This file is indexed.

/usr/share/pyshared/matplotlib/tri/triangulation.py is in python-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from __future__ import print_function
import matplotlib.delaunay as delaunay
import matplotlib._tri as _tri
import numpy as np


class Triangulation(object):
    """
    An unstructured triangular grid consisting of npoints points and
    ntri triangles.  The triangles can either be specified by the user
    or automatically generated using a Delaunay triangulation.

    Read-only attributes:

      *x*: array of shape (npoints).
        x-coordinates of grid points.

      *y*: array of shape (npoints).
        y-coordinates of grid points.

      *triangles*: integer array of shape (ntri,3).
        For each triangle, the indices of the three points that make
        up the triangle, ordered in an anticlockwise manner.

      *mask*: optional boolean array of shape (ntri).
        Which triangles are masked out.

      *edges*: integer array of shape (?,2).
        All edges of non-masked triangles.  Each edge is the start
        point index and end point index.  Each edge (start,end and
        end,start) appears only once.

      *neighbors*: integer array of shape (ntri,3).
        For each triangle, the indices of the three triangles that
        share the same edges, or -1 if there is no such neighboring
        triangle.  neighbors[i,j] is the triangle that is the neighbor
        to the edge from point index triangles[i,j] to point index
        triangles[i,(j+1)%3].

    For a Triangulation to be valid it must not have duplicate points,
    triangles formed from colinear points, or overlapping triangles.
    """
    def __init__(self, x, y, triangles=None, mask=None):
        self.x = np.asarray(x, dtype=np.float64)
        self.y = np.asarray(y, dtype=np.float64)
        if self.x.shape != self.y.shape or len(self.x.shape) != 1:
            raise ValueError("x and y must be equal-length 1-D arrays")

        self.mask = None
        self._edges = None
        self._neighbors = None

        if triangles is None:
            # No triangulation specified, so use matplotlib.delaunay.
            dt = delaunay.Triangulation(self.x, self.y)
            self.triangles = np.asarray(
                                 dt.to_client_point_indices(dt.triangle_nodes),
                                 dtype=np.int32)
            if mask is None:
                self._edges = np.asarray(
                                  dt.to_client_point_indices(dt.edge_db),
                                  dtype=np.int32)
                # Delaunay triangle_neighbors uses different edge indexing,
                # so convert.
                neighbors = np.asarray(dt.triangle_neighbors, dtype=np.int32)
                self._neighbors = np.roll(neighbors, 1, axis=1)
        else:
            # Triangulation specified. Copy, since we may correct triangle
            # orientation.
            self.triangles = np.array(triangles, dtype=np.int32)
            if self.triangles.ndim != 2 or self.triangles.shape[1] != 3:
                raise ValueError('triangles must be a (?,3) array')
            if self.triangles.max() >= len(self.x):
                raise ValueError('triangles max element is out of bounds')
            if self.triangles.min() < 0:
                raise ValueError('triangles min element is out of bounds')

        if mask is not None:
            self.mask = np.asarray(mask, dtype=np.bool)
            if len(self.mask.shape) != 1 or \
                    self.mask.shape[0] != self.triangles.shape[0]:
                raise ValueError('mask array must have same length as '
                                 'triangles array')

        # Underlying C++ object is not created until first needed.
        self._cpp_triangulation = None

        # Default TriFinder not created until needed.
        self._trifinder = None

    def calculate_plane_coefficients(self, z):
        """
        Calculate plane equation coefficients for all unmasked triangles from
        the point (x,y) coordinates and specified z-array of shape (npoints).
        Returned array has shape (npoints,3) and allows z-value at (x,y)
        position in triangle tri to be calculated using
        z = array[tri,0]*x + array[tri,1]*y + array[tri,2].
        """
        return self.get_cpp_triangulation().calculate_plane_coefficients(z)

    @property
    def edges(self):
        if self._edges is None:
            self._edges = self.get_cpp_triangulation().get_edges()
        return self._edges

    def get_cpp_triangulation(self):
        # Return the underlying C++ Triangulation object, creating it
        # if necessary.
        if self._cpp_triangulation is None:
            self._cpp_triangulation = _tri.Triangulation(
                self.x, self.y, self.triangles, self.mask, self._edges,
                self._neighbors)
        return self._cpp_triangulation

    def get_masked_triangles(self):
        """
        Return an array of triangles that are not masked.
        """
        if self.mask is not None:
            return self.triangles.compress(1 - self.mask, axis=0)
        else:
            return self.triangles

    @staticmethod
    def get_from_args_and_kwargs(*args, **kwargs):
        """
        Return a Triangulation object from the args and kwargs, and
        the remaining args and kwargs with the consumed values removed.

        There are two alternatives: either the first argument is a
        Triangulation object, in which case it is returned, or the args
        and kwargs are sufficient to create a new Triangulation to
        return.  In the latter case, see Triangulation.__init__ for
        the possible args and kwargs.
        """
        if isinstance(args[0], Triangulation):
            triangulation = args[0]
            args = args[1:]
        else:
            x = args[0]
            y = args[1]
            args = args[2:]  # Consumed first two args.

            # Check triangles in kwargs then args.
            triangles = kwargs.pop('triangles', None)
            from_args = False
            if triangles is None and len(args) > 0:
                triangles = args[0]
                from_args = True

            if triangles is not None:
                try:
                    triangles = np.asarray(triangles, dtype=np.int32)
                except ValueError:
                    triangles = None

            if triangles is not None and (triangles.ndim != 2 or
                                          triangles.shape[1] != 3):
                triangles = None

            if triangles is not None and from_args:
                args = args[1:]  # Consumed first item in args.

            # Check for mask in kwargs.
            mask = kwargs.pop('mask', None)

            triangulation = Triangulation(x, y, triangles, mask)
        return triangulation, args, kwargs

    def get_trifinder(self):
        """
        Return the default :class:`matplotlib.tri.TriFinder` of this
        triangulation, creating it if necessary.  This allows the same
        TriFinder object to be easily shared.
        """
        if self._trifinder is None:
            # Default TriFinder class.
            from matplotlib.tri.trifinder import TrapezoidMapTriFinder
            self._trifinder = TrapezoidMapTriFinder(self)
        return self._trifinder

    @property
    def neighbors(self):
        if self._neighbors is None:
            self._neighbors = self.get_cpp_triangulation().get_neighbors()
        return self._neighbors

    def set_mask(self, mask):
        """
        Set or clear the mask array.  This is either None, or a boolean
        array of shape (ntri).
        """
        if mask is None:
            self.mask = None
        else:
            self.mask = np.asarray(mask, dtype=np.bool)
            if len(self.mask.shape) != 1 or \
                    self.mask.shape[0] != self.triangles.shape[0]:
                raise ValueError('mask array must have same length as '
                                 'triangles array')

        # Set mask in C++ Triangulation.
        if self._cpp_triangulation is not None:
            self._cpp_triangulation.set_mask(self.mask)

        # Clear derived fields so they are recalculated when needed.
        self._edges = None
        self._neighbors = None

        # Recalculate TriFinder if it exists.
        if self._trifinder is not None:
            self._trifinder._initialize()