This file is indexed.

/usr/share/pyshared/matplotlib/tri/triinterpolate.py is in python-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
"""
Interpolation inside triangular grids.
"""
from __future__ import print_function
from matplotlib.tri import Triangulation
from matplotlib.tri.trifinder import TriFinder
from matplotlib.tri.tritools import TriAnalyzer
import numpy as np
import warnings

__all__ = ('TriInterpolator', 'LinearTriInterpolator', 'CubicTriInterpolator')


class TriInterpolator(object):
    """
    Abstract base class for classes used to perform interpolation on
    triangular grids.

    Derived classes implement the following methods:

        - ``__call__(x, y)`` ,
          where x, y are array_like point coordinates of the same shape, and
          that returns a masked array of the same shape containing the
          interpolated z-values.

        - ``gradient(x, y)`` ,
          where x, y are array_like point coordinates of the same
          shape, and that returns a list of 2 masked arrays of the same shape
          containing the 2 derivatives of the interpolator (derivatives of
          interpolated z values with respect to x and y).

    """
    def __init__(self, triangulation, z, trifinder=None):
        if not isinstance(triangulation, Triangulation):
            raise ValueError("Expected a Triangulation object")
        self._triangulation = triangulation

        self._z = np.asarray(z)
        if self._z.shape != self._triangulation.x.shape:
            raise ValueError("z array must have same length as triangulation x"
                             " and y arrays")

        if trifinder is not None and not isinstance(trifinder, TriFinder):
            raise ValueError("Expected a TriFinder object")
        self._trifinder = trifinder or self._triangulation.get_trifinder()

        # Default scaling factors : 1.0 (= no scaling)
        # Scaling may be used for interpolations for which the order of
        # magnitude of x, y has an impact on the interpolant definition.
        # Please refer to :meth:`_interpolate_multikeys` for details.
        self._unit_x = 1.0
        self._unit_y = 1.0

        # Default triangle renumbering: None (= no renumbering)
        # Renumbering may be used to avoid unecessary computations
        # if complex calculations are done inside the Interpolator.
        # Please refer to :meth:`_interpolate_multikeys` for details.
        self._tri_renum = None

    # __call__ and gradient docstrings are shared by all subclasses
    # (except, if needed, relevant additions).
    # However these methods are only implemented in subclasses to avoid
    # confusion in the documentation.
    docstring__call__ = """
        Returns a masked array containing interpolated values at the specified
        x,y points.

        Parameters
        ----------
        x, y : array-like
            x and y coordinates of the same shape and any number of
            dimensions.

        Returns
        -------
        z : np.ma.array
            Masked array of the same shape as *x* and *y* ; values
            corresponding to (*x*, *y*) points outside of the triangulation
            are masked out.

        """

    docstringgradient = """
        Returns a list of 2 masked arrays containing interpolated derivatives
        at the specified x,y points.

        Parameters
        ----------
        x, y : array-like
            x and y coordinates of the same shape and any number of
            dimensions.

        Returns
        -------
        dzdx, dzdy : np.ma.array
            2  masked arrays of the same shape as *x* and *y* ; values
            corresponding to (x,y) points outside of the triangulation
            are masked out.
            The first returned array contains the values of
            :math:`\\frac{\\partial z}{\\partial x}` and the second those of
            :math:`\\frac{\\partial z}{\\partial y}`.

        """

    def _interpolate_multikeys(self, x, y, tri_index=None,
                               return_keys=('z',)):
        """
        Versatile (private) method defined for all TriInterpolators.

        :meth:`_interpolate_multikeys` is a wrapper around method
        :meth:`_interpolate_single_key` (to be defined in the child
        subclasses).
        :meth:`_interpolate_single_key actually performs the interpolation,
        but only for 1-dimensional inputs and at valid locations (inside
        unmasked triangles of the triangulation).

        The purpose of :meth:`_interpolate_multikeys` is to implement the
        following common tasks needed in all subclasses implementations:

            - calculation of containing triangles
            - dealing with more than one interpolation request at the same
              location (e.g., if the 2 derivatives are requested, it is
              unnecessary to compute the containing triangles twice)
            - scaling according to self._unit_x, self._unit_y
            - dealing with points outside of the grid (with fill value np.nan)
            - dealing with multi-dimensionnal *x*, *y* arrays: flattening for
              :meth:`_interpolate_params` call and final reshaping.

        (Note that np.vectorize could do most of those things very well for
        you, but it does it by function evaluations over successive tuples of
        the input arrays. Therefore, this tends to be more time consuming than
        using optimized numpy functions - e.g., np.dot - which can be used
        easily on the flattened inputs, in the child-subclass methods
        :meth:`_interpolate_single_key`.)

        It is guaranteed that the calls to :meth:`_interpolate_single_key`
        will be done with flattened (1-d) array_like input parameters `x`, `y`
        and with flattened, valid `tri_index` arrays (no -1 index allowed).

        Parameters
        ----------
        x, y : array_like
            x and y coordinates indicating where interpolated values are
            requested.
        tri_index : integer array_like, optional
            Array of the containing triangle indices, same shape as
            *x* and *y*. Defaults to None. If None, these indices
            will be computed by a TriFinder instance.
            (Note: For point outside the grid, tri_index[ipt] shall be -1).
        return_keys : tuple of keys from {'z', 'dzdx', 'dzdy'}
            Defines the interpolation arrays to return, and in which order.

        Returns
        -------
        ret : list of arrays
            Each array-like contains the expected interpolated values in the
            order defined by *return_keys* parameter.
        """
        # Flattening and rescaling inputs arrays x, y
        # (initial shape is stored for output)
        x = np.asarray(x, dtype=np.float64)
        y = np.asarray(y, dtype=np.float64)
        sh_ret = x.shape
        if (x.shape != y.shape):
            raise ValueError("x and y shall have same shapes."
                             " Given: {0} and {1}".format(x.shape, y.shape))
        x = np.ravel(x)
        y = np.ravel(y)
        x_scaled = x/self._unit_x
        y_scaled = y/self._unit_y
        size_ret = np.size(x_scaled)

        # Computes & ravels the element indexes, extract the valid ones.
        if tri_index is None:
            tri_index = self._trifinder(x, y)
        else:
            if (tri_index.shape != sh_ret):
                raise ValueError(
                    "tri_index array is provided and shall"
                    " have same shape as x and y. Given: "
                    "{0} and {1}".format(tri_index.shape, sh_ret))
            tri_index = np.ravel(tri_index)

        mask_in = (tri_index != -1)
        if self._tri_renum is None:
            valid_tri_index = tri_index[mask_in]
        else:
            valid_tri_index = self._tri_renum[tri_index[mask_in]]
        valid_x = x_scaled[mask_in]
        valid_y = y_scaled[mask_in]

        ret = []
        for return_key in return_keys:
            # Find the return index associated with the key.
            try:
                return_index = {'z': 0, 'dzdx': 1, 'dzdy': 2}[return_key]
            except KeyError:
                raise ValueError("return_keys items shall take values in"
                                 " {'z', 'dzdx', 'dzdy'}")

            # Sets the scale factor for f & df components
            scale = [1., 1./self._unit_x, 1./self._unit_y][return_index]

            # Computes the interpolation
            ret_loc = np.empty(size_ret, dtype=np.float64)
            ret_loc[~mask_in] = np.nan
            ret_loc[mask_in] = self._interpolate_single_key(
                return_key, valid_tri_index, valid_x, valid_y) * scale
            ret += [np.ma.masked_invalid(ret_loc.reshape(sh_ret), copy=False)]

        return ret

    def _interpolate_single_key(self, return_key, tri_index, x, y):
        """
        Performs the interpolation at points belonging to the triangulation
        (inside an unmasked triangles).

        Parameters
        ----------
        return_index : string key from {'z', 'dzdx', 'dzdy'}
            Identifies the requested values (z or its derivatives)
        tri_index : 1d integer array
            Valid triangle index (-1 prohibited)
        x, y : 1d arrays, same shape as `tri_index`
            Valid locations where interpolation is requested.

        Returns
        -------
        ret : 1-d array
            Returned array of the same size as *tri_index*
        """
        raise NotImplementedError("TriInterpolator subclasses" +
                                  "should implement _interpolate_single_key!")


class LinearTriInterpolator(TriInterpolator):
    """
    A LinearTriInterpolator performs linear interpolation on a triangular grid.

    Each triangle is represented by a plane so that an interpolated value at
    point (x,y) lies on the plane of the triangle containing (x,y).
    Interpolated values are therefore continuous across the triangulation, but
    their first derivatives are discontinuous at edges between triangles.

    Parameters
    ----------
    triangulation : :class:`~matplotlib.tri.Triangulation` object
        The triangulation to interpolate over.
    z : array_like of shape (npoints,)
        Array of values, defined at grid points, to interpolate between.
    trifinder : :class:`~matplotlib.tri.TriFinder` object, optional
          If this is not specified, the Triangulation's default TriFinder will
          be used by calling
          :func:`matplotlib.tri.Triangulation.get_trifinder`.

    Methods
    -------
    `__call__` (x, y) :  Returns interpolated values at x,y points
    `gradient` (x, y) : Returns interpolated derivatives at x,y points

    """
    def __init__(self, triangulation, z, trifinder=None):
        TriInterpolator.__init__(self, triangulation, z, trifinder)

        # Store plane coefficients for fast interpolation calculations.
        self._plane_coefficients = \
            self._triangulation.calculate_plane_coefficients(self._z)

    def __call__(self, x, y):
        return self._interpolate_multikeys(x, y, tri_index=None,
                                           return_keys=('z',))[0]
    __call__.__doc__ = TriInterpolator.docstring__call__

    def gradient(self, x, y):
        return self._interpolate_multikeys(x, y, tri_index=None,
                                           return_keys=('dzdx', 'dzdy'))
    gradient.__doc__ = TriInterpolator.docstringgradient

    def _interpolate_single_key(self, return_key, tri_index, x, y):
        if return_key == 'z':
            return (self._plane_coefficients[tri_index, 0]*x +
                    self._plane_coefficients[tri_index, 1]*y +
                    self._plane_coefficients[tri_index, 2])
        elif return_key == 'dzdx':
            return self._plane_coefficients[tri_index, 0]
        elif return_key == 'dzdy':
            return self._plane_coefficients[tri_index, 1]
        else:
            raise ValueError("Invalid return_key: "+return_key)


class CubicTriInterpolator(TriInterpolator):
    """
    A CubicTriInterpolator performs cubic interpolation on triangular grids.

    In one-dimension - on a segment - a cubic interpolating function is
    defined by the values of the function and its derivative at both ends.
    This is almost the same in 2-d inside a triangle, except that the values
    of the function and its 2 derivatives have to be defined at each triangle
    node.

    The CubicTriInterpolator takes the value of the function at each node -
    provided by the user - and internally computes the value of the
    derivatives, resulting in a smooth interpolation.
    (As a special feature, the user can also impose the value of the
    derivatives at each node, but this is not supposed to be the common
    usage.)

    Parameters
    ----------
    triangulation : :class:`~matplotlib.tri.Triangulation` object
        The triangulation to interpolate over.
    z : array_like of shape (npoints,)
        Array of values, defined at grid points, to interpolate between.
    kind : {'min_E', 'geom', 'user'}, optional
        Choice of the smoothing algorithm, in order to compute
        the interpolant derivatives (defaults to 'min_E'):

            - if 'min_E': (default) The derivatives at each node is computed
              to minimize a bending energy.
            - if 'geom': The derivatives at each node is computed as a
              weighted average of relevant triangle normals. To be used for
              speed optimization (large grids).
            - if 'user': The user provides the argument `dz`, no computation
              is hence needed.

    trifinder : :class:`~matplotlib.tri.TriFinder` object, optional
        If not specified, the Triangulation's default TriFinder will
        be used by calling
        :func:`matplotlib.tri.Triangulation.get_trifinder`.
    dz : tuple of array_likes (dzdx, dzdy), optional
        Used only if  *kind* ='user'. In this case *dz* must be provided as
        (dzdx, dzdy) where dzdx, dzdy are arrays of the same shape as *z* and
        are the interpolant first derivatives at the *triangulation* points.

    Methods
    -------
    `__call__` (x, y) :  Returns interpolated values at x,y points
    `gradient` (x, y) : Returns interpolated derivatives at x,y points

    Notes
    -----
    This note is a bit technical and details the way a
    :class:`~matplotlib.tri.CubicTriInterpolator` computes a cubic
    interpolation.

    The interpolation is based on a Clough-Tocher subdivision scheme of
    the *triangulation* mesh (to make it clearer, each triangle of the
    grid will be divided in 3 child-triangles, and on each child triangle
    the interpolated function is a cubic polynomial of the 2 coordinates).
    This technique originates from FEM (Finite Element Method) analysis;
    the element used is a reduced Hsieh-Clough-Tocher (HCT)
    element. Its shape functions are described in [1]_.
    The assembled function is guaranteed to be C1-smooth, i.e. it is
    continuous and its first derivatives are also continuous (this
    is easy to show inside the triangles but is also true when crossing the
    edges).

    In the default case (*kind* ='min_E'), the interpolant minimizes a
    curvature energy on the functional space generated by the HCT element
    shape functions - with imposed values but arbitrary derivatives at each
    node. The minimized functional is the integral of the so-called total
    curvature (implementation based on an algorithm from [2]_ - PCG sparse
    solver):

        .. math::

            E(z) = \\ \\frac{1}{2} \\int_{\\Omega}   \\left(
            \\left( \\frac{\\partial^2{z}}{\\partial{x}^2} \\right)^2 +
            \\left( \\frac{\\partial^2{z}}{\\partial{y}^2} \\right)^2 +
            2\\left( \\frac{\\partial^2{z}}{\\partial{y}\\partial{x}}
            \\right)^2 \\right)  dx\\,dy

    If the case *kind* ='geom' is chosen by the user, a simple geometric
    approximation is used (weighted average of the triangle normal
    vectors), which could improve speed on very large grids.

    References
    ----------
    .. [1] Michel Bernadou, Kamal Hassan, "Basis functions for general
        Hsieh-Clough-Tocher triangles, complete or reduced.",
        International Journal for Numerical Methods in Engineering,
        17(5):784 - 789. 2.01.
    .. [2] C.T. Kelley, "Iterative Methods for Optimization".

    """
    def __init__(self, triangulation, z, kind='min_E', trifinder=None,
                 dz=None):
        TriInterpolator.__init__(self, triangulation, z, trifinder)

        # Loads the underlying c++ _triangulation.
        # (During loading, reordering of triangulation._triangles may occur so
        # that all final triangles are now anti-clockwise)
        self._triangulation.get_cpp_triangulation()

        # To build the stiffness matrix and avoid zero-energy spurious modes
        # we will only store internally the valid (unmasked) triangles and
        # the necessary (used) points coordinates.
        # 2 renumbering tables need to be computed and stored:
        #  - a triangle renum table in order to translate the result from a
        #    TriFinder instance into the internal stored triangle number.
        #  - a node renum table to overwrite the self._z values into the new
        #    (used) node numbering.
        tri_analyzer = TriAnalyzer(self._triangulation)
        (compressed_triangles, compressed_x, compressed_y, tri_renum,
         node_renum) = tri_analyzer._get_compressed_triangulation(True, True)
        self._triangles = compressed_triangles
        self._tri_renum = tri_renum
        # Taking into account the node renumbering in self._z:
        node_mask = (node_renum == -1)
        self._z[node_renum[~node_mask]] = self._z
        self._z = self._z[~node_mask]

        # Computing scale factors
        self._unit_x = np.max(compressed_x) - np.min(compressed_x)
        self._unit_y = np.max(compressed_y) - np.min(compressed_y)
        self._pts = np.vstack((compressed_x/float(self._unit_x),
                               compressed_y/float(self._unit_y))).T
        # Computing triangle points
        self._tris_pts = self._pts[self._triangles]
        # Computing eccentricities
        self._eccs = self._compute_tri_eccentricities(self._tris_pts)
        # Computing dof estimations for HCT triangle shape function
        self._dof = self._compute_dof(kind, dz=dz)
        # Loading HCT element
        self._ReferenceElement = _ReducedHCT_Element()

    def __call__(self, x, y):
        return self._interpolate_multikeys(x, y, tri_index=None,
                                           return_keys=('z',))[0]
    __call__.__doc__ = TriInterpolator.docstring__call__

    def gradient(self, x, y):
        return self._interpolate_multikeys(x, y, tri_index=None,
                                           return_keys=('dzdx', 'dzdy'))
    gradient.__doc__ = TriInterpolator.docstringgradient + """

        Examples
        --------
        An example of effective application is shown below (plot of the
        direction of the vector field derivated from a known potential field):

        .. plot:: mpl_examples/pylab_examples/trigradient_demo.py

        """

    def _interpolate_single_key(self, return_key, tri_index, x, y):
        tris_pts = self._tris_pts[tri_index]
        alpha = self._get_alpha_vec(x, y, tris_pts)
        ecc = self._eccs[tri_index]
        dof = np.expand_dims(self._dof[tri_index], axis=1)
        if return_key == 'z':
            return self._ReferenceElement.get_function_values(
                alpha, ecc, dof)
        elif return_key in ['dzdx', 'dzdy']:
            J = self._get_jacobian(tris_pts)
            dzdx = self._ReferenceElement.get_function_derivatives(
                alpha, J, ecc, dof)
            if return_key == 'dzdx':
                return dzdx[:, 0]
            else:
                return dzdx[:, 1]
        else:
            raise ValueError("Invalid return_key: " + return_key)

    def _compute_dof(self, kind, dz=None):
        """
        Computes and returns nodal dofs according to kind

        Parameters
        ----------
        kind: {'min_E', 'geom', 'user'}
            Choice of the _DOF_estimator subclass to perform the gradient
            estimation.
        dz: tuple of array_likes (dzdx, dzdy), optional
            Used only if *kind=user ; in this case passed to the
            :class:`_DOF_estimator_user`.

        Returns
        -------
        dof : array_like, shape (npts,2)
              Estimation of the gradient at triangulation nodes (stored as
              degree of freedoms of reduced-HCT triangle elements).
        """
        if kind == 'user':
            if dz is None:
                raise ValueError("For a CubicTriInterpolator with "
                                 "*kind*='user', a valid *dz* "
                                 "argument is expected.")
            TE = _DOF_estimator_user(self, dz=dz)
        elif kind == 'geom':
            TE = _DOF_estimator_geom(self)
        elif kind == 'min_E':
            TE = _DOF_estimator_min_E(self)
        else:
            raise ValueError("CubicTriInterpolator *kind* proposed: {0} ; "
                             "should be one of: "
                             "'user', 'geom', 'min_E'".format(kind))
        return TE.compute_dof_from_df()

    @staticmethod
    def _get_alpha_vec(x, y, tris_pts):
        """
        Fast (vectorized) function to compute barycentric coordinates alpha.

        Parameters
        ----------
        x, y : array-like of dim 1 (shape (nx,))
                  Coordinates of the points whose points barycentric
                  coordinates are requested
        tris_pts : array like of dim 3 (shape: (nx,3,2))
                    Coordinates of the containing triangles apexes.

        Returns
        -------
        alpha : array of dim 2 (shape (nx,3))
                 Barycentric coordinates of the points inside the containing
                 triangles.
        """
        ndim = tris_pts.ndim-2

        a = tris_pts[:, 1, :] - tris_pts[:, 0, :]
        b = tris_pts[:, 2, :] - tris_pts[:, 0, :]
        abT = np.concatenate([np.expand_dims(a, ndim+1),
                              np.expand_dims(b, ndim+1)], ndim+1)
        ab = _transpose_vectorized(abT)
        x = np.expand_dims(x, ndim)
        y = np.expand_dims(y, ndim)
        OM = np.concatenate([x, y], ndim)-tris_pts[:, 0, :]

        metric = _prod_vectorized(ab, abT)
        # Here we try to deal with the colinear cases.
        # metric_inv is in this case set to the Moore-Penrose pseudo-inverse
        # meaning that we will still return a set of valid barycentric
        # coordinates.
        metric_inv = _pseudo_inv22sym_vectorized(metric)
        Covar = _prod_vectorized(ab, _transpose_vectorized(
            np.expand_dims(OM, ndim)))
        ksi = _prod_vectorized(metric_inv, Covar)
        alpha = _to_matrix_vectorized([
            [1-ksi[:, 0, 0]-ksi[:, 1, 0]], [ksi[:, 0, 0]], [ksi[:, 1, 0]]])
        return alpha

    @staticmethod
    def _get_jacobian(tris_pts):
        """
        Fast (vectorized) function to compute triangle jacobian matrix.

        Parameters
        ----------
        tris_pts : array like of dim 3 (shape: (nx,3,2))
                    Coordinates of the containing triangles apexes.

        Returns
        -------
        J : array of dim 3 (shape (nx,2,2))
                 Barycentric coordinates of the points inside the containing
                 triangles.
                 J[itri,:,:] is the jacobian matrix at apex 0 of the triangle
                 itri, so that the following (matrix) relationship holds:
                    [dz/dksi] = [J] x [dz/dx]
                    with x: global coordinates
                    ksi: element parametric coordinates in triangle first apex
                    local basis.
        """
        a = np.array(tris_pts[:, 1, :]-tris_pts[:, 0, :])
        b = np.array(tris_pts[:, 2, :]-tris_pts[:, 0, :])
        J = _to_matrix_vectorized([[a[:, 0], a[:, 1]],
                                   [b[:, 0], b[:, 1]]])
        return J

    @staticmethod
    def _compute_tri_eccentricities(tris_pts):
        """
        Computes triangle eccentricities

        Parameters
        ----------
        tris_pts : array like of dim 3 (shape: (nx,3,2))
                   Coordinates of the triangles apexes.

        Returns
        -------
        ecc : array like of dim 2 (shape: (nx,3))
              The so-called eccentricity parameters [1] needed for
              HCT triangular element.
        """
        a = np.expand_dims(tris_pts[:, 2, :]-tris_pts[:, 1, :], axis=2)
        b = np.expand_dims(tris_pts[:, 0, :]-tris_pts[:, 2, :], axis=2)
        c = np.expand_dims(tris_pts[:, 1, :]-tris_pts[:, 0, :], axis=2)
        # Do not use np.squeeze, this is dangerous if only one triangle
        # in the triangulation...
        dot_a = _prod_vectorized(_transpose_vectorized(a), a)[:, 0, 0]
        dot_b = _prod_vectorized(_transpose_vectorized(b), b)[:, 0, 0]
        dot_c = _prod_vectorized(_transpose_vectorized(c), c)[:, 0, 0]
        # Note that this line will raise a warning for dot_a, dot_b or dot_c
        # zeros, but we choose not to support triangles with duplicate points.
        return _to_matrix_vectorized([[(dot_c-dot_b)/dot_a],
                                      [(dot_a-dot_c)/dot_b],
                                      [(dot_b-dot_a)/dot_c]])


# FEM element used for interpolation and for solving minimisation
# problem (Reduced HCT element)
class _ReducedHCT_Element():
    """
    Implementation of reduced HCT triangular element with explicit shape
    functions.

    Computes z, dz, d2z and the element stiffness matrix for bending energy:
    E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA)

    *** Reference for the shape functions: ***
    [1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or
        reduced.
        Michel Bernadou, Kamal Hassan
        International Journal for Numerical Methods in Engineering.
        17(5):784 - 789.  2.01

    *** Element description: ***
    9 dofs: z and dz given at 3 apex
    C1 (conform)

    """
    # 1) Loads matrices to generate shape functions as a function of
    #    triangle eccentricities - based on [1] p.11 '''
    M = np.array([
        [ 0.00, 0.00, 0.00,  4.50,  4.50, 0.00, 0.00, 0.00, 0.00, 0.00],
        [-0.25, 0.00, 0.00,  0.50,  1.25, 0.00, 0.00, 0.00, 0.00, 0.00],
        [-0.25, 0.00, 0.00,  1.25,  0.50, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.50, 1.00, 0.00, -1.50,  0.00, 3.00, 3.00, 0.00, 0.00, 3.00],
        [ 0.00, 0.00, 0.00, -0.25,  0.25, 0.00, 1.00, 0.00, 0.00, 0.50],
        [ 0.25, 0.00, 0.00, -0.50, -0.25, 1.00, 0.00, 0.00, 0.00, 1.00],
        [ 0.50, 0.00, 1.00,  0.00, -1.50, 0.00, 0.00, 3.00, 3.00, 3.00],
        [ 0.25, 0.00, 0.00, -0.25, -0.50, 0.00, 0.00, 0.00, 1.00, 1.00],
        [ 0.00, 0.00, 0.00,  0.25, -0.25, 0.00, 0.00, 1.00, 0.00, 0.50]])
    M0 = np.array([
        [ 0.00, 0.00, 0.00,  0.00,  0.00, 0.00, 0.00, 0.00, 0.00,  0.00],
        [ 0.00, 0.00, 0.00,  0.00,  0.00, 0.00, 0.00, 0.00, 0.00,  0.00],
        [ 0.00, 0.00, 0.00,  0.00,  0.00, 0.00, 0.00, 0.00, 0.00,  0.00],
        [-1.00, 0.00, 0.00,  1.50,  1.50, 0.00, 0.00, 0.00, 0.00, -3.00],
        [-0.50, 0.00, 0.00,  0.75,  0.75, 0.00, 0.00, 0.00, 0.00, -1.50],
        [ 0.00, 0.00, 0.00,  0.00,  0.00, 0.00, 0.00, 0.00, 0.00,  0.00],
        [ 1.00, 0.00, 0.00, -1.50, -1.50, 0.00, 0.00, 0.00, 0.00,  3.00],
        [ 0.00, 0.00, 0.00,  0.00,  0.00, 0.00, 0.00, 0.00, 0.00,  0.00],
        [ 0.50, 0.00, 0.00, -0.75, -0.75, 0.00, 0.00, 0.00, 0.00,  1.50]])
    M1 = np.array([
        [-0.50, 0.00, 0.00,  1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [-0.25, 0.00, 0.00,  0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.50, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.25, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]])
    M2 = np.array([
        [ 0.50, 0.00, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.25, 0.00, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [-0.50, 0.00, 0.00, 0.00,  1.50, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [-0.25, 0.00, 0.00, 0.00,  0.75, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
        [ 0.00, 0.00, 0.00, 0.00,  0.00, 0.00, 0.00, 0.00, 0.00, 0.00]])

    # 2) Loads matrices to rotate components of gradient & Hessian
    #    vectors in the reference basis of triangle first apex (a0)
    rotate_dV = np.array([[ 1.,  0.], [ 0.,  1.],
                          [ 0.,  1.], [-1., -1.],
                          [-1., -1.], [ 1.,  0.]])

    rotate_d2V = np.array([[1., 0., 0.], [0., 1., 0.], [ 0.,  0.,  1.],
                           [0., 1., 0.], [1., 1., 1.], [ 0., -2., -1.],
                           [1., 1., 1.], [1., 0., 0.], [-2.,  0., -1.]])

    # 3) Loads Gauss points & weights on the 3 sub-_triangles for P2
    #    exact integral - 3 points on each subtriangles.
    # NOTE: as the 2nd derivative is discontinuous , we really need those 9
    # points!
    n_gauss = 9
    gauss_pts = np.array([[13./18.,  4./18.,  1./18.],
                          [ 4./18., 13./18.,  1./18.],
                          [ 7./18.,  7./18.,  4./18.],
                          [ 1./18., 13./18.,  4./18.],
                          [ 1./18.,  4./18., 13./18.],
                          [ 4./18.,  7./18.,  7./18.],
                          [ 4./18.,  1./18., 13./18.],
                          [13./18.,  1./18.,  4./18.],
                          [ 7./18.,  4./18.,  7./18.]], dtype=np.float64)
    gauss_w = np.ones([9], dtype=np.float64) / 9.

    #  4) Stiffness matrix for curvature energy
    E = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 2.]])

    #  5) Loads the matrix to compute DOF_rot from tri_J at apex 0
    J0_to_J1 = np.array([[-1.,  1.], [-1.,  0.]])
    J0_to_J2 = np.array([[ 0., -1.], [ 1., -1.]])

    def get_function_values(self, alpha, ecc, dofs):
        """
        Parameters
        ----------
        alpha : is a (N x 3 x 1) array (array of column-matrices) of
        barycentric coordinates,
        ecc : is a (N x 3 x 1) array (array of column-matrices) of triangle
        eccentricities,
        dofs : is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
        degrees of freedom.

        Returns
        -------
        Returns the N-array of interpolated function values.
        """
        subtri = np.argmin(alpha, axis=1)[:, 0]
        ksi = _roll_vectorized(alpha, -subtri, axis=0)
        E = _roll_vectorized(ecc, -subtri, axis=0)
        x = ksi[:, 0, 0]
        y = ksi[:, 1, 0]
        z = ksi[:, 2, 0]
        x_sq = x*x
        y_sq = y*y
        z_sq = z*z
        V = _to_matrix_vectorized([
            [x_sq*x], [y_sq*y], [z_sq*z], [x_sq*z], [x_sq*y], [y_sq*x],
            [y_sq*z], [z_sq*y], [z_sq*x], [x*y*z]])
        prod = _prod_vectorized(self.M, V)
        prod += _scalar_vectorized(E[:, 0, 0],
                                   _prod_vectorized(self.M0, V))
        prod += _scalar_vectorized(E[:, 1, 0],
                                   _prod_vectorized(self.M1, V))
        prod += _scalar_vectorized(E[:, 2, 0],
                                   _prod_vectorized(self.M2, V))
        s = _roll_vectorized(prod, 3*subtri, axis=0)
        return _prod_vectorized(dofs, s)[:, 0, 0]

    def get_function_derivatives(self, alpha, J, ecc, dofs):
        """
        Parameters
        ----------
        *alpha* is a (N x 3 x 1) array (array of column-matrices of
        barycentric coordinates)
        *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
        triangle first apex)
        *ecc* is a (N x 3 x 1) array (array of column-matrices of triangle
        eccentricities)
        *dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
        degrees of freedom.

        Returns
        -------
        Returns the values of interpolated function derivatives [dz/dx, dz/dy]
        in global coordinates at locations alpha, as a column-matrices of
        shape (N x 2 x 1).
        """
        subtri = np.argmin(alpha, axis=1)[:, 0]
        ksi = _roll_vectorized(alpha, -subtri, axis=0)
        E = _roll_vectorized(ecc, -subtri, axis=0)
        x = ksi[:, 0, 0]
        y = ksi[:, 1, 0]
        z = ksi[:, 2, 0]
        x_sq = x*x
        y_sq = y*y
        z_sq = z*z
        dV = _to_matrix_vectorized([
            [    -3.*x_sq,     -3.*x_sq],
            [     3.*y_sq,           0.],
            [          0.,      3.*z_sq],
            [     -2.*x*z, -2.*x*z+x_sq],
            [-2.*x*y+x_sq,      -2.*x*y],
            [ 2.*x*y-y_sq,        -y_sq],
            [      2.*y*z,         y_sq],
            [        z_sq,       2.*y*z],
            [       -z_sq,  2.*x*z-z_sq],
            [     x*z-y*z,      x*y-y*z]])
        # Puts back dV in first apex basis
        dV = _prod_vectorized(dV, _extract_submatrices(
            self.rotate_dV, subtri, block_size=2, axis=0))

        prod = _prod_vectorized(self.M, dV)
        prod += _scalar_vectorized(E[:, 0, 0],
                                   _prod_vectorized(self.M0, dV))
        prod += _scalar_vectorized(E[:, 1, 0],
                                   _prod_vectorized(self.M1, dV))
        prod += _scalar_vectorized(E[:, 2, 0],
                                   _prod_vectorized(self.M2, dV))
        dsdksi = _roll_vectorized(prod, 3*subtri, axis=0)
        dfdksi = _prod_vectorized(dofs, dsdksi)
        # In global coordinates:
        # Here we try to deal with the simpliest colinear cases, returning a
        # null matrix.
        J_inv = _safe_inv22_vectorized(J)
        dfdx = _prod_vectorized(J_inv, _transpose_vectorized(dfdksi))
        return dfdx

    def get_function_hessians(self, alpha, J, ecc, dofs):
        """
        Parameters
        ----------
        *alpha* is a (N x 3 x 1) array (array of column-matrices) of
        barycentric coordinates
        *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
        triangle first apex)
        *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
        eccentricities
        *dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
        degrees of freedom.

        Returns
        -------
        Returns the values of interpolated function 2nd-derivatives
        [d2z/dx2, d2z/dy2, d2z/dxdy] in global coordinates at locations alpha,
        as a column-matrices of shape (N x 3 x 1).
        """
        d2sdksi2 = self.get_d2Sidksij2(alpha, ecc)
        d2fdksi2 = _prod_vectorized(dofs, d2sdksi2)
        H_rot = self.get_Hrot_from_J(J)
        d2fdx2 = _prod_vectorized(d2fdksi2, H_rot)
        return _transpose_vectorized(d2fdx2)

    def get_d2Sidksij2(self, alpha, ecc):
        """
        Parameters
        ----------
        *alpha* is a (N x 3 x 1) array (array of column-matrices) of
        barycentric coordinates
        *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
        eccentricities

        Returns
        -------
        Returns the arrays d2sdksi2 (N x 3 x 1) Hessian of shape functions
        expressed in covariante coordinates in first apex basis.
        """
        subtri = np.argmin(alpha, axis=1)[:, 0]
        ksi = _roll_vectorized(alpha, -subtri, axis=0)
        E = _roll_vectorized(ecc, -subtri, axis=0)
        x = ksi[:, 0, 0]
        y = ksi[:, 1, 0]
        z = ksi[:, 2, 0]
        d2V = _to_matrix_vectorized([
            [     6.*x,      6.*x,      6.*x],
            [     6.*y,        0.,        0.],
            [       0.,      6.*z,        0.],
            [     2.*z, 2.*z-4.*x, 2.*z-2.*x],
            [2.*y-4.*x,      2.*y, 2.*y-2.*x],
            [2.*x-4.*y,        0.,     -2.*y],
            [     2.*z,        0.,      2.*y],
            [       0.,      2.*y,      2.*z],
            [       0., 2.*x-4.*z,     -2.*z],
            [    -2.*z,     -2.*y,     x-y-z]])
        # Puts back d2V in first apex basis
        d2V = _prod_vectorized(d2V, _extract_submatrices(
            self.rotate_d2V, subtri, block_size=3, axis=0))
        prod = _prod_vectorized(self.M, d2V)
        prod += _scalar_vectorized(E[:, 0, 0],
                                   _prod_vectorized(self.M0, d2V))
        prod += _scalar_vectorized(E[:, 1, 0],
                                   _prod_vectorized(self.M1, d2V))
        prod += _scalar_vectorized(E[:, 2, 0],
                                   _prod_vectorized(self.M2, d2V))
        d2sdksi2 = _roll_vectorized(prod, 3*subtri, axis=0)
        return d2sdksi2

    def get_bending_matrices(self, J, ecc):
        """
        Parameters
        ----------
        *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
        triangle first apex)
        *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
        eccentricities

        Returns
        -------
        Returns the element K matrices for bending energy expressed in
        GLOBAL nodal coordinates.
        K_ij = integral [ (d2zi/dx2 + d2zi/dy2) * (d2zj/dx2 + d2zj/dy2) dA]
        tri_J is needed to rotate dofs from local basis to global basis
        """
        n = np.size(ecc, 0)

        # 1) matrix to rotate dofs in global coordinates
        J1 = _prod_vectorized(self.J0_to_J1, J)
        J2 = _prod_vectorized(self.J0_to_J2, J)
        DOF_rot = np.zeros([n, 9, 9], dtype=np.float64)
        DOF_rot[:, 0, 0] = 1
        DOF_rot[:, 3, 3] = 1
        DOF_rot[:, 6, 6] = 1
        DOF_rot[:, 1:3, 1:3] = J
        DOF_rot[:, 4:6, 4:6] = J1
        DOF_rot[:, 7:9, 7:9] = J2

        # 2) matrix to rotate Hessian in global coordinates.
        H_rot, area = self.get_Hrot_from_J(J, return_area=True)

        # 3) Computes stiffness matrix
        # Gauss quadrature.
        K = np.zeros([n, 9, 9], dtype=np.float64)
        weights = self.gauss_w
        pts = self.gauss_pts
        for igauss in range(self.n_gauss):
            alpha = np.tile(pts[igauss, :], n).reshape(n, 3)
            alpha = np.expand_dims(alpha, 3)
            weight = weights[igauss]
            d2Skdksi2 = self.get_d2Sidksij2(alpha, ecc)
            d2Skdx2 = _prod_vectorized(d2Skdksi2, H_rot)
            K += weight * _prod_vectorized(_prod_vectorized(d2Skdx2, self.E),
                                           _transpose_vectorized(d2Skdx2))

        # 4) With nodal (not elem) dofs
        K = _prod_vectorized(_prod_vectorized(_transpose_vectorized(DOF_rot),
                                              K), DOF_rot)

        # 5) Need the area to compute total element energy
        return _scalar_vectorized(area, K)

    def get_Hrot_from_J(self, J, return_area=False):
        """
        Parameters
        ----------
        *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
        triangle first apex)

        Returns
        -------
        Returns H_rot used to rotate Hessian from local basis of first apex,
        to global coordinates.
        if *return_area* is True, returns also the triangle area (0.5*det(J))
        """
        # Here we try to deal with the simpliest colinear cases ; a null
        # energy and area is imposed.
        J_inv = _safe_inv22_vectorized(J)
        Ji00 = J_inv[:, 0, 0]
        Ji11 = J_inv[:, 1, 1]
        Ji10 = J_inv[:, 1, 0]
        Ji01 = J_inv[:, 0, 1]
        H_rot = _to_matrix_vectorized([
            [Ji00*Ji00, Ji10*Ji10, Ji00*Ji10],
            [Ji01*Ji01, Ji11*Ji11, Ji01*Ji11],
            [2*Ji00*Ji01, 2*Ji11*Ji10, Ji00*Ji11+Ji10*Ji01]])
        if not return_area:
            return H_rot
        else:
            area = 0.5 * (J[:, 0, 0]*J[:, 1, 1] - J[:, 0, 1]*J[:, 1, 0])
            return H_rot, area

    def get_Kff_and_Ff(self, J, ecc, triangles, Uc):
        """
        Builds K and F for the following elliptic formulation:
        minimization of curvature energy with value of function at node
        imposed and derivatives 'free'.
        Builds the global Kff matrix in cco format.
        Builds the full Ff vec Ff = - Kfc x Uc

        Parameters
        ----------
        *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
        triangle first apex)
        *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
        eccentricities
        *triangles* is a (N x 3) array of nodes indexes.
        *Uc* is (N x 3) array of imposed displacements at nodes

        Returns
        -------
        (Kff_rows, Kff_cols, Kff_vals) Kff matrix in coo format - Duplicate
        (row, col) entries must be summed.
        Ff: force vector - dim npts * 3
        """
        ntri = np.size(ecc, 0)
        vec_range = np.arange(ntri, dtype=np.int32)
        c_indices = -np.ones(ntri, dtype=np.int32)  # for unused dofs, -1
        f_dof = [1, 2, 4, 5, 7, 8]
        c_dof = [0, 3, 6]

        # vals, rows and cols indices in global dof numbering
        f_dof_indices = _to_matrix_vectorized([[
            c_indices, triangles[:, 0]*2, triangles[:, 0]*2+1,
            c_indices, triangles[:, 1]*2, triangles[:, 1]*2+1,
            c_indices, triangles[:, 2]*2, triangles[:, 2]*2+1]])

        expand_indices = np.ones([ntri, 9, 1], dtype=np.int32)
        f_row_indices = _prod_vectorized(_transpose_vectorized(f_dof_indices),
                                         _transpose_vectorized(expand_indices))
        f_col_indices = _prod_vectorized(expand_indices, f_dof_indices)
        K_elem = self.get_bending_matrices(J, ecc)

        # Extracting sub-matrices
        # Explanation & notations:
        # * Subscript f denotes 'free' degrees of freedom (i.e. dz/dx, dz/dx)
        # * Subscript c denotes 'condensated' (imposed) degrees of freedom
        #    (i.e. z at all nodes)
        # * F = [Ff, Fc] is the force vector
        # * U = [Uf, Uc] is the imposed dof vector
        #        [ Kff Kfc ]
        # * K =  [         ]  is the laplacian stiffness matrix
        #        [ Kcf Kff ]
        # * As F = K x U one gets straightforwardly: Ff = - Kfc x Uc

        # Computing Kff stiffness matrix in sparse coo format
        Kff_vals = np.ravel(K_elem[np.ix_(vec_range, f_dof, f_dof)])
        Kff_rows = np.ravel(f_row_indices[np.ix_(vec_range, f_dof, f_dof)])
        Kff_cols = np.ravel(f_col_indices[np.ix_(vec_range, f_dof, f_dof)])

        # Computing Ff force vector in sparse coo format
        Kfc_elem = K_elem[np.ix_(vec_range, f_dof, c_dof)]
        Uc_elem = np.expand_dims(Uc, axis=2)
        Ff_elem = - _prod_vectorized(Kfc_elem, Uc_elem)[:, :, 0]
        Ff_indices = f_dof_indices[np.ix_(vec_range, [0], f_dof)][:, 0, :]

        # Extracting Ff force vector in dense format
        # We have to sum duplicate indices -  using bincount
        Ff = np.bincount(np.ravel(Ff_indices), weights=np.ravel(Ff_elem))
        return Kff_rows, Kff_cols, Kff_vals, Ff


# :class:_DOF_estimator, _DOF_estimator_user, _DOF_estimator_geom,
# _DOF_estimator_min_E
# Private classes used to compute the degree of freedom of each triangular
# element for the TriCubicInterpolator.
class _DOF_estimator():
    """
    Abstract base class for classes used to perform estimation of a function
    first derivatives, and deduce the dofs for a CubicTriInterpolator using a
    reduced HCT element formulation.
    Derived classes implement compute_df(self,**kwargs), returning
    np.vstack([dfx,dfy]).T where : dfx, dfy are the estimation of the 2
    gradient coordinates.
    """
    def __init__(self, interpolator, **kwargs):
        if not isinstance(interpolator, CubicTriInterpolator):
            raise ValueError("Expected a CubicTriInterpolator object")
        self._pts = interpolator._pts
        self._tris_pts = interpolator._tris_pts
        self.z = interpolator._z
        self._triangles = interpolator._triangles
        (self._unit_x, self._unit_y) = (interpolator._unit_x,
                                        interpolator._unit_y)
        self.dz = self.compute_dz(**kwargs)
        self.compute_dof_from_df()

    def compute_dz(self, **kwargs):
        raise NotImplementedError

    def compute_dof_from_df(self):
        """
        Computes reduced-HCT elements degrees of freedom, knowing the
        gradient.
        """
        J = CubicTriInterpolator._get_jacobian(self._tris_pts)
        tri_z = self.z[self._triangles]
        tri_dz = self.dz[self._triangles]
        tri_dof = self.get_dof_vec(tri_z, tri_dz, J)
        return tri_dof

    @staticmethod
    def get_dof_vec(tri_z, tri_dz, J):
        """
        Computes the dof vector of a triangle, knowing the value of f, df and
        of the local Jacobian at each node.

        *tri_z*: array of shape (3,) of f nodal values
        *tri_dz*: array of shape (3,2) of df/dx, df/dy nodal values
        *J*: Jacobian matrix in local basis of apex 0

        Returns dof array of shape (9,) so that for each apex iapex:
            dof[iapex*3+0] = f(Ai)
            dof[iapex*3+1] = df(Ai).(AiAi+)
            dof[iapex*3+2] = df(Ai).(AiAi-)]
        """
        npt = tri_z.shape[0]
        dof = np.zeros([npt, 9], dtype=np.float64)
        J1 = _prod_vectorized(_ReducedHCT_Element.J0_to_J1, J)
        J2 = _prod_vectorized(_ReducedHCT_Element.J0_to_J2, J)

        col0 = _prod_vectorized(J, np.expand_dims(tri_dz[:, 0, :], axis=3))
        col1 = _prod_vectorized(J1, np.expand_dims(tri_dz[:, 1, :], axis=3))
        col2 = _prod_vectorized(J2, np.expand_dims(tri_dz[:, 2, :], axis=3))

        dfdksi = _to_matrix_vectorized([
            [col0[:, 0, 0], col1[:, 0, 0], col2[:, 0, 0]],
            [col0[:, 1, 0], col1[:, 1, 0], col2[:, 1, 0]]])
        dof[:, 0:7:3] = tri_z
        dof[:, 1:8:3] = dfdksi[:, 0]
        dof[:, 2:9:3] = dfdksi[:, 1]
        return dof


class _DOF_estimator_user(_DOF_estimator):
    """ dz is imposed by user / Accounts for scaling if any """
    def compute_dz(self, dz):
        (dzdx, dzdy) = dz
        dzdx = dzdx * self._unit_x
        dzdy = dzdy * self._unit_y
        return np.vstack([dzdx, dzdy]).T


class _DOF_estimator_geom(_DOF_estimator):
    """ Fast 'geometric' approximation, recommended for large arrays. """
    def compute_dz(self):
        """
        self.df is computed as weighted average of _triangles sharing a common
        node. On each triangle itri f is first assumed linear (= ~f), which
        allows to compute d~f[itri]
        Then the following approximation of df nodal values is then proposed:
            f[ipt] = SUM ( w[itri] x d~f[itri] , for itri sharing apex ipt)
        The weighted coeff. w[itri] are proportional to the angle of the
        triangle itri at apex ipt
        """
        el_geom_w = self.compute_geom_weights()
        el_geom_grad = self.compute_geom_grads()

        # Sum of weights coeffs
        w_node_sum = np.bincount(np.ravel(self._triangles),
                                 weights=np.ravel(el_geom_w))

        # Sum of weighted df = (dfx, dfy)
        dfx_el_w = np.empty_like(el_geom_w)
        dfy_el_w = np.empty_like(el_geom_w)
        for iapex in range(3):
            dfx_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 0]
            dfy_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 1]
        dfx_node_sum = np.bincount(np.ravel(self._triangles),
                                   weights=np.ravel(dfx_el_w))
        dfy_node_sum = np.bincount(np.ravel(self._triangles),
                                   weights=np.ravel(dfy_el_w))

        # Estimation of df
        dfx_estim = dfx_node_sum/w_node_sum
        dfy_estim = dfy_node_sum/w_node_sum
        return np.vstack([dfx_estim, dfy_estim]).T

    def compute_geom_weights(self):
        """
        Builds the (nelems x 3) weights coeffs of _triangles angles,
        renormalized so that np.sum(weights, axis=1) == np.ones(nelems)
        """
        weights = np.zeros([np.size(self._triangles, 0), 3])
        tris_pts = self._tris_pts
        for ipt in range(3):
            p0 = tris_pts[:, (ipt) % 3, :]
            p1 = tris_pts[:, (ipt+1) % 3, :]
            p2 = tris_pts[:, (ipt-1) % 3, :]
            alpha1 = np.arctan2(p1[:, 1]-p0[:, 1], p1[:, 0]-p0[:, 0])
            alpha2 = np.arctan2(p2[:, 1]-p0[:, 1], p2[:, 0]-p0[:, 0])
            # In the below formula we could take modulo 2. but
            # modulo 1. is safer regarding round-off errors (flat triangles).
            angle = np.abs(np.mod((alpha2-alpha1) / np.pi, 1.))
            # Weight proportional to angle up np.pi/2 ; null weight for
            # degenerated cases 0. and np.pi (Note that `angle` is normalized
            # by np.pi)
            weights[:, ipt] = 0.5 - np.abs(angle-0.5)
        return weights

    def compute_geom_grads(self):
        """
        Compute the (global) gradient component of f assumed linear (~f).
        returns array df of shape (nelems,2)
        df[ielem].dM[ielem] = dz[ielem] i.e. df = dz x dM = dM.T^-1 x dz
        """
        tris_pts = self._tris_pts
        tris_f = self.z[self._triangles]

        dM1 = tris_pts[:, 1, :] - tris_pts[:, 0, :]
        dM2 = tris_pts[:, 2, :] - tris_pts[:, 0, :]
        dM = np.dstack([dM1, dM2])
        # Here we try to deal with the simpliest colinear cases: a null
        # gradient is assumed in this case.
        dM_inv = _safe_inv22_vectorized(dM)

        dZ1 = tris_f[:, 1] - tris_f[:, 0]
        dZ2 = tris_f[:, 2] - tris_f[:, 0]
        dZ = np.vstack([dZ1, dZ2]).T
        df = np.empty_like(dZ)

        # With np.einsum :  could be ej,eji -> ej
        df[:, 0] = dZ[:, 0]*dM_inv[:, 0, 0] + dZ[:, 1]*dM_inv[:, 1, 0]
        df[:, 1] = dZ[:, 0]*dM_inv[:, 0, 1] + dZ[:, 1]*dM_inv[:, 1, 1]
        return df


class _DOF_estimator_min_E(_DOF_estimator_geom):
    """
    The 'smoothest' approximation, df is computed through global minimization
    of the bending energy:
      E(f) = integral[(d2z/dx2 + d2z/dy2 + 2 d2z/dxdy)**2 dA]
    """
    def __init__(self, Interpolator):
        self._eccs = Interpolator._eccs
        _DOF_estimator_geom.__init__(self, Interpolator)

    def compute_dz(self):
        """
        Elliptic solver for bending energy minimization.
        Uses a dedicated 'toy' sparse Jacobi PCG solver.
        """
        # Initial guess for iterative PCG solver.
        dz_init = _DOF_estimator_geom.compute_dz(self)
        Uf0 = np.ravel(dz_init)

        reference_element = _ReducedHCT_Element()
        J = CubicTriInterpolator._get_jacobian(self._tris_pts)
        eccs = self._eccs
        triangles = self._triangles
        Uc = self.z[self._triangles]

        # Building stiffness matrix and force vector in coo format
        Kff_rows, Kff_cols, Kff_vals, Ff = reference_element.get_Kff_and_Ff(
            J, eccs, triangles, Uc)

        # Building sparse matrix and solving minimization problem
        # We could use scipy.sparse direct solver ; however to avoid this
        # external dependency an implementation of a simple PCG solver with
        # a simplendiagonal Jocabi preconditioner is implemented.
        tol = 1.e-10
        n_dof = Ff.shape[0]
        Kff_coo = _Sparse_Matrix_coo(Kff_vals, Kff_rows, Kff_cols,
                                     shape=(n_dof, n_dof))
        Kff_coo.compress_csc()
        Uf, err = _cg(A=Kff_coo, b=Ff, x0=Uf0, tol=tol)
        # If the PCG did not converge, we return the best guess between Uf0
        # and Uf.
        err0 = np.linalg.norm(Kff_coo.dot(Uf0) - Ff)
        if err0 < err:
            # Maybe a good occasion to raise a warning here ?
            warnings.warn("In TriCubicInterpolator initialization, PCG sparse"
                          " solver did not converge after 1000 iterations. "
                          "`geom` approximation is used instead of `min_E`")
            Uf = Uf0

        # Building dz from Uf
        dz = np.empty([self._pts.shape[0], 2], dtype=np.float64)
        dz[:, 0] = Uf[::2]
        dz[:, 1] = Uf[1::2]
        return dz


# The following private :class:_Sparse_Matrix_coo and :func:_cg provide
# a PCG sparse solver for (symmetric) elliptic problems.
class _Sparse_Matrix_coo:
    def __init__(self, vals, rows, cols, shape):
        """
        Creates a sparse matrix in coo format
        *vals*: arrays of values of non-null entries of the matrix
        *rows*: int arrays of rows of non-null entries of the matrix
        *cols*: int arrays of cols of non-null entries of the matrix
        *shape*: 2-tuple (n,m) of matrix shape

        """
        self.n, self.m = shape
        self.vals = np.asarray(vals, dtype=np.float64)
        self.rows = np.asarray(rows, dtype=np.int32)
        self.cols = np.asarray(cols, dtype=np.int32)

    def dot(self, V):
        """
        Dot product of self by a vector *V* in sparse-dense to dense format
        *V* dense vector of shape (self.m,)
        """
        assert V.shape == (self.m,)
        # For a more generic implementation we could use below kw argument
        # minlength=self.m of bincount ; however:
        # - it is new in numpy 1.6
        # - it is unecessary when each row have at least 1 entry in global
        #   matrix, which is the case here.
        return np.bincount(self.rows, weights=self.vals*V[self.cols])

    def compress_csc(self):
        """
        Compress rows, cols, vals / summing duplicates. Sort for csc format.
        """
        _, unique, indices = np.unique(
            self.rows + self.n*self.cols,
            return_index=True, return_inverse=True)
        self.rows = self.rows[unique]
        self.cols = self.cols[unique]
        self.vals = np.bincount(indices, weights=self.vals)

    def compress_csr(self):
        """
        Compress rows, cols, vals / summing duplicates. Sort for csr format.
        """
        _, unique, indices = np.unique(
            self.m*self.rows + self.cols,
            return_index=True, return_inverse=True)
        self.rows = self.rows[unique]
        self.cols = self.cols[unique]
        self.vals = np.bincount(indices, weights=self.vals)

    def to_dense(self):
        """
        Returns a dense matrix representing self.
        Mainly for debugging purposes.
        """
        ret = np.zeros([self.n, self.m], dtype=np.float64)
        nvals = self.vals.size
        for i in range(nvals):
            ret[self.rows[i], self.cols[i]] += self.vals[i]
        return ret

    def __str__(self):
        return self.to_dense().__str__()

    @property
    def diag(self):
        """
        Returns the (dense) vector of the diagonal elements.
        """
        in_diag = (self.rows == self.cols)
        diag = np.zeros(min(self.n, self.n), dtype=np.float64)  # default 0.
        diag[self.rows[in_diag]] = self.vals[in_diag]
        return diag


def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000):
    """
    Use Preconditioned Conjugate Gradient iteration to solve A x = b
    A simple Jacobi (diagonal) preconditionner is used.

    Parameters
    ----------
    A: _Sparse_Matrix_coo
        *A* must have been compressed before by compress_csc or
        compress_csr method.

    b: array
        Right hand side of the linear system.

    Returns
    ----------
    x: array.
        The converged solution.
    err: float
        The absolute error np.linalg.norm(A.dot(x) - b)

    Other parameters
    ----------
    x0: array.
        Starting guess for the solution.
    tol: float.
        Tolerance to achieve. The algorithm terminates when the relative
        residual is below tol.
    maxiter: integer.
        Maximum number of iterations. Iteration will stop
        after maxiter steps even if the specified tolerance has not
        been achieved.
    """
    n = b.size
    assert A.n == n
    assert A.m == n
    b_norm = np.linalg.norm(b)

    # Jacobi pre-conditioner
    kvec = A.diag
    # For diag elem < 1e-6 we keep 1e-6.
    kvec = np.where(kvec > 1.e-6, kvec, 1.e-6)

    # Initial guess
    if x0 is None:
        x = np.zeros(n)
    else:
        x = x0

    r = b - A.dot(x)
    w = r/kvec

    p = np.zeros(n)
    beta = 0.0
    rho = np.dot(r, w)
    k = 0

    # Following C. T. Kelley
    while (np.sqrt(abs(rho)) > tol*b_norm) and (k < maxiter):
        p = w+beta*p
        z = A.dot(p)
        alpha = rho/np.dot(p, z)
        r = r - alpha*z
        w = r/kvec
        rhoold = rho
        rho = np.dot(r, w)
        x = x + alpha*p
        beta = rho/rhoold
        #err = np.linalg.norm(A.dot(x) - b) # absolute accuracy - not used
        k += 1
    err = np.linalg.norm(A.dot(x) - b)
    return x, err


# The following private functions:
#     :func:`_inv22_vectorized`
#     :func:`_safe_inv22_vectorized`
#     :func:`_pseudo_inv22sym_vectorized`
#     :func:`_prod_vectorized`
#     :func:`_scalar_vectorized`
#     :func:`_transpose_vectorized`
#     :func:`_roll_vectorized`
#     :func:`_to_matrix_vectorized`
#     :func:`_extract_submatrices`
# provide fast numpy implementation of some standard operations on arrays of
# matrices - stored as (:, n_rows, n_cols)-shaped np.arrays.
def _inv22_vectorized(M):
    """
    Inversion of arrays of (2,2) matrices.
    """
    assert (M.ndim == 3)
    assert (M.shape[-2:] == (2, 2))
    M_inv = np.empty_like(M)
    delta_inv = np.reciprocal(M[:, 0, 0]*M[:, 1, 1] - M[:, 0, 1]*M[:, 1, 0])
    M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv
    M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv
    M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv
    M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv
    return M_inv


# Development note: Dealing with pathologic 'flat' triangles in the
# CubicTriInterpolator code and impact on (2,2)-matrix inversion functions
# :func:`_safe_inv22_vectorized` and :func:`_pseudo_inv22sym_vectorized`.
#
# Goals:
# 1) The CubicTriInterpolator should be able to handle flat or almost flat
#    triangles without raising an error,
# 2) These degenerated triangles should have no impact on the automatic dof
#    calculation (associated with null weight for the _DOF_estimator_geom and
#    with null energy for the _DOF_estimator_min_E),
# 3) Linear patch test should be passed exactly on degenerated meshes,
# 4) Interpolation (with :meth:`_interpolate_single_key` or
#    :meth:`_interpolate_multi_key`) shall be correctly handled even *inside*
#    the pathologic triangles, to interact correctly with a TriRefiner class.
#
# Difficulties:
# Flat triangles have rank-deficient *J* (so-called jacobian matrix) and
# *metric* (the metric tensor = J x J.T). Computation of the local
# tangent plane is also problematic.
#
# Implementation:
# Most of the time, when computing the inverse of a rank-deficient matrix it
# is safe to simply return the null matrix (which is the implementation in
# :func:`_safe_inv22_vectorized`). This is because of point 2), itself
# enforced by:
#    - null area hence null energy in :class:`_DOF_estimator_min_E`
#    - angles close or equal to 0 or np.pi hence null weight in
#      :class:`_DOF_estimator_geom`.
#      Note that the function angle -> weight is continuous and maximum for an
#      angle np.pi/2 (refer to :meth:`compute_geom_weights`)
# The exception is the computation of barycentric coordinates, which is done
# by inversion of the *metric* matrix. In this case, we need to compute a set
# of valid coordinates (1 among numerous possibilities), to ensure point 4).
# We benefit here from the symmetry of metric = J x J.T, which makes it easier
# to compute a pseudo-inverse in :func:`_pseudo_inv22sym_vectorized`
def _safe_inv22_vectorized(M):
    """
    Inversion of arrays of (2,2) matrices, returns 0 for rank-deficient
    matrices.

    *M* : array of (2,2) matrices to inverse, shape (n,2,2)
    """
    assert M.ndim == 3
    assert M.shape[-2:] == (2, 2)
    M_inv = np.empty_like(M)
    prod1 = M[:, 0, 0]*M[:, 1, 1]
    delta = prod1 - M[:, 0, 1]*M[:, 1, 0]

    # We set delta_inv to 0. in case of a rank deficient matrix ; a
    # rank-deficient input matrix *M* will lead to a null matrix in output
    rank2 = (np.abs(delta) > 1e-8*np.abs(prod1))
    if np.all(rank2):
        # Normal 'optimized' flow.
        delta_inv = 1./delta
    else:
        # 'Pathologic' flow.
        delta_inv = np.zeros(M.shape[0])
        delta_inv[rank2] = 1./delta[rank2]

    M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv
    M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv
    M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv
    M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv
    return M_inv


def _pseudo_inv22sym_vectorized(M):
    """
    Inversion of arrays of (2,2) SYMMETRIC matrices ; returns the
    (Moore-Penrose) pseudo-inverse for rank-deficient matrices.

    In case M is of rank 1, we have M = trace(M) x P where P is the orthogonal
    projection on Im(M), and we return trace(M)^-1 x P == M / trace(M)**2
    In case M is of rank 0, we return the null matrix.

    *M* : array of (2,2) matrices to inverse, shape (n,2,2)
    """
    assert M.ndim == 3
    assert M.shape[-2:] == (2, 2)
    M_inv = np.empty_like(M)
    prod1 = M[:, 0, 0]*M[:, 1, 1]
    delta = prod1 - M[:, 0, 1]*M[:, 1, 0]
    rank2 = (np.abs(delta) > 1e-8*np.abs(prod1))

    if np.all(rank2):
        # Normal 'optimized' flow.
        M_inv[:, 0, 0] = M[:, 1, 1] / delta
        M_inv[:, 0, 1] = -M[:, 0, 1] / delta
        M_inv[:, 1, 0] = -M[:, 1, 0] / delta
        M_inv[:, 1, 1] = M[:, 0, 0] / delta
    else:
        # 'Pathologic' flow.
        # Here we have to deal with 2 sub-cases
        # 1) First sub-case: matrices of rank 2:
        delta = delta[rank2]
        M_inv[rank2, 0, 0] = M[rank2, 1, 1] / delta
        M_inv[rank2, 0, 1] = -M[rank2, 0, 1] / delta
        M_inv[rank2, 1, 0] = -M[rank2, 1, 0] / delta
        M_inv[rank2, 1, 1] = M[rank2, 0, 0] / delta
        # 2) Second sub-case: rank-deficient matrices of rank 0 and 1:
        rank01 = ~rank2
        tr = M[rank01, 0, 0] + M[rank01, 1, 1]
        tr_zeros = (np.abs(tr) < 1.e-8)
        sq_tr_inv = (1.-tr_zeros) / (tr**2+tr_zeros)
        #sq_tr_inv = 1. / tr**2
        M_inv[rank01, 0, 0] = M[rank01, 0, 0] * sq_tr_inv
        M_inv[rank01, 0, 1] = M[rank01, 0, 1] * sq_tr_inv
        M_inv[rank01, 1, 0] = M[rank01, 1, 0] * sq_tr_inv
        M_inv[rank01, 1, 1] = M[rank01, 1, 1] * sq_tr_inv

    return M_inv


def _prod_vectorized(M1, M2):
    """
    Matrix product between arrays of matrices, or a matrix and an array of
    matrices (*M1* and *M2*)
    """
    sh1 = M1.shape
    sh2 = M2.shape
    assert len(sh1) >= 2
    assert len(sh2) >= 2
    assert sh1[-1] == sh2[-2]

    ndim1 = len(sh1)
    t1_index = range(ndim1-2) + [ndim1-1, ndim1-2]
    return np.sum(np.transpose(M1, t1_index)[..., np.newaxis] *
                  M2[..., np.newaxis, :], -3)


def _scalar_vectorized(scalar, M):
    """
    Scalar product between scalars and matrices.
    """
    return scalar[:, np.newaxis, np.newaxis]*M


def _transpose_vectorized(M):
    """
    Transposition of an array of matrices *M*.
    """
    ndim = M.ndim
    assert ndim == 3
    return np.transpose(M, [0, ndim-1, ndim-2])


def _roll_vectorized(M, roll_indices, axis):
    """
    Rolls an array of matrices along an axis according to an array of indices
    *roll_indices*
    *axis* can be either 0 (rolls rows) or 1 (rolls columns).
    """
    assert axis in [0, 1]
    ndim = M.ndim
    assert ndim == 3
    ndim_roll = roll_indices.ndim
    assert ndim_roll == 1
    sh = M.shape
    r, c = sh[-2:]
    assert sh[0] == roll_indices.shape[0]
    vec_indices = np.arange(sh[0], dtype=np.int32)

    # Builds the rolled matrix
    M_roll = np.empty_like(M)
    if axis == 0:
        for ir in range(r):
            for ic in range(c):
                M_roll[:, ir, ic] = M[vec_indices, (-roll_indices+ir) % r, ic]
    elif axis == 1:
        for ir in range(r):
            for ic in range(c):
                M_roll[:, ir, ic] = M[vec_indices, ir, (-roll_indices+ic) % c]
    return M_roll


def _to_matrix_vectorized(M):
    """
    Builds an array of matrices from individuals np.arrays of identical
    shapes.
    *M*: ncols-list of nrows-lists of shape sh.

    Returns M_res np.array of shape (sh, nrow, ncols) so that:
        M_res[...,i,j] = M[i][j]
    """
    assert isinstance(M, (tuple, list))
    assert all([isinstance(item, (tuple, list)) for item in M])
    c_vec = np.asarray([len(item) for item in M])
    assert np.all(c_vec-c_vec[0] == 0)
    r = len(M)
    c = c_vec[0]
    M00 = np.asarray(M[0][0])
    dt = M00.dtype
    sh = [M00.shape[0], r, c]
    M_ret = np.empty(sh, dtype=dt)
    for irow in range(r):
        for icol in range(c):
            M_ret[:, irow, icol] = np.asarray(M[irow][icol])
    return M_ret


def _extract_submatrices(M, block_indices, block_size, axis):
    """
    Extracts selected blocks of a matrices *M* depending on parameters
    *block_indices* and *block_size*.

    Returns the array of extracted matrices *Mres* so that:
        M_res[...,ir,:] = M[(block_indices*block_size+ir), :]
    """
    assert block_indices.ndim == 1
    assert axis in [0, 1]

    r, c = M.shape
    if axis == 0:
        sh = [block_indices.shape[0], block_size, c]
    elif axis == 1:
        sh = [block_indices.shape[0], r, block_size]

    dt = M.dtype
    M_res = np.empty(sh, dtype=dt)
    if axis == 0:
        for ir in range(block_size):
            M_res[:, ir, :] = M[(block_indices*block_size+ir), :]
    elif axis == 1:
        for ic in range(block_size):
            M_res[:, :, ic] = M[:, (block_indices*block_size+ic)]

    return M_res