(self, p):
        """
        Return a new :class:`Bbox` that is padded on all four sides by
        the given value.
        """
        points = self.get_points()
        return Bbox(points + [[-p, -p], [p, p]])

    def translated(self, tx, ty):
        """
        Return a copy of the :class:`Bbox`, statically translated by
        *tx* and *ty*.
        """
        return Bbox(self._points + (tx, ty))

    def corners(self):
        """
        Return an array of points which are the four corners of this
        rectangle.  For example, if this :class:`Bbox` is defined by
        the points (*a*, *b*) and (*c*, *d*), :meth:`corners` returns
        (*a*, *b*), (*a*, *d*), (*c*, *b*) and (*c*, *d*).
        """
        l, b, r, t = self.get_points().flatten()
        return np.array([[l, b], [l, t], [r, b], [r, t]])

    def rotated(self, radians):
        """
        Return a new bounding box that bounds a rotated version of
        this bounding box by the given radians.  The new bounding box
        is still aligned with the axes, of course.
        """
        corners = self.corners()
        corners_rotated = Affine2D().rotate(radians).transform(corners)
        bbox = Bbox.unit()
        bbox.update_from_data_xy(corners_rotated, ignore=True)
        return bbox

    @staticmethod
    def union(bboxes):
        """
        Return a :class:`Bbox` that contains all of the given bboxes.
        """
        assert(len(bboxes))

        if len(bboxes) == 1:
            return bboxes[0]

        x0 = np.inf
        y0 = np.inf
        x1 = -np.inf
        y1 = -np.inf

        for bbox in bboxes:
            points = bbox.get_points()
            xs = points[:, 0]
            ys = points[:, 1]
            x0 = min(x0, np.min(xs))
            y0 = min(y0, np.min(ys))
            x1 = max(x1, np.max(xs))
            y1 = max(y1, np.max(ys))

        return Bbox.from_extents(x0, y0, x1, y1)

    @staticmethod
    def intersection(bbox1, bbox2):
        """
        Return the intersection of the two bboxes or None
        if they do not intersect.

        Implements the algorithm described at:

            http://www.tekpool.com/node/2687

        """
        intersects = not (bbox2.xmin > bbox1.xmax or
                          bbox2.xmax < bbox1.xmin or
                          bbox2.ymin > bbox1.ymax or
                          bbox2.ymax < bbox1.ymin)

        if intersects:
            x0 = max([bbox1.xmin, bbox2.xmin])
            x1 = min([bbox1.xmax, bbox2.xmax])
            y0 = max([bbox1.ymin, bbox2.ymin])
            y1 = min([bbox1.ymax, bbox2.ymax])
            return Bbox.from_extents(x0, y0, x1, y1)

        return None


class Bbox(BboxBase):
    """
    A mutable bounding box.
    """

    def __init__(self, points, **kwargs):
        """
        *points*: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]

        If you need to create a :class:`Bbox` object from another form
        of data, consider the static methods :meth:`unit`,
        :meth:`from_bounds` and :meth:`from_extents`.
        """
        BboxBase.__init__(self, **kwargs)
        points = np.asarray(points, np.float_)
        if points.shape != (2, 2):
            raise ValueError('Bbox points must be of the form '
                             '"[[x0, y0], [x1, y1]]".')
        self._points = points
        self._minpos = np.array([0.0000001, 0.0000001])
        self._ignore = True
        # it is helpful in some contexts to know if the bbox is a
        # default or has been mutated; we store the orig points to
        # support the mutated methods
        self._points_orig = self._points.copy()
    if DEBUG:
        ___init__ = __init__

        def __init__(self, points, **kwargs):
            self._check(points)
            self.___init__(points, **kwargs)

        def invalidate(self):
            self._check(self._points)
            TransformNode.invalidate(self)

    @staticmethod
    def unit():
        """
        (staticmethod) Create a new unit :class:`Bbox` from (0, 0) to
        (1, 1).
        """
        return Bbox(np.array([[0.0, 0.0], [1.0, 1.0]], np.float))

    @staticmethod
    def null():
        """
        (staticmethod) Create a new null :class:`Bbox` from (inf, inf) to
        (-inf, -inf).
        """
        return Bbox(np.array([[np.inf, np.inf], [-np.inf, -np.inf]], np.float))

    @staticmethod
    def from_bounds(x0, y0, width, height):
        """
        (staticmethod) Create a new :class:`Bbox` from *x0*, *y0*,
        *width* and *height*.

        *width* and *height* may be negative.
        """
        return Bbox.from_extents(x0, y0, x0 + width, y0 + height)

    @staticmethod
    def from_extents(*args):
        """
        (staticmethod) Create a new Bbox from *left*, *bottom*,
        *right* and *top*.

        The *y*-axis increases upwards.
        """
        points = np.array(args, dtype=np.float_).reshape(2, 2)
        return Bbox(points)

    def __repr__(self):
        return 'Bbox(%r)' % repr(self._points)

    def ignore(self, value):
        """
        Set whether the existing bounds of the box should be ignored
        by subsequent calls to :meth:`update_from_data` or
        :meth:`update_from_data_xy`.

        *value*:

           - When True, subsequent calls to :meth:`update_from_data`
             will ignore the existing bounds of the :class:`Bbox`.

           - When False, subsequent calls to :meth:`update_from_data`
             will include the existing bounds of the :class:`Bbox`.
        """
        self._ignore = value

    def update_from_data(self, x, y, ignore=None):
        """
        Update the bounds of the :class:`Bbox` based on the passed in
        data.  After updating, the bounds will have positive *width*
        and *height*; *x0* and *y0* will be the minimal values.

        *x*: a numpy array of *x*-values

        *y*: a numpy array of *y*-values

        *ignore*:
           - when True, ignore the existing bounds of the :class:`Bbox`.
           - when False, include the existing bounds of the :class:`Bbox`.
           - when None, use the last value passed to :meth:`ignore`.
        """
        warnings.warn(
            "update_from_data requires a memory copy -- please replace with "
            "update_from_data_xy")

        xy = np.hstack((x.reshape((len(x), 1)), y.reshape((len(y), 1))))
        return self.update_from_data_xy(xy, ignore)

    def update_from_path(self, path, ignore=None, updatex=True, updatey=True):
        """
        Update the bounds of the :class:`Bbox` based on the passed in
        data.  After updating, the bounds will have positive *width*
        and *height*; *x0* and *y0* will be the minimal values.

        *path*: a :class:`~matplotlib.path.Path` instance

        *ignore*:
           - when True, ignore the existing bounds of the :class:`Bbox`.
           - when False, include the existing bounds of the :class:`Bbox`.
           - when None, use the last value passed to :meth:`ignore`.

        *updatex*: when True, update the x values

        *updatey*: when True, update the y values

        """
        if ignore is None:
            ignore = self._ignore

        if path.vertices.size == 0:
            return

        points, minpos, changed = update_path_extents(
            path, None, self._points, self._minpos, ignore)

        if changed:
            self.invalidate()
            if updatex:
                self._points[:, 0] = points[:, 0]
                self._minpos[0] = minpos[0]
            if updatey:
                self._points[:, 1] = points[:, 1]
                self._minpos[1] = minpos[1]

    def update_from_data_xy(self, xy, ignore=None, updatex=True, updatey=True):
        """
        Update the bounds of the :class:`Bbox` based on the passed in
        data.  After updating, the bounds will have positive *width*
        and *height*; *x0* and *y0* will be the minimal values.

        *xy*: a numpy array of 2D points

        *ignore*:
           - when True, ignore the existing bounds of the :class:`Bbox`.
           - when False, include the existing bounds of the :class:`Bbox`.
           - when None, use the last value passed to :meth:`ignore`.

        *updatex*: when True, update the x values

        *updatey*: when True, update the y values
        """
        if len(xy) == 0:
            return

        path = Path(xy)
        self.update_from_path(path, ignore=ignore,
                                    updatex=updatex, updatey=updatey)

    def _set_x0(self, val):
        self._points[0, 0] = val
        self.invalidate()
    x0 = property(BboxBase._get_x0, _set_x0)

    def _set_y0(self, val):
        self._points[0, 1] = val
        self.invalidate()
    y0 = property(BboxBase._get_y0, _set_y0)

    def _set_x1(self, val):
        self._points[1, 0] = val
        self.invalidate()
    x1 = property(BboxBase._get_x1, _set_x1)

    def _set_y1(self, val):
        self._points[1, 1] = val
        self.invalidate()
    y1 = property(BboxBase._get_y1, _set_y1)

    def _set_p0(self, val):
        self._points[0] = val
        self.invalidate()
    p0 = property(BboxBase._get_p0, _set_p0)

    def _set_p1(self, val):
        self._points[1] = val
        self.invalidate()
    p1 = property(BboxBase._get_p1, _set_p1)

    def _set_intervalx(self, interval):
        self._points[:, 0] = interval
        self.invalidate()
    intervalx = property(BboxBase._get_intervalx, _set_intervalx)

    def _set_intervaly(self, interval):
        self._points[:, 1] = interval
        self.invalidate()
    intervaly = property(BboxBase._get_intervaly, _set_intervaly)

    def _set_bounds(self, bounds):
        l, b, w, h = bounds
        points = np.array([[l, b], [l + w, b + h]], np.float_)
        if np.any(self._points != points):
            self._points = points
            self.invalidate()
    bounds = property(BboxBase._get_bounds, _set_bounds)

    def _get_minpos(self):
        return self._minpos
    minpos = property(_get_minpos)

    def _get_minposx(self):
        return self._minpos[0]
    minposx = property(_get_minposx)

    def _get_minposy(self):
        return self._minpos[1]
    minposy = property(_get_minposy)

    def get_points(self):
        """
        Get the points of the bounding box directly as a numpy array
        of the form: [[x0, y0], [x1, y1]].
        """
        self._invalid = 0
        return self._points

    def set_points(self, points):
        """
        Set the points of the bounding box directly from a numpy array
        of the form: [[x0, y0], [x1, y1]].  No error checking is
        performed, as this method is mainly for internal use.
        """
        if np.any(self._points != points):
            self._points = points
            self.invalidate()

    def set(self, other):
        """
        Set this bounding box from the "frozen" bounds of another
        :class:`Bbox`.
        """
        if np.any(self._points != other.get_points()):
            self._points = other.get_points()
            self.invalidate()

    def mutated(self):
        'return whether the bbox has changed since init'
        return self.mutatedx() or self.mutatedy()

    def mutatedx(self):
        'return whether the x-limits have changed since init'
        return (self._points[0, 0] != self._points_orig[0, 0] or
                self._points[1, 0] != self._points_orig[1, 0])

    def mutatedy(self):
        'return whether the y-limits have changed since init'
        return (self._points[0, 1] != self._points_orig[0, 1] or
                self._points[1, 1] != self._points_orig[1, 1])


class TransformedBbox(BboxBase):
    """
    A :class:`Bbox` that is automatically transformed by a given
    transform.  When either the child bounding box or transform
    changes, the bounds of this bbox will update accordingly.
    """
    def __init__(self, bbox, transform, **kwargs):
        """
        *bbox*: a child :class:`Bbox`

        *transform*: a 2D :class:`Transform`
        """
        assert bbox.is_bbox
        assert isinstance(transform, Transform)
        assert transform.input_dims == 2
        assert transform.output_dims == 2

        BboxBase.__init__(self, **kwargs)
        self._bbox = bbox
        self._transform = transform
        self.set_children(bbox, transform)
        self._points = None

    def __repr__(self):
        return "TransformedBbox(%r, %r)" % (self._bbox, self._transform)

    def get_points(self):
        if self._invalid:
            points = self._transform.transform(self._bbox.get_points())
            points = np.ma.filled(points, 0.0)
            self._points = points
            self._invalid = 0
        return self._points
    get_points.__doc__ = Bbox.get_points.__doc__

    if DEBUG:
        _get_points = get_points

        def get_points(self):
            points = self._get_points()
            self._check(points)
            return points


class Transform(TransformNode):
    """
    The base class of all :class:`TransformNode` instances that
    actually perform a transformation.

    All non-affine transformations should be subclasses of this class.
    New affine transformations should be subclasses of
    :class:`Affine2D`.

    Subclasses of this class should override the following members (at
    minimum):

      - :attr:`input_dims`
      - :attr:`output_dims`
      - :meth:`transform`
      - :attr:`is_separable`
      - :attr:`has_inverse`
      - :meth:`inverted` (if :attr:`has_inverse` is True)

    If the transform needs to do something non-standard with
    :class:`matplotlib.path.Path` objects, such as adding curves
    where there were once line segments, it should override:

      - :meth:`transform_path`
    """
    input_dims = None
    """
    The number of input dimensions of this transform.
    Must be overridden (with integers) in the subclass.
    """

    output_dims = None
    """
    The number of output dimensions of this transform.
    Must be overridden (with integers) in the subclass.
    """

    has_inverse = False
    """True if this transform has a corresponding inverse transform."""

    is_separable = False
    """True if this transform is separable in the x- and y- dimensions."""

    def __add__(self, other):
        """
        Composes two transforms together such that *self* is followed
        by *other*.
        """
        if isinstance(other, Transform):
            return composite_transform_factory(self, other)
        raise TypeError(
            "Can not add Transform to object of type '%s'" % type(other))

    def __radd__(self, other):
        """
        Composes two transforms together such that *self* is followed
        by *other*.
        """
        if isinstance(other, Transform):
            return composite_transform_factory(other, self)
        raise TypeError(
            "Can not add Transform to object of type '%s'" % type(other))

    def __eq__(self, other):
        # equality is based on transform object id. Hence:
        # Transform() != Transform().
        # Some classes, such as TransformWrapper & AffineBase, will override.
        return self is other

    def _iter_break_from_left_to_right(self):
        """
        Returns an iterator breaking down this transform stack from left to
        right recursively. If self == ((A, N), A) then the result will be an
        iterator which yields I : ((A, N), A), followed by A : (N, A),
        followed by (A, N) : (A), but not ((A, N), A) : I.

        This is equivalent to flattening the stack then yielding
        ``flat_stack[:i], flat_stack[i:]`` where i=0..(n-1).

        """
        yield IdentityTransform(), self

    @property
    def depth(self):
        """
        Returns the number of transforms which have been chained
        together to form this Transform instance.

        .. note::

            For the special case of a Composite transform, the maximum depth
            of the two is returned.

        """
        return 1

    def contains_branch(self, other):
        """
        Return whether the given transform is a sub-tree of this transform.

        This routine uses transform equality to identify sub-trees, therefore
        in many situations it is object id which will be used.

        For the case where the given transform represents the whole
        of this transform, returns True.

        """
        if self.depth < other.depth:
            return False

        # check that a subtree is equal to other (starting from self)
        for _, sub_tree in self._iter_break_from_left_to_right():
            if sub_tree == other:
                return True
        return False

    def contains_branch_seperately(self, other_transform):
        """
        Returns whether the given branch is a sub-tree of this transform on
        each seperate dimension.

        A common use for this method is to identify if a transform is a blended
        transform containing an axes' data transform. e.g.::

            x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)

        """
        if self.output_dims != 2:
            raise ValueError('contains_branch_seperately only supports '
                             'transforms with 2 output dimensions')
        # for a non-blended transform each seperate dimension is the same, so
        # just return the appropriate shape.
        return [self.contains_branch(other_transform)] * 2

    def __sub__(self, other):
        """
        Returns a transform stack which goes all the way down self's transform
        stack, and then ascends back up other's stack. If it can, this is
        optimised::

            # normally
            A - B == a + b.inverted()

            # sometimes, when A contains the tree B there is no need to
            # descend all the way down to the base of A (via B), instead we
            # can just stop at B.

            (A + B) - (B)^-1 == A

            # similarly, when B contains tree A, we can avoid decending A at
            # all, basically:
            A - (A + B) == ((B + A) - A).inverted() or B^-1

        For clarity, the result of ``(A + B) - B + B == (A + B)``.

        """
        # we only know how to do this operation if other is a Transform.
        if not isinstance(other, Transform):
            return NotImplemented

        for remainder, sub_tree in self._iter_break_from_left_to_right():
            if sub_tree == other:
                return remainder

        for remainder, sub_tree in other._iter_break_from_left_to_right():
            if sub_tree == self:
                if not remainder.has_inverse:
                    raise ValueError("The shortcut cannot be computed since "
                     "other's transform includes a non-invertable component.")
                return remainder.inverted()

        # if we have got this far, then there was no shortcut possible
        if other.has_inverse:
            return self + other.inverted()
        else:
            raise ValueError('It is not possible to compute transA - transB '
                             'since transB cannot be inverted and there is no '
                             'shortcut possible.')

    def __array__(self, *args, **kwargs):
        """
        Array interface to get at this Transform's affine matrix.
        """
        return self.get_affine().get_matrix()

    def transform(self, values):
        """
        Performs the transformation on the given array of values.

        Accepts a numpy array of shape (N x :attr:`input_dims`) and
        returns a numpy array of shape (N x :attr:`output_dims`).
        """
        return self.transform_affine(self.transform_non_affine(values))

    def transform_affine(self, values):
        """
        Performs only the affine part of this transformation on the
        given array of values.

        ``transform(values)`` is always equivalent to
        ``transform_affine(transform_non_affine(values))``.

        In non-affine transformations, this is generally a no-op.  In
        affine transformations, this is equivalent to
        ``transform(values)``.

        Accepts a numpy array of shape (N x :attr:`input_dims`) and
        returns a numpy array of shape (N x :attr:`output_dims`).
        """
        return self.get_affine().transform(values)

    def transform_non_affine(self, values):
        """
        Performs only the non-affine part of the transformation.

        ``transform(values)`` is always equivalent to
        ``transform_affine(transform_non_affine(values))``.

        In non-affine transformations, this is generally equivalent to
        ``transform(values)``.  In affine transformations, this is
        always a no-op.

        Accepts a numpy array of shape (N x :attr:`input_dims`) and
        returns a numpy array of shape (N x :attr:`output_dims`).
        """
        return values

    def get_affine(self):
        """
        Get the affine part of this transform.
        """
        return IdentityTransform()

    def get_matrix(self):
        """
        Get the Affine transformation array for the affine part
        of this transform.

        """
        return self.get_affine().get_matrix()

    def transform_point(self, point):
        """
        A convenience function that returns the transformed copy of a
        single point.

        The point is given as a sequence of length :attr:`input_dims`.
        The transformed point is returned as a sequence of length
        :attr:`output_dims`.
        """
        assert len(point) == self.input_dims
        return self.transform(np.asarray([point]))[0]

    def transform_path(self, path):
        """
        Returns a transformed path.

        *path*: a :class:`~matplotlib.path.Path` instance.

        In some cases, this transform may insert curves into the path
        that began as line segments.
        """
        return self.transform_path_affine(self.transform_path_non_affine(path))

    def transform_path_affine(self, path):
        """
        Returns a path, transformed only by the affine part of
        this transform.

        *path*: a :class:`~matplotlib.path.Path` instance.

        ``transform_path(path)`` is equivalent to
        ``transform_path_affine(transform_path_non_affine(values))``.
        """
        return self.get_affine().transform_path_affine(path)

    def transform_path_non_affine(self, path):
        """
        Returns a path, transformed only by the non-affine
        part of this transform.

        *path*: a :class:`~matplotlib.path.Path` instance.

        ``transform_path(path)`` is equivalent to
        ``transform_path_affine(transform_path_non_affine(values))``.
        """
        return Path(self.transform_non_affine(path.vertices), path.codes,
                    path._interpolation_steps)

    def transform_angles(self, angles, pts, radians=False, pushoff=1e-5):
        """
        Performs transformation on a set of angles anchored at
        specific locations.

        The *angles* must be a column vector (i.e., numpy array).

        The *pts* must be a two-column numpy array of x,y positions
        (angle transforms currently only work in 2D).  This array must
        have the same number of rows as *angles*.

        *radians* indicates whether or not input angles are given in
         radians (True) or degrees (False; the default).

        *pushoff* is the distance to move away from *pts* for
         determining transformed angles (see discussion of method
         below).

        The transformed angles are returned in an array with the same
        size as *angles*.

        The generic version of this method uses a very generic
        algorithm that transforms *pts*, as well as locations very
        close to *pts*, to find the angle in the transformed system.
        """
        # Must be 2D
        if self.input_dims != 2 or self.output_dims != 2:
            raise NotImplementedError('Only defined in 2D')

        # pts must be array with 2 columns for x,y
        assert pts.shape[1] == 2

        # angles must be a column vector and have same number of
        # rows as pts
        assert np.prod(angles.shape) == angles.shape[0] == pts.shape[0]

        # Convert to radians if desired
        if not radians:
            angles = angles / 180.0 * np.pi

        # Move a short distance away
        pts2 = pts + pushoff * np.c_[np.cos(angles), np.sin(angles)]

        # Transform both sets of points
        tpts = self.transform(pts)
        tpts2 = self.transform(pts2)

        # Calculate transformed angles
        d = tpts2 - tpts
        a = np.arctan2(d[:, 1], d[:, 0])

        # Convert back to degrees if desired
        if not radians:
            a = a * 180.0 / np.pi

        return a

    def inverted(self):
        """
        Return the corresponding inverse transformation.

        The return value of this method should be treated as
        temporary.  An update to *self* does not cause a corresponding
        update to its inverted copy.

        ``x === self.inverted().transform(self.transform(x))``
        """
        raise NotImplementedError()


class TransformWrapper(Transform):
    """
    A helper class that holds a single child transform and acts
    equivalently to it.

    This is useful if a node of the transform tree must be replaced at
    run time with a transform of a different type.  This class allows
    that replacement to correctly trigger invalidation.

    Note that :class:`TransformWrapper` instances must have the same
    input and output dimensions during their entire lifetime, so the
    child transform may only be replaced with another child transform
    of the same dimensions.
    """
    pass_through = True

    def __init__(self, child):
        """
        *child*: A class:`Transform` instance.  This child may later
        be replaced with :meth:`set`.
        """
        assert isinstance(child, Transform)
        Transform.__init__(self)
        self.input_dims = child.input_dims
        self.output_dims = child.output_dims
        self._set(child)
        self._invalid = 0

    def __eq__(self, other):
        return self._child.__eq__(other)

    if DEBUG:

        def __str__(self):
            return str(self._child)

    def __getstate__(self):
        # only store the child
        return {'child': self._child}

    def __setstate__(self, state):
        # re-initialise the TransformWrapper with the state's child
        self.__init__(state['child'])

    def __repr__(self):
        return "TransformWrapper(%r)" % self._child

    def frozen(self):
        return self._child.frozen()
    frozen.__doc__ = Transform.frozen.__doc__

    def _set(self, child):
        self._child = child
        self.set_children(child)

        self.transform = child.transform
        self.transform_affine = child.transform_affine
        self.transform_non_affine = child.transform_non_affine
        self.transform_path = child.transform_path
        self.transform_path_affine = child.transform_path_affine
        self.transform_path_non_affine = child.transform_path_non_affine
        self.get_affine = child.get_affine
        self.inverted = child.inverted
        self.get_matrix = child.get_matrix

        # note we do not wrap other properties here since the transform's
        # child can be changed with WrappedTransform.set and so checking
        # is_affine and other such properties may be dangerous.

    def set(self, child):
        """
        Replace the current child of this transform with another one.

        The new child must have the same number of input and output
        dimensions as the current child.
        """
        assert child.input_dims == self.input_dims
        assert child.output_dims == self.output_dims

        self._set(child)

        self._invalid = 0
        self.invalidate()
        self._invalid = 0

    def _get_is_affine(self):
        return self._child.is_affine
    is_affine = property(_get_is_affine)

    def _get_is_separable(self):
        return self._child.is_separable
    is_separable = property(_get_is_separable)

    def _get_has_inverse(self):
        return self._child.has_inverse
    has_inverse = property(_get_has_inverse)


class AffineBase(Transform):
    """
    The base class of all affine transformations of any number of
    dimensions.
    """
    is_affine = True

    def __init__(self, *args, **kwargs):
        Transform.__init__(self, *args, **kwargs)
        self._inverted = None

    def __array__(self, *args, **kwargs):
        # optimises the access of the transform matrix vs the superclass
        return self.get_matrix()

    @staticmethod
    def _concat(a, b):
        """
        Concatenates two transformation matrices (represented as numpy
        arrays) together.
        """
        return np.dot(b, a)

    def __eq__(self, other):
        if other.is_affine:
            return np.all(self.get_matrix() == other.get_matrix())
        return NotImplemented

    def transform(self, values):
        return self.transform_affine(values)
    transform.__doc__ = Transform.transform.__doc__

    def transform_affine(self, values):
        raise NotImplementedError('Affine subclasses should override this '
                                  'method.')
    transform_affine.__doc__ = Transform.transform_affine.__doc__

    def transform_non_affine(self, points):
        return points
    transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

    def transform_path(self, path):
        return self.transform_path_affine(path)
    transform_path.__doc__ = Transform.transform_path.__doc__

    def transform_path_affine(self, path):
        return Path(self.transform_affine(path.vertices),
                    path.codes, path._interpolation_steps)
    transform_path_affine.__doc__ = Transform.transform_path_affine.__doc__

    def transform_path_non_affine(self, path):
        return path
    transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

    def get_affine(self):
        return self
    get_affine.__doc__ = Transform.get_affine.__doc__


class Affine2DBase(AffineBase):
    """
    The base class of all 2D affine transformations.

    2D affine transformations are performed using a 3x3 numpy array::

        a c e
        b d f
        0 0 1

    This class provides the read-only interface.  For a mutable 2D
    affine transformation, use :class:`Affine2D`.

    Subclasses of this class will generally only need to override a
    constructor and :meth:`get_matrix` that generates a custom 3x3 matrix.
    """
    has_inverse = True

    input_dims = 2
    output_dims = 2

    def frozen(self):
        return Affine2D(self.get_matrix().copy())
    frozen.__doc__ = AffineBase.frozen.__doc__

    def _get_is_separable(self):
        mtx = self.get_matrix()
        return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0
    is_separable = property(_get_is_separable)

    def to_values(self):
        """
        Return the values of the matrix as a sequence (a,b,c,d,e,f)
        """
        mtx = self.get_matrix()
        return tuple(mtx[:2].swapaxes(0, 1).flatten())

    @staticmethod
    def matrix_from_values(a, b, c, d, e, f):
        """
        (staticmethod) Create a new transformation matrix as a 3x3
        numpy array of the form::

          a c e
          b d f
          0 0 1
        """
        return np.array([[a, c, e], [b, d, f], [0.0, 0.0, 1.0]], np.float_)

    def transform_affine(self, points):
        mtx = self.get_matrix()
        if isinstance(points, MaskedArray):
            tpoints = affine_transform(points.data, mtx)
            return ma.MaskedArray(tpoints, mask=ma.getmask(points))
        return affine_transform(points, mtx)

    def transform_point(self, point):
        mtx = self.get_matrix()
        return affine_transform(point, mtx)
    transform_point.__doc__ = AffineBase.transform_point.__doc__

    if DEBUG:
        _transform_affine = transform_affine

        def transform_affine(self, points):
            # The major speed trap here is just converting to the
            # points to an array in the first place.  If we can use
            # more arrays upstream, that should help here.
            if (not ma.isMaskedArray(points) and
                not isinstance(points, np.ndarray)):
                warnings.warn(
                    ('A non-numpy array of type %s was passed in for ' +
                     'transformation.  Please correct this.')
                    % type(points))
            return self._transform_affine(points)
    transform_affine.__doc__ = AffineBase.transform_affine.__doc__

    def inverted(self):
        if self._inverted is None or self._invalid:
            mtx = self.get_matrix()
            shorthand_name = None
            if self._shorthand_name:
                shorthand_name = '(%s)-1' % self._shorthand_name
            self._inverted = Affine2D(inv(mtx), shorthand_name=shorthand_name)
            self._invalid = 0
        return self._inverted
    inverted.__doc__ = AffineBase.inverted.__doc__


class Affine2D(Affine2DBase):
    """
    A mutable 2D affine transformation.
    """

    def __init__(self, matrix=None, **kwargs):
        """
        Initialize an Affine transform from a 3x3 numpy float array::

          a c e
          b d f
          0 0 1

        If *matrix* is None, initialize with the identity transform.
        """
        Affine2DBase.__init__(self, **kwargs)
        if matrix is None:
            matrix = np.identity(3)
        elif DEBUG:
            matrix = np.asarray(matrix, np.float_)
            assert matrix.shape == (3, 3)
        self._mtx = matrix
        self._invalid = 0

    def __repr__(self):
        return "Affine2D(%s)" % repr(self._mtx)

#    def __cmp__(self, other):
#        # XXX redundant. this only tells us eq.
#        if (isinstance(other, Affine2D) and
#            (self.get_matrix() == other.get_matrix()).all()):
#            return 0
#        return -1

    @staticmethod
    def from_values(a, b, c, d, e, f):
        """
        (staticmethod) Create a new Affine2D instance from the given
        values::

          a c e
          b d f
          0 0 1

        .
        """
        return Affine2D(
            np.array([a, c, e, b, d, f, 0.0, 0.0, 1.0], np.float_)
            .reshape((3, 3)))

    def get_matrix(self):
        """
        Get the underlying transformation matrix as a 3x3 numpy array::

          a c e
          b d f
          0 0 1

        .
        """
        self._invalid = 0
        return self._mtx

    def set_matrix(self, mtx):
        """
        Set the underlying transformation matrix from a 3x3 numpy array::

          a c e
          b d f
          0 0 1

        .
        """
        self._mtx = mtx
        self.invalidate()

    def set(self, other):
        """
        Set this transformation from the frozen copy of another
        :class:`Affine2DBase` object.
        """
        assert isinstance(other, Affine2DBase)
        self._mtx = other.get_matrix()
        self.invalidate()

    @staticmethod
    def identity():
        """
        (staticmethod) Return a new :class:`Affine2D` object that is
        the identity transform.

        Unless this transform will be mutated later on, consider using
        the faster :class:`IdentityTransform` class instead.
        """
        return Affine2D(np.identity(3))

    def clear(self):
        """
        Reset the underlying matrix to the identity transform.
        """
        self._mtx = np.identity(3)
        self.invalidate()
        return self

    def rotate(self, theta):
        """
        Add a rotation (in radians) to this transform in place.

        Returns *self*, so this method can easily be chained with more
        calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
        and :meth:`scale`.
        """
        a = np.cos(theta)
        b = np.sin(theta)
        rotate_mtx = np.array(
            [[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0, 1.0]],
            np.float_)
        self._mtx = np.dot(rotate_mtx, self._mtx)
        self.invalidate()
        return self

    def rotate_deg(self, degrees):
        """
        Add a rotation (in degrees) to this transform in place.

        Returns *self*, so this method can easily be chained with more
        calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
        and :meth:`scale`.
        """
        return self.rotate(degrees * np.pi / 180.)

    def rotate_around(self, x, y, theta):
        """
        Add a rotation (in radians) around the point (x, y) in place.

        Returns *self*, so this method can easily be chained with more
        calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
        and :meth:`scale`.
        """
        return self.translate(-x, -y).rotate(theta).translate(x, y)

    def rotate_deg_around(self, x, y, degrees):
        """
        Add a rotation (in degrees) around the point (x, y) in place.

        Returns *self*, so this method can easily be chained with more
        calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
        and :meth:`scale`.
        """
        return self.translate(-x, -y).rotate_deg(degrees).translate(x, y)

    def translate(self, tx, ty):
        """
        Adds a translation in place.

        Returns *self*, so this method can easily be chained with more
        calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
        and :meth:`scale`.
        """
        translate_mtx = np.array(
            [[1.0, 0.0, tx], [0.0, 1.0, ty], [0.0, 0.0, 1.0]],
            np.float_)
        self._mtx = np.dot(translate_mtx, self._mtx)
        self.invalidate()
        return self

    def scale(self, sx, sy=None):
        """
        Adds a scale in place.

        If *sy* is None, the same scale is applied in both the *x*- and
        *y*-directions.

        Returns *self*, so this method can easily be chained with more
        calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
        and :meth:`scale`.
        """
        if sy is None:
            sy = sx
        scale_mtx = np.array(
            [[sx, 0.0, 0.0], [0.0, sy, 0.0], [0.0, 0.0, 1.0]],
            np.float_)
        self._mtx = np.dot(scale_mtx, self._mtx)
        self.invalidate()
        return self

    def _get_is_separable(self):
        mtx = self.get_matrix()
        return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0
    is_separable = property(_get_is_separable)


class IdentityTransform(Affine2DBase):
    """
    A special class that does on thing, the identity transform, in a
    fast way.
    """
    _mtx = np.identity(3)

    def frozen(self):
        return self
    frozen.__doc__ = Affine2DBase.frozen.__doc__

    def __repr__(self):
        return "IdentityTransform()"

    def get_matrix(self):
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__

    def transform(self, points):
        return points
    transform.__doc__ = Affine2DBase.transform.__doc__

    transform_affine = transform
    transform_affine.__doc__ = Affine2DBase.transform_affine.__doc__

    transform_non_affine = transform
    transform_non_affine.__doc__ = Affine2DBase.transform_non_affine.__doc__

    def transform_path(self, path):
        return path
    transform_path.__doc__ = Affine2DBase.transform_path.__doc__

    transform_path_affine = transform_path
    transform_path_affine.__doc__ = Affine2DBase.transform_path_affine.__doc__

    transform_path_non_affine = transform_path
    transform_path_non_affine.__doc__ = Affine2DBase.transform_path_non_affine.__doc__

    def get_affine(self):
        return self
    get_affine.__doc__ = Affine2DBase.get_affine.__doc__

    inverted = get_affine
    inverted.__doc__ = Affine2DBase.inverted.__doc__


class BlendedGenericTransform(Transform):
    """
    A "blended" transform uses one transform for the *x*-direction, and
    another transform for the *y*-direction.

    This "generic" version can handle any given child transform in the
    *x*- and *y*-directions.
    """
    input_dims = 2
    output_dims = 2
    is_separable = True
    pass_through = True

    def __init__(self, x_transform, y_transform, **kwargs):
        """
        Create a new "blended" transform using *x_transform* to
        transform the *x*-axis and *y_transform* to transform the
        *y*-axis.

        You will generally not call this constructor directly but use
        the :func:`blended_transform_factory` function instead, which
        can determine automatically which kind of blended transform to
        create.
        """
        # Here we ask: "Does it blend?"

        Transform.__init__(self, **kwargs)
        self._x = x_transform
        self._y = y_transform
        self.set_children(x_transform, y_transform)
        self._affine = None

    def __eq__(self, other):
        # Note, this is an exact copy of BlendedAffine2D.__eq__
        if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)):
            return (self._x == other._x) and (self._y == other._y)
        elif self._x == self._y:
            return self._x == other
        else:
            return NotImplemented

    def contains_branch_seperately(self, transform):
        # Note, this is an exact copy of BlendedAffine2D.contains_branch_seperately
        return self._x.contains_branch(transform), self._y.contains_branch(transform)

    @property
    def depth(self):
        return max([self._x.depth, self._y.depth])

    def contains_branch(self, other):
        # a blended transform cannot possibly contain a branch from two different transforms.
        return False

    def _get_is_affine(self):
        return self._x.is_affine and self._y.is_affine
    is_affine = property(_get_is_affine)

    def _get_has_inverse(self):
        return self._x.has_inverse and self._y.has_inverse
    has_inverse = property(_get_has_inverse)

    def frozen(self):
        return blended_transform_factory(self._x.frozen(), self._y.frozen())
    frozen.__doc__ = Transform.frozen.__doc__

    def __repr__(self):
        return "BlendedGenericTransform(%s,%s)" % (self._x, self._y)

    def transform_non_affine(self, points):
        if self._x.is_affine and self._y.is_affine:
            return points
        x = self._x
        y = self._y

        if x == y and x.input_dims == 2:
            return x.transform_non_affine(points)

        if x.input_dims == 2:
            x_points = x.transform_non_affine(points)[:, 0:1]
        else:
            x_points = x.transform_non_affine(points[:, 0])
            x_points = x_points.reshape((len(x_points), 1))

        if y.input_dims == 2:
            y_points = y.transform_non_affine(points)[:, 1:]
        else:
            y_points = y.transform_non_affine(points[:, 1])
            y_points = y_points.reshape((len(y_points), 1))

        if isinstance(x_points, MaskedArray) or isinstance(y_points, MaskedArray):
            return ma.concatenate((x_points, y_points), 1)
        else:
            return np.concatenate((x_points, y_points), 1)
    transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

    def inverted(self):
        return BlendedGenericTransform(self._x.inverted(), self._y.inverted())
    inverted.__doc__ = Transform.inverted.__doc__

    def get_affine(self):
        if self._invalid or self._affine is None:
            if self._x == self._y:
                self._affine = self._x.get_affine()
            else:
                x_mtx = self._x.get_affine().get_matrix()
                y_mtx = self._y.get_affine().get_matrix()
                # This works because we already know the transforms are
                # separable, though normally one would want to set b and
                # c to zero.
                mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]))
                self._affine = Affine2D(mtx)
            self._invalid = 0
        return self._affine
    get_affine.__doc__ = Transform.get_affine.__doc__


class BlendedAffine2D(Affine2DBase):
    """
    A "blended" transform uses one transform for the *x*-direction, and
    another transform for the *y*-direction.

    This version is an optimization for the case where both child
    transforms are of type :class:`Affine2DBase`.
    """
    is_separable = True

    def __init__(self, x_transform, y_transform, **kwargs):
        """
        Create a new "blended" transform using *x_transform* to
        transform the *x*-axis and *y_transform* to transform the
        *y*-axis.

        Both *x_transform* and *y_transform* must be 2D affine
        transforms.

        You will generally not call this constructor directly but use
        the :func:`blended_transform_factory` function instead, which
        can determine automatically which kind of blended transform to
        create.
        """
        assert x_transform.is_affine
        assert y_transform.is_affine
        assert x_transform.is_separable
        assert y_transform.is_separable

        Transform.__init__(self, **kwargs)
        self._x = x_transform
        self._y = y_transform
        self.set_children(x_transform, y_transform)

        Affine2DBase.__init__(self)
        self._mtx = None

    def __eq__(self, other):
        # Note, this is an exact copy of BlendedGenericTransform.__eq__
        if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)):
            return (self._x == other._x) and (self._y == other._y)
        elif self._x == self._y:
            return self._x == other
        else:
            return NotImplemented

    def contains_branch_seperately(self, transform):
        # Note, this is an exact copy of BlendedTransform.contains_branch_seperately
        return self._x.contains_branch(transform), self._y.contains_branch(transform)

    def __repr__(self):
        return "BlendedAffine2D(%s,%s)" % (self._x, self._y)

    def get_matrix(self):
        if self._invalid:
            if self._x == self._y:
                self._mtx = self._x.get_matrix()
            else:
                x_mtx = self._x.get_matrix()
                y_mtx = self._y.get_matrix()
                # This works because we already know the transforms are
                # separable, though normally one would want to set b and
                # c to zero.
                self._mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]))
            self._inverted = None
            self._invalid = 0
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__


def blended_transform_factory(x_transform, y_transform):
    """
    Create a new "blended" transform using *x_transform* to transform
    the *x*-axis and *y_transform* to transform the *y*-axis.

    A faster version of the blended transform is returned for the case
    where both child transforms are affine.
    """
    if (isinstance(x_transform, Affine2DBase)
        and isinstance(y_transform, Affine2DBase)):
        return BlendedAffine2D(x_transform, y_transform)
    return BlendedGenericTransform(x_transform, y_transform)


class CompositeGenericTransform(Transform):
    """
    A composite transform formed by applying transform *a* then
    transform *b*.

    This "generic" version can handle any two arbitrary
    transformations.
    """
    pass_through = True

    def __init__(self, a, b, **kwargs):
        """
        Create a new composite transform that is the result of
        applying transform *a* then transform *b*.

        You will generally not call this constructor directly but use
        the :func:`composite_transform_factory` function instead,
        which can automatically choose the best kind of composite
        transform instance to create.
        """
        assert a.output_dims == b.input_dims
        self.input_dims = a.input_dims
        self.output_dims = b.output_dims

        Transform.__init__(self, **kwargs)
        self._a = a
        self._b = b
        self.set_children(a, b)

    is_affine = property(lambda self: self._a.is_affine and self._b.is_affine)

    def frozen(self):
        self._invalid = 0
        frozen = composite_transform_factory(self._a.frozen(), self._b.frozen())
        if not isinstance(frozen, CompositeGenericTransform):
            return frozen.frozen()
        return frozen
    frozen.__doc__ = Transform.frozen.__doc__

    def _invalidate_internal(self, value, invalidating_node):
        # In some cases for a composite transform, an invalidating call to AFFINE_ONLY needs
        # to be extended to invalidate the NON_AFFINE part too. These cases are when the right
        # hand transform is non-affine and either:
        # (a) the left hand transform is non affine
        # (b) it is the left hand node which has triggered the invalidation
        if value == Transform.INVALID_AFFINE \
            and not self._b.is_affine \
            and (not self._a.is_affine or invalidating_node is self._a):

            value = Transform.INVALID

        Transform._invalidate_internal(self, value=value,
                                       invalidating_node=invalidating_node)

    def __eq__(self, other):
        if isinstance(other, (CompositeGenericTransform, CompositeAffine2D)):
            return self is other or (self._a == other._a and self._b == other._b)
        else:
            return False

    def _iter_break_from_left_to_right(self):
        for lh_compliment, rh_compliment in self._a._iter_break_from_left_to_right():
            yield lh_compliment, rh_compliment + self._b
        for lh_compliment, rh_compliment in self._b._iter_break_from_left_to_right():
            yield self._a + lh_compliment, rh_compliment

    @property
    def depth(self):
        return self._a.depth + self._b.depth

    def _get_is_affine(self):
        return self._a.is_affine and self._b.is_affine
    is_affine = property(_get_is_affine)

    def _get_is_separable(self):
        return self._a.is_separable and self._b.is_separable
    is_separable = property(_get_is_separable)

    if DEBUG:
        def __str__(self):
            return '(%s, %s)' % (self._a, self._b)

    def __repr__(self):
        return "CompositeGenericTransform(%r, %r)" % (self._a, self._b)

    def transform_affine(self, points):
        return self.get_affine().transform(points)
    transform_affine.__doc__ = Transform.transform_affine.__doc__

    def transform_non_affine(self, points):
        if self._a.is_affine and self._b.is_affine:
            return points
        elif not self._a.is_affine and self._b.is_affine:
            return self._a.transform_non_affine(points)
        else:
            return self._b.transform_non_affine(
                                self._a.transform(points))
    transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

    def transform_path_non_affine(self, path):
        if self._a.is_affine and self._b.is_affine:
            return path
        elif not self._a.is_affine and self._b.is_affine:
            return self._a.transform_path_non_affine(path)
        else:
            return self._b.transform_path_non_affine(
                                    self._a.transform_path(path))
    transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

    def get_affine(self):
        if not self._b.is_affine:
            return self._b.get_affine()
        else:
            return Affine2D(np.dot(self._b.get_affine().get_matrix(),
                                self._a.get_affine().get_matrix()))
    get_affine.__doc__ = Transform.get_affine.__doc__

    def inverted(self):
        return CompositeGenericTransform(self._b.inverted(), self._a.inverted())
    inverted.__doc__ = Transform.inverted.__doc__

    def _get_has_inverse(self):
        return self._a.has_inverse and self._b.has_inverse
    has_inverse = property(_get_has_inverse)


class CompositeAffine2D(Affine2DBase):
    """
    A composite transform formed by applying transform *a* then transform *b*.

    This version is an optimization that handles the case where both *a*
    and *b* are 2D affines.
    """
    def __init__(self, a, b, **kwargs):
        """
        Create a new composite transform that is the result of
        applying transform *a* then transform *b*.

        Both *a* and *b* must be instances of :class:`Affine2DBase`.

        You will generally not call this constructor directly but use
        the :func:`composite_transform_factory` function instead,
        which can automatically choose the best kind of composite
        transform instance to create.
        """
        assert a.output_dims == b.input_dims
        self.input_dims = a.input_dims
        self.output_dims = b.output_dims
        assert a.is_affine
        assert b.is_affine

        Affine2DBase.__init__(self, **kwargs)
        self._a = a
        self._b = b
        self.set_children(a, b)
        self._mtx = None

    if DEBUG:
        def __str__(self):
            return '(%s, %s)' % (self._a, self._b)

    @property
    def depth(self):
        return self._a.depth + self._b.depth

    def _iter_break_from_left_to_right(self):
        for lh_compliment, rh_compliment in self._a._iter_break_from_left_to_right():
            yield lh_compliment, rh_compliment + self._b
        for lh_compliment, rh_compliment in self._b._iter_break_from_left_to_right():
            yield self._a + lh_compliment, rh_compliment

    def __repr__(self):
        return "CompositeAffine2D(%r, %r)" % (self._a, self._b)

    def get_matrix(self):
        if self._invalid:
            self._mtx = np.dot(
                self._b.get_matrix(),
                self._a.get_matrix())
            self._inverted = None
            self._invalid = 0
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__


def composite_transform_factory(a, b):
    """
    Create a new composite transform that is the result of applying
    transform a then transform b.

    Shortcut versions of the blended transform are provided for the
    case where both child transforms are affine, or one or the other
    is the identity transform.

    Composite transforms may also be created using the '+' operator,
    e.g.::

      c = a + b
    """
    # check to see if any of a or b are IdentityTransforms. We use
    # isinstance here to guarantee that the transforms will *always*
    # be IdentityTransforms. Since TransformWrappers are mutable,
    # use of equality here would be wrong.
    if isinstance(a, IdentityTransform):
        return b
    elif isinstance(b, IdentityTransform):
        return a
    elif isinstance(a, Affine2D) and isinstance(b, Affine2D):
        return CompositeAffine2D(a, b)
    return CompositeGenericTransform(a, b)


class BboxTransform(Affine2DBase):
    """
    :class:`BboxTransform` linearly transforms points from one
    :class:`Bbox` to another :class:`Bbox`.
    """
    is_separable = True

    def __init__(self, boxin, boxout, **kwargs):
        """
        Create a new :class:`BboxTransform` that linearly transforms
        points from *boxin* to *boxout*.
        """
        assert boxin.is_bbox
        assert boxout.is_bbox

        Affine2DBase.__init__(self, **kwargs)
        self._boxin = boxin
        self._boxout = boxout
        self.set_children(boxin, boxout)
        self._mtx = None
        self._inverted = None

    def __repr__(self):
        return "BboxTransform(%r, %r)" % (self._boxin, self._boxout)

    def get_matrix(self):
        if self._invalid:
            inl, inb, inw, inh = self._boxin.bounds
            outl, outb, outw, outh = self._boxout.bounds
            x_scale = outw / inw
            y_scale = outh / inh
            if DEBUG and (x_scale == 0 or y_scale == 0):
                raise ValueError("Transforming from or to a singular bounding box.")
            self._mtx = np.array([[x_scale, 0.0    , (-inl*x_scale+outl)],
                                   [0.0    , y_scale, (-inb*y_scale+outb)],
                                   [0.0    , 0.0    , 1.0        ]],
                                  np.float_)
            self._inverted = None
            self._invalid = 0
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__


class BboxTransformTo(Affine2DBase):
    """
    :class:`BboxTransformTo` is a transformation that linearly
    transforms points from the unit bounding box to a given
    :class:`Bbox`.
    """
    is_separable = True

    def __init__(self, boxout, **kwargs):
        """
        Create a new :class:`BboxTransformTo` that linearly transforms
        points from the unit bounding box to *boxout*.
        """
        assert boxout.is_bbox

        Affine2DBase.__init__(self, **kwargs)
        self._boxout = boxout
        self.set_children(boxout)
        self._mtx = None
        self._inverted = None

    def __repr__(self):
        return "BboxTransformTo(%r)" % (self._boxout)

    def get_matrix(self):
        if self._invalid:
            outl, outb, outw, outh = self._boxout.bounds
            if DEBUG and (outw == 0 or outh == 0):
                raise ValueError("Transforming to a singular bounding box.")
            self._mtx = np.array([[outw,  0.0, outl],
                                   [ 0.0, outh, outb],
                                   [ 0.0,  0.0,  1.0]],
                                  np.float_)
            self._inverted = None
            self._invalid = 0
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__


class BboxTransformToMaxOnly(BboxTransformTo):
    """
    :class:`BboxTransformTo` is a transformation that linearly
    transforms points from the unit bounding box to a given
    :class:`Bbox` with a fixed upper left of (0, 0).
    """
    def __repr__(self):
        return "BboxTransformToMaxOnly(%r)" % (self._boxout)

    def get_matrix(self):
        if self._invalid:
            xmax, ymax = self._boxout.max
            if DEBUG and (xmax == 0 or ymax == 0):
                raise ValueError("Transforming to a singular bounding box.")
            self._mtx = np.array([[xmax,  0.0, 0.0],
                                  [ 0.0, ymax, 0.0],
                                  [ 0.0,  0.0, 1.0]],
                                 np.float_)
            self._inverted = None
            self._invalid = 0
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__


class BboxTransformFrom(Affine2DBase):
    """
    :class:`BboxTransformFrom` linearly transforms points from a given
    :class:`Bbox` to the unit bounding box.
    """
    is_separable = True

    def __init__(self, boxin, **kwargs):
        assert boxin.is_bbox

        Affine2DBase.__init__(self, **kwargs)
        self._boxin = boxin
        self.set_children(boxin)
        self._mtx = None
        self._inverted = None

    def __repr__(self):
        return "BboxTransformFrom(%r)" % (self._boxin)

    def get_matrix(self):
        if self._invalid:
            inl, inb, inw, inh = self._boxin.bounds
            if DEBUG and (inw == 0 or inh == 0):
                raise ValueError("Transforming from a singular bounding box.")
            x_scale = 1.0 / inw
            y_scale = 1.0 / inh
            self._mtx = np.array([[x_scale, 0.0    , (-inl*x_scale)],
                                   [0.0    , y_scale, (-inb*y_scale)],
                                   [0.0    , 0.0    , 1.0        ]],
                                  np.float_)
            self._inverted = None
            self._invalid = 0
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__


class ScaledTranslation(Affine2DBase):
    """
    A transformation that translates by *xt* and *yt*, after *xt* and *yt*
    have been transformad by the given transform *scale_trans*.
    """
    def __init__(self, xt, yt, scale_trans, **kwargs):
        Affine2DBase.__init__(self, **kwargs)
        self._t = (xt, yt)
        self._scale_trans = scale_trans
        self.set_children(scale_trans)
        self._mtx = None
        self._inverted = None

    def __repr__(self):
        return "ScaledTranslation(%r)" % (self._t,)

    def get_matrix(self):
        if self._invalid:
            xt, yt = self._scale_trans.transform_point(self._t)
            self._mtx = np.array([[1.0, 0.0, xt],
                                   [0.0, 1.0, yt],
                                   [0.0, 0.0, 1.0]],
                                  np.float_)
            self._invalid = 0
            self._inverted = None
        return self._mtx
    get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__


class TransformedPath(TransformNode):
    """
    A :class:`TransformedPath` caches a non-affine transformed copy of
    the :class:`~matplotlib.path.Path`.  This cached copy is
    automatically updated when the non-affine part of the transform
    changes.

    .. note::

        Paths are considered immutable by this class. Any update to the
        path's vertices/codes will not trigger a transform recomputation.

    """
    def __init__(self, path, transform):
        """
        Create a new :class:`TransformedPath` from the given
        :class:`~matplotlib.path.Path` and :class:`Transform`.
        """
        assert isinstance(transform, Transform)
        TransformNode.__init__(self)

        self._path = path
        self._transform = transform
        self.set_children(transform)
        self._transformed_path = None
        self._transformed_points = None

    def _revalidate(self):
        # only recompute if the invalidation includes the non_affine part of the transform
        if ((self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE)
            or self._transformed_path is None):
            self._transformed_path = \
                self._transform.transform_path_non_affine(self._path)
            self._transformed_points = \
                Path(self._transform.transform_non_affine(self._path.vertices),
                     None, self._path._interpolation_steps)
        self._invalid = 0

    def get_transformed_points_and_affine(self):
        """
        Return a copy of the child path, with the non-affine part of
        the transform already applied, along with the affine part of
        the path necessary to complete the transformation.  Unlike
        :meth:`get_transformed_path_and_affine`, no interpolation will
        be performed.
        """
        self._revalidate()
        return self._transformed_points, self.get_affine()

    def get_transformed_path_and_affine(self):
        """
        Return a copy of the child path, with the non-affine part of
        the transform already applied, along with the affine part of
        the path necessary to complete the transformation.
        """
        self._revalidate()
        return self._transformed_path, self.get_affine()

    def get_fully_transformed_path(self):
        """
        Return a fully-transformed copy of the child path.
        """
        self._revalidate()
        return self._transform.transform_path_affine(self._transformed_path)

    def get_affine(self):
        return self._transform.get_affine()


def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True):
    '''
    Modify the endpoints of a range as needed to avoid singularities.

    *vmin*, *vmax*
        the initial endpoints.

    *tiny*
        threshold for the ratio of the interval to the maximum absolute
        value of its endpoints.  If the interval is smaller than
        this, it will be expanded.  This value should be around
        1e-15 or larger; otherwise the interval will be approaching
        the double precision resolution limit.

    *expander*
        fractional amount by which *vmin* and *vmax* are expanded if
        the original interval is too small, based on *tiny*.

    *increasing*: [True | False]
        If True (default), swap *vmin*, *vmax* if *vmin* > *vmax*

    Returns *vmin*, *vmax*, expanded and/or swapped if necessary.

    If either input is inf or NaN, or if both inputs are 0,
    returns -*expander*, *expander*.
    '''
    if (not np.isfinite(vmin)) or (not np.isfinite(vmax)):
        return -expander, expander
    swapped = False
    if vmax < vmin:
        vmin, vmax = vmax, vmin
        swapped = True
    if vmax - vmin <= max(abs(vmin), abs(vmax)) * tiny:
        if vmax == 0 and vmin == 0:
            vmin = -expander
            vmax = expander
        else:
            vmin -= expander*abs(vmin)
            vmax += expander*abs(vmax)

    if swapped and not increasing:
        vmin, vmax = vmax, vmin
    return vmin, vmax


def interval_contains(interval, val):
    a, b = interval
    return (
        ((a < b) and (a <= val and b >= val))
        or (b <= val and a >= val))

def interval_contains_open(interval, val):
    a, b = interval
    return (
        ((a < b) and (a < val and b > val))
        or (b < val and a > val))

def offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches'):
    '''
    Return a new transform with an added offset.
      args:
        trans is any transform
      kwargs:
        fig is the current figure; it can be None if units are 'dots'
        x, y give the offset
        units is 'inches', 'points' or 'dots'
    '''
    if units == 'dots':
        return trans + Affine2D().translate(x, y)
    if fig is None:
        raise ValueError('For units of inches or points a fig kwarg is needed')
    if units == 'points':
        x /= 72.0
        y /= 72.0
    elif not units == 'inches':
        raise ValueError('units must be dots, points, or inches')
    return trans + ScaledTranslation(x, y, fig.dpi_scale_trans)