/usr/share/pyshared/matplotlib/tri/triinterpolate.py is in python-matplotlib 1.3.1-1ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 | """
Interpolation inside triangular grids.
"""
from __future__ import print_function
from matplotlib.tri import Triangulation
from matplotlib.tri.trifinder import TriFinder
from matplotlib.tri.tritools import TriAnalyzer
import numpy as np
import warnings
__all__ = ('TriInterpolator', 'LinearTriInterpolator', 'CubicTriInterpolator')
class TriInterpolator(object):
"""
Abstract base class for classes used to perform interpolation on
triangular grids.
Derived classes implement the following methods:
- ``__call__(x, y)`` ,
where x, y are array_like point coordinates of the same shape, and
that returns a masked array of the same shape containing the
interpolated z-values.
- ``gradient(x, y)`` ,
where x, y are array_like point coordinates of the same
shape, and that returns a list of 2 masked arrays of the same shape
containing the 2 derivatives of the interpolator (derivatives of
interpolated z values with respect to x and y).
"""
def __init__(self, triangulation, z, trifinder=None):
if not isinstance(triangulation, Triangulation):
raise ValueError("Expected a Triangulation object")
self._triangulation = triangulation
self._z = np.asarray(z)
if self._z.shape != self._triangulation.x.shape:
raise ValueError("z array must have same length as triangulation x"
" and y arrays")
if trifinder is not None and not isinstance(trifinder, TriFinder):
raise ValueError("Expected a TriFinder object")
self._trifinder = trifinder or self._triangulation.get_trifinder()
# Default scaling factors : 1.0 (= no scaling)
# Scaling may be used for interpolations for which the order of
# magnitude of x, y has an impact on the interpolant definition.
# Please refer to :meth:`_interpolate_multikeys` for details.
self._unit_x = 1.0
self._unit_y = 1.0
# Default triangle renumbering: None (= no renumbering)
# Renumbering may be used to avoid unecessary computations
# if complex calculations are done inside the Interpolator.
# Please refer to :meth:`_interpolate_multikeys` for details.
self._tri_renum = None
# __call__ and gradient docstrings are shared by all subclasses
# (except, if needed, relevant additions).
# However these methods are only implemented in subclasses to avoid
# confusion in the documentation.
docstring__call__ = """
Returns a masked array containing interpolated values at the specified
x,y points.
Parameters
----------
x, y : array-like
x and y coordinates of the same shape and any number of
dimensions.
Returns
-------
z : np.ma.array
Masked array of the same shape as *x* and *y* ; values
corresponding to (*x*, *y*) points outside of the triangulation
are masked out.
"""
docstringgradient = """
Returns a list of 2 masked arrays containing interpolated derivatives
at the specified x,y points.
Parameters
----------
x, y : array-like
x and y coordinates of the same shape and any number of
dimensions.
Returns
-------
dzdx, dzdy : np.ma.array
2 masked arrays of the same shape as *x* and *y* ; values
corresponding to (x,y) points outside of the triangulation
are masked out.
The first returned array contains the values of
:math:`\\frac{\\partial z}{\\partial x}` and the second those of
:math:`\\frac{\\partial z}{\\partial y}`.
"""
def _interpolate_multikeys(self, x, y, tri_index=None,
return_keys=('z',)):
"""
Versatile (private) method defined for all TriInterpolators.
:meth:`_interpolate_multikeys` is a wrapper around method
:meth:`_interpolate_single_key` (to be defined in the child
subclasses).
:meth:`_interpolate_single_key actually performs the interpolation,
but only for 1-dimensional inputs and at valid locations (inside
unmasked triangles of the triangulation).
The purpose of :meth:`_interpolate_multikeys` is to implement the
following common tasks needed in all subclasses implementations:
- calculation of containing triangles
- dealing with more than one interpolation request at the same
location (e.g., if the 2 derivatives are requested, it is
unnecessary to compute the containing triangles twice)
- scaling according to self._unit_x, self._unit_y
- dealing with points outside of the grid (with fill value np.nan)
- dealing with multi-dimensionnal *x*, *y* arrays: flattening for
:meth:`_interpolate_params` call and final reshaping.
(Note that np.vectorize could do most of those things very well for
you, but it does it by function evaluations over successive tuples of
the input arrays. Therefore, this tends to be more time consuming than
using optimized numpy functions - e.g., np.dot - which can be used
easily on the flattened inputs, in the child-subclass methods
:meth:`_interpolate_single_key`.)
It is guaranteed that the calls to :meth:`_interpolate_single_key`
will be done with flattened (1-d) array_like input parameters `x`, `y`
and with flattened, valid `tri_index` arrays (no -1 index allowed).
Parameters
----------
x, y : array_like
x and y coordinates indicating where interpolated values are
requested.
tri_index : integer array_like, optional
Array of the containing triangle indices, same shape as
*x* and *y*. Defaults to None. If None, these indices
will be computed by a TriFinder instance.
(Note: For point outside the grid, tri_index[ipt] shall be -1).
return_keys : tuple of keys from {'z', 'dzdx', 'dzdy'}
Defines the interpolation arrays to return, and in which order.
Returns
-------
ret : list of arrays
Each array-like contains the expected interpolated values in the
order defined by *return_keys* parameter.
"""
# Flattening and rescaling inputs arrays x, y
# (initial shape is stored for output)
x = np.asarray(x, dtype=np.float64)
y = np.asarray(y, dtype=np.float64)
sh_ret = x.shape
if (x.shape != y.shape):
raise ValueError("x and y shall have same shapes."
" Given: {0} and {1}".format(x.shape, y.shape))
x = np.ravel(x)
y = np.ravel(y)
x_scaled = x/self._unit_x
y_scaled = y/self._unit_y
size_ret = np.size(x_scaled)
# Computes & ravels the element indexes, extract the valid ones.
if tri_index is None:
tri_index = self._trifinder(x, y)
else:
if (tri_index.shape != sh_ret):
raise ValueError(
"tri_index array is provided and shall"
" have same shape as x and y. Given: "
"{0} and {1}".format(tri_index.shape, sh_ret))
tri_index = np.ravel(tri_index)
mask_in = (tri_index != -1)
if self._tri_renum is None:
valid_tri_index = tri_index[mask_in]
else:
valid_tri_index = self._tri_renum[tri_index[mask_in]]
valid_x = x_scaled[mask_in]
valid_y = y_scaled[mask_in]
ret = []
for return_key in return_keys:
# Find the return index associated with the key.
try:
return_index = {'z': 0, 'dzdx': 1, 'dzdy': 2}[return_key]
except KeyError:
raise ValueError("return_keys items shall take values in"
" {'z', 'dzdx', 'dzdy'}")
# Sets the scale factor for f & df components
scale = [1., 1./self._unit_x, 1./self._unit_y][return_index]
# Computes the interpolation
ret_loc = np.empty(size_ret, dtype=np.float64)
ret_loc[~mask_in] = np.nan
ret_loc[mask_in] = self._interpolate_single_key(
return_key, valid_tri_index, valid_x, valid_y) * scale
ret += [np.ma.masked_invalid(ret_loc.reshape(sh_ret), copy=False)]
return ret
def _interpolate_single_key(self, return_key, tri_index, x, y):
"""
Performs the interpolation at points belonging to the triangulation
(inside an unmasked triangles).
Parameters
----------
return_index : string key from {'z', 'dzdx', 'dzdy'}
Identifies the requested values (z or its derivatives)
tri_index : 1d integer array
Valid triangle index (-1 prohibited)
x, y : 1d arrays, same shape as `tri_index`
Valid locations where interpolation is requested.
Returns
-------
ret : 1-d array
Returned array of the same size as *tri_index*
"""
raise NotImplementedError("TriInterpolator subclasses" +
"should implement _interpolate_single_key!")
class LinearTriInterpolator(TriInterpolator):
"""
A LinearTriInterpolator performs linear interpolation on a triangular grid.
Each triangle is represented by a plane so that an interpolated value at
point (x,y) lies on the plane of the triangle containing (x,y).
Interpolated values are therefore continuous across the triangulation, but
their first derivatives are discontinuous at edges between triangles.
Parameters
----------
triangulation : :class:`~matplotlib.tri.Triangulation` object
The triangulation to interpolate over.
z : array_like of shape (npoints,)
Array of values, defined at grid points, to interpolate between.
trifinder : :class:`~matplotlib.tri.TriFinder` object, optional
If this is not specified, the Triangulation's default TriFinder will
be used by calling
:func:`matplotlib.tri.Triangulation.get_trifinder`.
Methods
-------
`__call__` (x, y) : Returns interpolated values at x,y points
`gradient` (x, y) : Returns interpolated derivatives at x,y points
"""
def __init__(self, triangulation, z, trifinder=None):
TriInterpolator.__init__(self, triangulation, z, trifinder)
# Store plane coefficients for fast interpolation calculations.
self._plane_coefficients = \
self._triangulation.calculate_plane_coefficients(self._z)
def __call__(self, x, y):
return self._interpolate_multikeys(x, y, tri_index=None,
return_keys=('z',))[0]
__call__.__doc__ = TriInterpolator.docstring__call__
def gradient(self, x, y):
return self._interpolate_multikeys(x, y, tri_index=None,
return_keys=('dzdx', 'dzdy'))
gradient.__doc__ = TriInterpolator.docstringgradient
def _interpolate_single_key(self, return_key, tri_index, x, y):
if return_key == 'z':
return (self._plane_coefficients[tri_index, 0]*x +
self._plane_coefficients[tri_index, 1]*y +
self._plane_coefficients[tri_index, 2])
elif return_key == 'dzdx':
return self._plane_coefficients[tri_index, 0]
elif return_key == 'dzdy':
return self._plane_coefficients[tri_index, 1]
else:
raise ValueError("Invalid return_key: "+return_key)
class CubicTriInterpolator(TriInterpolator):
"""
A CubicTriInterpolator performs cubic interpolation on triangular grids.
In one-dimension - on a segment - a cubic interpolating function is
defined by the values of the function and its derivative at both ends.
This is almost the same in 2-d inside a triangle, except that the values
of the function and its 2 derivatives have to be defined at each triangle
node.
The CubicTriInterpolator takes the value of the function at each node -
provided by the user - and internally computes the value of the
derivatives, resulting in a smooth interpolation.
(As a special feature, the user can also impose the value of the
derivatives at each node, but this is not supposed to be the common
usage.)
Parameters
----------
triangulation : :class:`~matplotlib.tri.Triangulation` object
The triangulation to interpolate over.
z : array_like of shape (npoints,)
Array of values, defined at grid points, to interpolate between.
kind : {'min_E', 'geom', 'user'}, optional
Choice of the smoothing algorithm, in order to compute
the interpolant derivatives (defaults to 'min_E'):
- if 'min_E': (default) The derivatives at each node is computed
to minimize a bending energy.
- if 'geom': The derivatives at each node is computed as a
weighted average of relevant triangle normals. To be used for
speed optimization (large grids).
- if 'user': The user provides the argument `dz`, no computation
is hence needed.
trifinder : :class:`~matplotlib.tri.TriFinder` object, optional
If not specified, the Triangulation's default TriFinder will
be used by calling
:func:`matplotlib.tri.Triangulation.get_trifinder`.
dz : tuple of array_likes (dzdx, dzdy), optional
Used only if *kind* ='user'. In this case *dz* must be provided as
(dzdx, dzdy) where dzdx, dzdy are arrays of the same shape as *z* and
are the interpolant first derivatives at the *triangulation* points.
Methods
-------
`__call__` (x, y) : Returns interpolated values at x,y points
`gradient` (x, y) : Returns interpolated derivatives at x,y points
Notes
-----
This note is a bit technical and details the way a
:class:`~matplotlib.tri.CubicTriInterpolator` computes a cubic
interpolation.
The interpolation is based on a Clough-Tocher subdivision scheme of
the *triangulation* mesh (to make it clearer, each triangle of the
grid will be divided in 3 child-triangles, and on each child triangle
the interpolated function is a cubic polynomial of the 2 coordinates).
This technique originates from FEM (Finite Element Method) analysis;
the element used is a reduced Hsieh-Clough-Tocher (HCT)
element. Its shape functions are described in [1]_.
The assembled function is guaranteed to be C1-smooth, i.e. it is
continuous and its first derivatives are also continuous (this
is easy to show inside the triangles but is also true when crossing the
edges).
In the default case (*kind* ='min_E'), the interpolant minimizes a
curvature energy on the functional space generated by the HCT element
shape functions - with imposed values but arbitrary derivatives at each
node. The minimized functional is the integral of the so-called total
curvature (implementation based on an algorithm from [2]_ - PCG sparse
solver):
.. math::
E(z) = \\ \\frac{1}{2} \\int_{\\Omega} \\left(
\\left( \\frac{\\partial^2{z}}{\\partial{x}^2} \\right)^2 +
\\left( \\frac{\\partial^2{z}}{\\partial{y}^2} \\right)^2 +
2\\left( \\frac{\\partial^2{z}}{\\partial{y}\\partial{x}}
\\right)^2 \\right) dx\\,dy
If the case *kind* ='geom' is chosen by the user, a simple geometric
approximation is used (weighted average of the triangle normal
vectors), which could improve speed on very large grids.
References
----------
.. [1] Michel Bernadou, Kamal Hassan, "Basis functions for general
Hsieh-Clough-Tocher triangles, complete or reduced.",
International Journal for Numerical Methods in Engineering,
17(5):784 - 789. 2.01.
.. [2] C.T. Kelley, "Iterative Methods for Optimization".
"""
def __init__(self, triangulation, z, kind='min_E', trifinder=None,
dz=None):
TriInterpolator.__init__(self, triangulation, z, trifinder)
# Loads the underlying c++ _triangulation.
# (During loading, reordering of triangulation._triangles may occur so
# that all final triangles are now anti-clockwise)
self._triangulation.get_cpp_triangulation()
# To build the stiffness matrix and avoid zero-energy spurious modes
# we will only store internally the valid (unmasked) triangles and
# the necessary (used) points coordinates.
# 2 renumbering tables need to be computed and stored:
# - a triangle renum table in order to translate the result from a
# TriFinder instance into the internal stored triangle number.
# - a node renum table to overwrite the self._z values into the new
# (used) node numbering.
tri_analyzer = TriAnalyzer(self._triangulation)
(compressed_triangles, compressed_x, compressed_y, tri_renum,
node_renum) = tri_analyzer._get_compressed_triangulation(True, True)
self._triangles = compressed_triangles
self._tri_renum = tri_renum
# Taking into account the node renumbering in self._z:
node_mask = (node_renum == -1)
self._z[node_renum[~node_mask]] = self._z
self._z = self._z[~node_mask]
# Computing scale factors
self._unit_x = np.max(compressed_x) - np.min(compressed_x)
self._unit_y = np.max(compressed_y) - np.min(compressed_y)
self._pts = np.vstack((compressed_x/float(self._unit_x),
compressed_y/float(self._unit_y))).T
# Computing triangle points
self._tris_pts = self._pts[self._triangles]
# Computing eccentricities
self._eccs = self._compute_tri_eccentricities(self._tris_pts)
# Computing dof estimations for HCT triangle shape function
self._dof = self._compute_dof(kind, dz=dz)
# Loading HCT element
self._ReferenceElement = _ReducedHCT_Element()
def __call__(self, x, y):
return self._interpolate_multikeys(x, y, tri_index=None,
return_keys=('z',))[0]
__call__.__doc__ = TriInterpolator.docstring__call__
def gradient(self, x, y):
return self._interpolate_multikeys(x, y, tri_index=None,
return_keys=('dzdx', 'dzdy'))
gradient.__doc__ = TriInterpolator.docstringgradient + """
Examples
--------
An example of effective application is shown below (plot of the
direction of the vector field derivated from a known potential field):
.. plot:: mpl_examples/pylab_examples/trigradient_demo.py
"""
def _interpolate_single_key(self, return_key, tri_index, x, y):
tris_pts = self._tris_pts[tri_index]
alpha = self._get_alpha_vec(x, y, tris_pts)
ecc = self._eccs[tri_index]
dof = np.expand_dims(self._dof[tri_index], axis=1)
if return_key == 'z':
return self._ReferenceElement.get_function_values(
alpha, ecc, dof)
elif return_key in ['dzdx', 'dzdy']:
J = self._get_jacobian(tris_pts)
dzdx = self._ReferenceElement.get_function_derivatives(
alpha, J, ecc, dof)
if return_key == 'dzdx':
return dzdx[:, 0]
else:
return dzdx[:, 1]
else:
raise ValueError("Invalid return_key: " + return_key)
def _compute_dof(self, kind, dz=None):
"""
Computes and returns nodal dofs according to kind
Parameters
----------
kind: {'min_E', 'geom', 'user'}
Choice of the _DOF_estimator subclass to perform the gradient
estimation.
dz: tuple of array_likes (dzdx, dzdy), optional
Used only if *kind=user ; in this case passed to the
:class:`_DOF_estimator_user`.
Returns
-------
dof : array_like, shape (npts,2)
Estimation of the gradient at triangulation nodes (stored as
degree of freedoms of reduced-HCT triangle elements).
"""
if kind == 'user':
if dz is None:
raise ValueError("For a CubicTriInterpolator with "
"*kind*='user', a valid *dz* "
"argument is expected.")
TE = _DOF_estimator_user(self, dz=dz)
elif kind == 'geom':
TE = _DOF_estimator_geom(self)
elif kind == 'min_E':
TE = _DOF_estimator_min_E(self)
else:
raise ValueError("CubicTriInterpolator *kind* proposed: {0} ; "
"should be one of: "
"'user', 'geom', 'min_E'".format(kind))
return TE.compute_dof_from_df()
@staticmethod
def _get_alpha_vec(x, y, tris_pts):
"""
Fast (vectorized) function to compute barycentric coordinates alpha.
Parameters
----------
x, y : array-like of dim 1 (shape (nx,))
Coordinates of the points whose points barycentric
coordinates are requested
tris_pts : array like of dim 3 (shape: (nx,3,2))
Coordinates of the containing triangles apexes.
Returns
-------
alpha : array of dim 2 (shape (nx,3))
Barycentric coordinates of the points inside the containing
triangles.
"""
ndim = tris_pts.ndim-2
a = tris_pts[:, 1, :] - tris_pts[:, 0, :]
b = tris_pts[:, 2, :] - tris_pts[:, 0, :]
abT = np.concatenate([np.expand_dims(a, ndim+1),
np.expand_dims(b, ndim+1)], ndim+1)
ab = _transpose_vectorized(abT)
x = np.expand_dims(x, ndim)
y = np.expand_dims(y, ndim)
OM = np.concatenate([x, y], ndim)-tris_pts[:, 0, :]
metric = _prod_vectorized(ab, abT)
# Here we try to deal with the colinear cases.
# metric_inv is in this case set to the Moore-Penrose pseudo-inverse
# meaning that we will still return a set of valid barycentric
# coordinates.
metric_inv = _pseudo_inv22sym_vectorized(metric)
Covar = _prod_vectorized(ab, _transpose_vectorized(
np.expand_dims(OM, ndim)))
ksi = _prod_vectorized(metric_inv, Covar)
alpha = _to_matrix_vectorized([
[1-ksi[:, 0, 0]-ksi[:, 1, 0]], [ksi[:, 0, 0]], [ksi[:, 1, 0]]])
return alpha
@staticmethod
def _get_jacobian(tris_pts):
"""
Fast (vectorized) function to compute triangle jacobian matrix.
Parameters
----------
tris_pts : array like of dim 3 (shape: (nx,3,2))
Coordinates of the containing triangles apexes.
Returns
-------
J : array of dim 3 (shape (nx,2,2))
Barycentric coordinates of the points inside the containing
triangles.
J[itri,:,:] is the jacobian matrix at apex 0 of the triangle
itri, so that the following (matrix) relationship holds:
[dz/dksi] = [J] x [dz/dx]
with x: global coordinates
ksi: element parametric coordinates in triangle first apex
local basis.
"""
a = np.array(tris_pts[:, 1, :]-tris_pts[:, 0, :])
b = np.array(tris_pts[:, 2, :]-tris_pts[:, 0, :])
J = _to_matrix_vectorized([[a[:, 0], a[:, 1]],
[b[:, 0], b[:, 1]]])
return J
@staticmethod
def _compute_tri_eccentricities(tris_pts):
"""
Computes triangle eccentricities
Parameters
----------
tris_pts : array like of dim 3 (shape: (nx,3,2))
Coordinates of the triangles apexes.
Returns
-------
ecc : array like of dim 2 (shape: (nx,3))
The so-called eccentricity parameters [1] needed for
HCT triangular element.
"""
a = np.expand_dims(tris_pts[:, 2, :]-tris_pts[:, 1, :], axis=2)
b = np.expand_dims(tris_pts[:, 0, :]-tris_pts[:, 2, :], axis=2)
c = np.expand_dims(tris_pts[:, 1, :]-tris_pts[:, 0, :], axis=2)
# Do not use np.squeeze, this is dangerous if only one triangle
# in the triangulation...
dot_a = _prod_vectorized(_transpose_vectorized(a), a)[:, 0, 0]
dot_b = _prod_vectorized(_transpose_vectorized(b), b)[:, 0, 0]
dot_c = _prod_vectorized(_transpose_vectorized(c), c)[:, 0, 0]
# Note that this line will raise a warning for dot_a, dot_b or dot_c
# zeros, but we choose not to support triangles with duplicate points.
return _to_matrix_vectorized([[(dot_c-dot_b)/dot_a],
[(dot_a-dot_c)/dot_b],
[(dot_b-dot_a)/dot_c]])
# FEM element used for interpolation and for solving minimisation
# problem (Reduced HCT element)
class _ReducedHCT_Element():
"""
Implementation of reduced HCT triangular element with explicit shape
functions.
Computes z, dz, d2z and the element stiffness matrix for bending energy:
E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA)
*** Reference for the shape functions: ***
[1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or
reduced.
Michel Bernadou, Kamal Hassan
International Journal for Numerical Methods in Engineering.
17(5):784 - 789. 2.01
*** Element description: ***
9 dofs: z and dz given at 3 apex
C1 (conform)
"""
# 1) Loads matrices to generate shape functions as a function of
# triangle eccentricities - based on [1] p.11 '''
M = np.array([
[ 0.00, 0.00, 0.00, 4.50, 4.50, 0.00, 0.00, 0.00, 0.00, 0.00],
[-0.25, 0.00, 0.00, 0.50, 1.25, 0.00, 0.00, 0.00, 0.00, 0.00],
[-0.25, 0.00, 0.00, 1.25, 0.50, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.50, 1.00, 0.00, -1.50, 0.00, 3.00, 3.00, 0.00, 0.00, 3.00],
[ 0.00, 0.00, 0.00, -0.25, 0.25, 0.00, 1.00, 0.00, 0.00, 0.50],
[ 0.25, 0.00, 0.00, -0.50, -0.25, 1.00, 0.00, 0.00, 0.00, 1.00],
[ 0.50, 0.00, 1.00, 0.00, -1.50, 0.00, 0.00, 3.00, 3.00, 3.00],
[ 0.25, 0.00, 0.00, -0.25, -0.50, 0.00, 0.00, 0.00, 1.00, 1.00],
[ 0.00, 0.00, 0.00, 0.25, -0.25, 0.00, 0.00, 1.00, 0.00, 0.50]])
M0 = np.array([
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[-1.00, 0.00, 0.00, 1.50, 1.50, 0.00, 0.00, 0.00, 0.00, -3.00],
[-0.50, 0.00, 0.00, 0.75, 0.75, 0.00, 0.00, 0.00, 0.00, -1.50],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 1.00, 0.00, 0.00, -1.50, -1.50, 0.00, 0.00, 0.00, 0.00, 3.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.50, 0.00, 0.00, -0.75, -0.75, 0.00, 0.00, 0.00, 0.00, 1.50]])
M1 = np.array([
[-0.50, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[-0.25, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.50, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.25, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]])
M2 = np.array([
[ 0.50, 0.00, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.25, 0.00, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[-0.50, 0.00, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[-0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
[ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]])
# 2) Loads matrices to rotate components of gradient & Hessian
# vectors in the reference basis of triangle first apex (a0)
rotate_dV = np.array([[ 1., 0.], [ 0., 1.],
[ 0., 1.], [-1., -1.],
[-1., -1.], [ 1., 0.]])
rotate_d2V = np.array([[1., 0., 0.], [0., 1., 0.], [ 0., 0., 1.],
[0., 1., 0.], [1., 1., 1.], [ 0., -2., -1.],
[1., 1., 1.], [1., 0., 0.], [-2., 0., -1.]])
# 3) Loads Gauss points & weights on the 3 sub-_triangles for P2
# exact integral - 3 points on each subtriangles.
# NOTE: as the 2nd derivative is discontinuous , we really need those 9
# points!
n_gauss = 9
gauss_pts = np.array([[13./18., 4./18., 1./18.],
[ 4./18., 13./18., 1./18.],
[ 7./18., 7./18., 4./18.],
[ 1./18., 13./18., 4./18.],
[ 1./18., 4./18., 13./18.],
[ 4./18., 7./18., 7./18.],
[ 4./18., 1./18., 13./18.],
[13./18., 1./18., 4./18.],
[ 7./18., 4./18., 7./18.]], dtype=np.float64)
gauss_w = np.ones([9], dtype=np.float64) / 9.
# 4) Stiffness matrix for curvature energy
E = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 2.]])
# 5) Loads the matrix to compute DOF_rot from tri_J at apex 0
J0_to_J1 = np.array([[-1., 1.], [-1., 0.]])
J0_to_J2 = np.array([[ 0., -1.], [ 1., -1.]])
def get_function_values(self, alpha, ecc, dofs):
"""
Parameters
----------
alpha : is a (N x 3 x 1) array (array of column-matrices) of
barycentric coordinates,
ecc : is a (N x 3 x 1) array (array of column-matrices) of triangle
eccentricities,
dofs : is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
degrees of freedom.
Returns
-------
Returns the N-array of interpolated function values.
"""
subtri = np.argmin(alpha, axis=1)[:, 0]
ksi = _roll_vectorized(alpha, -subtri, axis=0)
E = _roll_vectorized(ecc, -subtri, axis=0)
x = ksi[:, 0, 0]
y = ksi[:, 1, 0]
z = ksi[:, 2, 0]
x_sq = x*x
y_sq = y*y
z_sq = z*z
V = _to_matrix_vectorized([
[x_sq*x], [y_sq*y], [z_sq*z], [x_sq*z], [x_sq*y], [y_sq*x],
[y_sq*z], [z_sq*y], [z_sq*x], [x*y*z]])
prod = _prod_vectorized(self.M, V)
prod += _scalar_vectorized(E[:, 0, 0],
_prod_vectorized(self.M0, V))
prod += _scalar_vectorized(E[:, 1, 0],
_prod_vectorized(self.M1, V))
prod += _scalar_vectorized(E[:, 2, 0],
_prod_vectorized(self.M2, V))
s = _roll_vectorized(prod, 3*subtri, axis=0)
return _prod_vectorized(dofs, s)[:, 0, 0]
def get_function_derivatives(self, alpha, J, ecc, dofs):
"""
Parameters
----------
*alpha* is a (N x 3 x 1) array (array of column-matrices of
barycentric coordinates)
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
triangle first apex)
*ecc* is a (N x 3 x 1) array (array of column-matrices of triangle
eccentricities)
*dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
degrees of freedom.
Returns
-------
Returns the values of interpolated function derivatives [dz/dx, dz/dy]
in global coordinates at locations alpha, as a column-matrices of
shape (N x 2 x 1).
"""
subtri = np.argmin(alpha, axis=1)[:, 0]
ksi = _roll_vectorized(alpha, -subtri, axis=0)
E = _roll_vectorized(ecc, -subtri, axis=0)
x = ksi[:, 0, 0]
y = ksi[:, 1, 0]
z = ksi[:, 2, 0]
x_sq = x*x
y_sq = y*y
z_sq = z*z
dV = _to_matrix_vectorized([
[ -3.*x_sq, -3.*x_sq],
[ 3.*y_sq, 0.],
[ 0., 3.*z_sq],
[ -2.*x*z, -2.*x*z+x_sq],
[-2.*x*y+x_sq, -2.*x*y],
[ 2.*x*y-y_sq, -y_sq],
[ 2.*y*z, y_sq],
[ z_sq, 2.*y*z],
[ -z_sq, 2.*x*z-z_sq],
[ x*z-y*z, x*y-y*z]])
# Puts back dV in first apex basis
dV = _prod_vectorized(dV, _extract_submatrices(
self.rotate_dV, subtri, block_size=2, axis=0))
prod = _prod_vectorized(self.M, dV)
prod += _scalar_vectorized(E[:, 0, 0],
_prod_vectorized(self.M0, dV))
prod += _scalar_vectorized(E[:, 1, 0],
_prod_vectorized(self.M1, dV))
prod += _scalar_vectorized(E[:, 2, 0],
_prod_vectorized(self.M2, dV))
dsdksi = _roll_vectorized(prod, 3*subtri, axis=0)
dfdksi = _prod_vectorized(dofs, dsdksi)
# In global coordinates:
# Here we try to deal with the simpliest colinear cases, returning a
# null matrix.
J_inv = _safe_inv22_vectorized(J)
dfdx = _prod_vectorized(J_inv, _transpose_vectorized(dfdksi))
return dfdx
def get_function_hessians(self, alpha, J, ecc, dofs):
"""
Parameters
----------
*alpha* is a (N x 3 x 1) array (array of column-matrices) of
barycentric coordinates
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
triangle first apex)
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
eccentricities
*dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
degrees of freedom.
Returns
-------
Returns the values of interpolated function 2nd-derivatives
[d2z/dx2, d2z/dy2, d2z/dxdy] in global coordinates at locations alpha,
as a column-matrices of shape (N x 3 x 1).
"""
d2sdksi2 = self.get_d2Sidksij2(alpha, ecc)
d2fdksi2 = _prod_vectorized(dofs, d2sdksi2)
H_rot = self.get_Hrot_from_J(J)
d2fdx2 = _prod_vectorized(d2fdksi2, H_rot)
return _transpose_vectorized(d2fdx2)
def get_d2Sidksij2(self, alpha, ecc):
"""
Parameters
----------
*alpha* is a (N x 3 x 1) array (array of column-matrices) of
barycentric coordinates
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
eccentricities
Returns
-------
Returns the arrays d2sdksi2 (N x 3 x 1) Hessian of shape functions
expressed in covariante coordinates in first apex basis.
"""
subtri = np.argmin(alpha, axis=1)[:, 0]
ksi = _roll_vectorized(alpha, -subtri, axis=0)
E = _roll_vectorized(ecc, -subtri, axis=0)
x = ksi[:, 0, 0]
y = ksi[:, 1, 0]
z = ksi[:, 2, 0]
d2V = _to_matrix_vectorized([
[ 6.*x, 6.*x, 6.*x],
[ 6.*y, 0., 0.],
[ 0., 6.*z, 0.],
[ 2.*z, 2.*z-4.*x, 2.*z-2.*x],
[2.*y-4.*x, 2.*y, 2.*y-2.*x],
[2.*x-4.*y, 0., -2.*y],
[ 2.*z, 0., 2.*y],
[ 0., 2.*y, 2.*z],
[ 0., 2.*x-4.*z, -2.*z],
[ -2.*z, -2.*y, x-y-z]])
# Puts back d2V in first apex basis
d2V = _prod_vectorized(d2V, _extract_submatrices(
self.rotate_d2V, subtri, block_size=3, axis=0))
prod = _prod_vectorized(self.M, d2V)
prod += _scalar_vectorized(E[:, 0, 0],
_prod_vectorized(self.M0, d2V))
prod += _scalar_vectorized(E[:, 1, 0],
_prod_vectorized(self.M1, d2V))
prod += _scalar_vectorized(E[:, 2, 0],
_prod_vectorized(self.M2, d2V))
d2sdksi2 = _roll_vectorized(prod, 3*subtri, axis=0)
return d2sdksi2
def get_bending_matrices(self, J, ecc):
"""
Parameters
----------
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
triangle first apex)
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
eccentricities
Returns
-------
Returns the element K matrices for bending energy expressed in
GLOBAL nodal coordinates.
K_ij = integral [ (d2zi/dx2 + d2zi/dy2) * (d2zj/dx2 + d2zj/dy2) dA]
tri_J is needed to rotate dofs from local basis to global basis
"""
n = np.size(ecc, 0)
# 1) matrix to rotate dofs in global coordinates
J1 = _prod_vectorized(self.J0_to_J1, J)
J2 = _prod_vectorized(self.J0_to_J2, J)
DOF_rot = np.zeros([n, 9, 9], dtype=np.float64)
DOF_rot[:, 0, 0] = 1
DOF_rot[:, 3, 3] = 1
DOF_rot[:, 6, 6] = 1
DOF_rot[:, 1:3, 1:3] = J
DOF_rot[:, 4:6, 4:6] = J1
DOF_rot[:, 7:9, 7:9] = J2
# 2) matrix to rotate Hessian in global coordinates.
H_rot, area = self.get_Hrot_from_J(J, return_area=True)
# 3) Computes stiffness matrix
# Gauss quadrature.
K = np.zeros([n, 9, 9], dtype=np.float64)
weights = self.gauss_w
pts = self.gauss_pts
for igauss in range(self.n_gauss):
alpha = np.tile(pts[igauss, :], n).reshape(n, 3)
alpha = np.expand_dims(alpha, 3)
weight = weights[igauss]
d2Skdksi2 = self.get_d2Sidksij2(alpha, ecc)
d2Skdx2 = _prod_vectorized(d2Skdksi2, H_rot)
K += weight * _prod_vectorized(_prod_vectorized(d2Skdx2, self.E),
_transpose_vectorized(d2Skdx2))
# 4) With nodal (not elem) dofs
K = _prod_vectorized(_prod_vectorized(_transpose_vectorized(DOF_rot),
K), DOF_rot)
# 5) Need the area to compute total element energy
return _scalar_vectorized(area, K)
def get_Hrot_from_J(self, J, return_area=False):
"""
Parameters
----------
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
triangle first apex)
Returns
-------
Returns H_rot used to rotate Hessian from local basis of first apex,
to global coordinates.
if *return_area* is True, returns also the triangle area (0.5*det(J))
"""
# Here we try to deal with the simpliest colinear cases ; a null
# energy and area is imposed.
J_inv = _safe_inv22_vectorized(J)
Ji00 = J_inv[:, 0, 0]
Ji11 = J_inv[:, 1, 1]
Ji10 = J_inv[:, 1, 0]
Ji01 = J_inv[:, 0, 1]
H_rot = _to_matrix_vectorized([
[Ji00*Ji00, Ji10*Ji10, Ji00*Ji10],
[Ji01*Ji01, Ji11*Ji11, Ji01*Ji11],
[2*Ji00*Ji01, 2*Ji11*Ji10, Ji00*Ji11+Ji10*Ji01]])
if not return_area:
return H_rot
else:
area = 0.5 * (J[:, 0, 0]*J[:, 1, 1] - J[:, 0, 1]*J[:, 1, 0])
return H_rot, area
def get_Kff_and_Ff(self, J, ecc, triangles, Uc):
"""
Builds K and F for the following elliptic formulation:
minimization of curvature energy with value of function at node
imposed and derivatives 'free'.
Builds the global Kff matrix in cco format.
Builds the full Ff vec Ff = - Kfc x Uc
Parameters
----------
*J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
triangle first apex)
*ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
eccentricities
*triangles* is a (N x 3) array of nodes indexes.
*Uc* is (N x 3) array of imposed displacements at nodes
Returns
-------
(Kff_rows, Kff_cols, Kff_vals) Kff matrix in coo format - Duplicate
(row, col) entries must be summed.
Ff: force vector - dim npts * 3
"""
ntri = np.size(ecc, 0)
vec_range = np.arange(ntri, dtype=np.int32)
c_indices = -np.ones(ntri, dtype=np.int32) # for unused dofs, -1
f_dof = [1, 2, 4, 5, 7, 8]
c_dof = [0, 3, 6]
# vals, rows and cols indices in global dof numbering
f_dof_indices = _to_matrix_vectorized([[
c_indices, triangles[:, 0]*2, triangles[:, 0]*2+1,
c_indices, triangles[:, 1]*2, triangles[:, 1]*2+1,
c_indices, triangles[:, 2]*2, triangles[:, 2]*2+1]])
expand_indices = np.ones([ntri, 9, 1], dtype=np.int32)
f_row_indices = _prod_vectorized(_transpose_vectorized(f_dof_indices),
_transpose_vectorized(expand_indices))
f_col_indices = _prod_vectorized(expand_indices, f_dof_indices)
K_elem = self.get_bending_matrices(J, ecc)
# Extracting sub-matrices
# Explanation & notations:
# * Subscript f denotes 'free' degrees of freedom (i.e. dz/dx, dz/dx)
# * Subscript c denotes 'condensated' (imposed) degrees of freedom
# (i.e. z at all nodes)
# * F = [Ff, Fc] is the force vector
# * U = [Uf, Uc] is the imposed dof vector
# [ Kff Kfc ]
# * K = [ ] is the laplacian stiffness matrix
# [ Kcf Kff ]
# * As F = K x U one gets straightforwardly: Ff = - Kfc x Uc
# Computing Kff stiffness matrix in sparse coo format
Kff_vals = np.ravel(K_elem[np.ix_(vec_range, f_dof, f_dof)])
Kff_rows = np.ravel(f_row_indices[np.ix_(vec_range, f_dof, f_dof)])
Kff_cols = np.ravel(f_col_indices[np.ix_(vec_range, f_dof, f_dof)])
# Computing Ff force vector in sparse coo format
Kfc_elem = K_elem[np.ix_(vec_range, f_dof, c_dof)]
Uc_elem = np.expand_dims(Uc, axis=2)
Ff_elem = - _prod_vectorized(Kfc_elem, Uc_elem)[:, :, 0]
Ff_indices = f_dof_indices[np.ix_(vec_range, [0], f_dof)][:, 0, :]
# Extracting Ff force vector in dense format
# We have to sum duplicate indices - using bincount
Ff = np.bincount(np.ravel(Ff_indices), weights=np.ravel(Ff_elem))
return Kff_rows, Kff_cols, Kff_vals, Ff
# :class:_DOF_estimator, _DOF_estimator_user, _DOF_estimator_geom,
# _DOF_estimator_min_E
# Private classes used to compute the degree of freedom of each triangular
# element for the TriCubicInterpolator.
class _DOF_estimator():
"""
Abstract base class for classes used to perform estimation of a function
first derivatives, and deduce the dofs for a CubicTriInterpolator using a
reduced HCT element formulation.
Derived classes implement compute_df(self,**kwargs), returning
np.vstack([dfx,dfy]).T where : dfx, dfy are the estimation of the 2
gradient coordinates.
"""
def __init__(self, interpolator, **kwargs):
if not isinstance(interpolator, CubicTriInterpolator):
raise ValueError("Expected a CubicTriInterpolator object")
self._pts = interpolator._pts
self._tris_pts = interpolator._tris_pts
self.z = interpolator._z
self._triangles = interpolator._triangles
(self._unit_x, self._unit_y) = (interpolator._unit_x,
interpolator._unit_y)
self.dz = self.compute_dz(**kwargs)
self.compute_dof_from_df()
def compute_dz(self, **kwargs):
raise NotImplementedError
def compute_dof_from_df(self):
"""
Computes reduced-HCT elements degrees of freedom, knowing the
gradient.
"""
J = CubicTriInterpolator._get_jacobian(self._tris_pts)
tri_z = self.z[self._triangles]
tri_dz = self.dz[self._triangles]
tri_dof = self.get_dof_vec(tri_z, tri_dz, J)
return tri_dof
@staticmethod
def get_dof_vec(tri_z, tri_dz, J):
"""
Computes the dof vector of a triangle, knowing the value of f, df and
of the local Jacobian at each node.
*tri_z*: array of shape (3,) of f nodal values
*tri_dz*: array of shape (3,2) of df/dx, df/dy nodal values
*J*: Jacobian matrix in local basis of apex 0
Returns dof array of shape (9,) so that for each apex iapex:
dof[iapex*3+0] = f(Ai)
dof[iapex*3+1] = df(Ai).(AiAi+)
dof[iapex*3+2] = df(Ai).(AiAi-)]
"""
npt = tri_z.shape[0]
dof = np.zeros([npt, 9], dtype=np.float64)
J1 = _prod_vectorized(_ReducedHCT_Element.J0_to_J1, J)
J2 = _prod_vectorized(_ReducedHCT_Element.J0_to_J2, J)
col0 = _prod_vectorized(J, np.expand_dims(tri_dz[:, 0, :], axis=3))
col1 = _prod_vectorized(J1, np.expand_dims(tri_dz[:, 1, :], axis=3))
col2 = _prod_vectorized(J2, np.expand_dims(tri_dz[:, 2, :], axis=3))
dfdksi = _to_matrix_vectorized([
[col0[:, 0, 0], col1[:, 0, 0], col2[:, 0, 0]],
[col0[:, 1, 0], col1[:, 1, 0], col2[:, 1, 0]]])
dof[:, 0:7:3] = tri_z
dof[:, 1:8:3] = dfdksi[:, 0]
dof[:, 2:9:3] = dfdksi[:, 1]
return dof
class _DOF_estimator_user(_DOF_estimator):
""" dz is imposed by user / Accounts for scaling if any """
def compute_dz(self, dz):
(dzdx, dzdy) = dz
dzdx = dzdx * self._unit_x
dzdy = dzdy * self._unit_y
return np.vstack([dzdx, dzdy]).T
class _DOF_estimator_geom(_DOF_estimator):
""" Fast 'geometric' approximation, recommended for large arrays. """
def compute_dz(self):
"""
self.df is computed as weighted average of _triangles sharing a common
node. On each triangle itri f is first assumed linear (= ~f), which
allows to compute d~f[itri]
Then the following approximation of df nodal values is then proposed:
f[ipt] = SUM ( w[itri] x d~f[itri] , for itri sharing apex ipt)
The weighted coeff. w[itri] are proportional to the angle of the
triangle itri at apex ipt
"""
el_geom_w = self.compute_geom_weights()
el_geom_grad = self.compute_geom_grads()
# Sum of weights coeffs
w_node_sum = np.bincount(np.ravel(self._triangles),
weights=np.ravel(el_geom_w))
# Sum of weighted df = (dfx, dfy)
dfx_el_w = np.empty_like(el_geom_w)
dfy_el_w = np.empty_like(el_geom_w)
for iapex in range(3):
dfx_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 0]
dfy_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 1]
dfx_node_sum = np.bincount(np.ravel(self._triangles),
weights=np.ravel(dfx_el_w))
dfy_node_sum = np.bincount(np.ravel(self._triangles),
weights=np.ravel(dfy_el_w))
# Estimation of df
dfx_estim = dfx_node_sum/w_node_sum
dfy_estim = dfy_node_sum/w_node_sum
return np.vstack([dfx_estim, dfy_estim]).T
def compute_geom_weights(self):
"""
Builds the (nelems x 3) weights coeffs of _triangles angles,
renormalized so that np.sum(weights, axis=1) == np.ones(nelems)
"""
weights = np.zeros([np.size(self._triangles, 0), 3])
tris_pts = self._tris_pts
for ipt in range(3):
p0 = tris_pts[:, (ipt) % 3, :]
p1 = tris_pts[:, (ipt+1) % 3, :]
p2 = tris_pts[:, (ipt-1) % 3, :]
alpha1 = np.arctan2(p1[:, 1]-p0[:, 1], p1[:, 0]-p0[:, 0])
alpha2 = np.arctan2(p2[:, 1]-p0[:, 1], p2[:, 0]-p0[:, 0])
# In the below formula we could take modulo 2. but
# modulo 1. is safer regarding round-off errors (flat triangles).
angle = np.abs(np.mod((alpha2-alpha1) / np.pi, 1.))
# Weight proportional to angle up np.pi/2 ; null weight for
# degenerated cases 0. and np.pi (Note that `angle` is normalized
# by np.pi)
weights[:, ipt] = 0.5 - np.abs(angle-0.5)
return weights
def compute_geom_grads(self):
"""
Compute the (global) gradient component of f assumed linear (~f).
returns array df of shape (nelems,2)
df[ielem].dM[ielem] = dz[ielem] i.e. df = dz x dM = dM.T^-1 x dz
"""
tris_pts = self._tris_pts
tris_f = self.z[self._triangles]
dM1 = tris_pts[:, 1, :] - tris_pts[:, 0, :]
dM2 = tris_pts[:, 2, :] - tris_pts[:, 0, :]
dM = np.dstack([dM1, dM2])
# Here we try to deal with the simpliest colinear cases: a null
# gradient is assumed in this case.
dM_inv = _safe_inv22_vectorized(dM)
dZ1 = tris_f[:, 1] - tris_f[:, 0]
dZ2 = tris_f[:, 2] - tris_f[:, 0]
dZ = np.vstack([dZ1, dZ2]).T
df = np.empty_like(dZ)
# With np.einsum : could be ej,eji -> ej
df[:, 0] = dZ[:, 0]*dM_inv[:, 0, 0] + dZ[:, 1]*dM_inv[:, 1, 0]
df[:, 1] = dZ[:, 0]*dM_inv[:, 0, 1] + dZ[:, 1]*dM_inv[:, 1, 1]
return df
class _DOF_estimator_min_E(_DOF_estimator_geom):
"""
The 'smoothest' approximation, df is computed through global minimization
of the bending energy:
E(f) = integral[(d2z/dx2 + d2z/dy2 + 2 d2z/dxdy)**2 dA]
"""
def __init__(self, Interpolator):
self._eccs = Interpolator._eccs
_DOF_estimator_geom.__init__(self, Interpolator)
def compute_dz(self):
"""
Elliptic solver for bending energy minimization.
Uses a dedicated 'toy' sparse Jacobi PCG solver.
"""
# Initial guess for iterative PCG solver.
dz_init = _DOF_estimator_geom.compute_dz(self)
Uf0 = np.ravel(dz_init)
reference_element = _ReducedHCT_Element()
J = CubicTriInterpolator._get_jacobian(self._tris_pts)
eccs = self._eccs
triangles = self._triangles
Uc = self.z[self._triangles]
# Building stiffness matrix and force vector in coo format
Kff_rows, Kff_cols, Kff_vals, Ff = reference_element.get_Kff_and_Ff(
J, eccs, triangles, Uc)
# Building sparse matrix and solving minimization problem
# We could use scipy.sparse direct solver ; however to avoid this
# external dependency an implementation of a simple PCG solver with
# a simplendiagonal Jocabi preconditioner is implemented.
tol = 1.e-10
n_dof = Ff.shape[0]
Kff_coo = _Sparse_Matrix_coo(Kff_vals, Kff_rows, Kff_cols,
shape=(n_dof, n_dof))
Kff_coo.compress_csc()
Uf, err = _cg(A=Kff_coo, b=Ff, x0=Uf0, tol=tol)
# If the PCG did not converge, we return the best guess between Uf0
# and Uf.
err0 = np.linalg.norm(Kff_coo.dot(Uf0) - Ff)
if err0 < err:
# Maybe a good occasion to raise a warning here ?
warnings.warn("In TriCubicInterpolator initialization, PCG sparse"
" solver did not converge after 1000 iterations. "
"`geom` approximation is used instead of `min_E`")
Uf = Uf0
# Building dz from Uf
dz = np.empty([self._pts.shape[0], 2], dtype=np.float64)
dz[:, 0] = Uf[::2]
dz[:, 1] = Uf[1::2]
return dz
# The following private :class:_Sparse_Matrix_coo and :func:_cg provide
# a PCG sparse solver for (symmetric) elliptic problems.
class _Sparse_Matrix_coo:
def __init__(self, vals, rows, cols, shape):
"""
Creates a sparse matrix in coo format
*vals*: arrays of values of non-null entries of the matrix
*rows*: int arrays of rows of non-null entries of the matrix
*cols*: int arrays of cols of non-null entries of the matrix
*shape*: 2-tuple (n,m) of matrix shape
"""
self.n, self.m = shape
self.vals = np.asarray(vals, dtype=np.float64)
self.rows = np.asarray(rows, dtype=np.int32)
self.cols = np.asarray(cols, dtype=np.int32)
def dot(self, V):
"""
Dot product of self by a vector *V* in sparse-dense to dense format
*V* dense vector of shape (self.m,)
"""
assert V.shape == (self.m,)
# For a more generic implementation we could use below kw argument
# minlength=self.m of bincount ; however:
# - it is new in numpy 1.6
# - it is unecessary when each row have at least 1 entry in global
# matrix, which is the case here.
return np.bincount(self.rows, weights=self.vals*V[self.cols])
def compress_csc(self):
"""
Compress rows, cols, vals / summing duplicates. Sort for csc format.
"""
_, unique, indices = np.unique(
self.rows + self.n*self.cols,
return_index=True, return_inverse=True)
self.rows = self.rows[unique]
self.cols = self.cols[unique]
self.vals = np.bincount(indices, weights=self.vals)
def compress_csr(self):
"""
Compress rows, cols, vals / summing duplicates. Sort for csr format.
"""
_, unique, indices = np.unique(
self.m*self.rows + self.cols,
return_index=True, return_inverse=True)
self.rows = self.rows[unique]
self.cols = self.cols[unique]
self.vals = np.bincount(indices, weights=self.vals)
def to_dense(self):
"""
Returns a dense matrix representing self.
Mainly for debugging purposes.
"""
ret = np.zeros([self.n, self.m], dtype=np.float64)
nvals = self.vals.size
for i in range(nvals):
ret[self.rows[i], self.cols[i]] += self.vals[i]
return ret
def __str__(self):
return self.to_dense().__str__()
@property
def diag(self):
"""
Returns the (dense) vector of the diagonal elements.
"""
in_diag = (self.rows == self.cols)
diag = np.zeros(min(self.n, self.n), dtype=np.float64) # default 0.
diag[self.rows[in_diag]] = self.vals[in_diag]
return diag
def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000):
"""
Use Preconditioned Conjugate Gradient iteration to solve A x = b
A simple Jacobi (diagonal) preconditionner is used.
Parameters
----------
A: _Sparse_Matrix_coo
*A* must have been compressed before by compress_csc or
compress_csr method.
b: array
Right hand side of the linear system.
Returns
----------
x: array.
The converged solution.
err: float
The absolute error np.linalg.norm(A.dot(x) - b)
Other parameters
----------
x0: array.
Starting guess for the solution.
tol: float.
Tolerance to achieve. The algorithm terminates when the relative
residual is below tol.
maxiter: integer.
Maximum number of iterations. Iteration will stop
after maxiter steps even if the specified tolerance has not
been achieved.
"""
n = b.size
assert A.n == n
assert A.m == n
b_norm = np.linalg.norm(b)
# Jacobi pre-conditioner
kvec = A.diag
# For diag elem < 1e-6 we keep 1e-6.
kvec = np.where(kvec > 1.e-6, kvec, 1.e-6)
# Initial guess
if x0 is None:
x = np.zeros(n)
else:
x = x0
r = b - A.dot(x)
w = r/kvec
p = np.zeros(n)
beta = 0.0
rho = np.dot(r, w)
k = 0
# Following C. T. Kelley
while (np.sqrt(abs(rho)) > tol*b_norm) and (k < maxiter):
p = w+beta*p
z = A.dot(p)
alpha = rho/np.dot(p, z)
r = r - alpha*z
w = r/kvec
rhoold = rho
rho = np.dot(r, w)
x = x + alpha*p
beta = rho/rhoold
#err = np.linalg.norm(A.dot(x) - b) # absolute accuracy - not used
k += 1
err = np.linalg.norm(A.dot(x) - b)
return x, err
# The following private functions:
# :func:`_inv22_vectorized`
# :func:`_safe_inv22_vectorized`
# :func:`_pseudo_inv22sym_vectorized`
# :func:`_prod_vectorized`
# :func:`_scalar_vectorized`
# :func:`_transpose_vectorized`
# :func:`_roll_vectorized`
# :func:`_to_matrix_vectorized`
# :func:`_extract_submatrices`
# provide fast numpy implementation of some standard operations on arrays of
# matrices - stored as (:, n_rows, n_cols)-shaped np.arrays.
def _inv22_vectorized(M):
"""
Inversion of arrays of (2,2) matrices.
"""
assert (M.ndim == 3)
assert (M.shape[-2:] == (2, 2))
M_inv = np.empty_like(M)
delta_inv = np.reciprocal(M[:, 0, 0]*M[:, 1, 1] - M[:, 0, 1]*M[:, 1, 0])
M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv
M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv
M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv
M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv
return M_inv
# Development note: Dealing with pathologic 'flat' triangles in the
# CubicTriInterpolator code and impact on (2,2)-matrix inversion functions
# :func:`_safe_inv22_vectorized` and :func:`_pseudo_inv22sym_vectorized`.
#
# Goals:
# 1) The CubicTriInterpolator should be able to handle flat or almost flat
# triangles without raising an error,
# 2) These degenerated triangles should have no impact on the automatic dof
# calculation (associated with null weight for the _DOF_estimator_geom and
# with null energy for the _DOF_estimator_min_E),
# 3) Linear patch test should be passed exactly on degenerated meshes,
# 4) Interpolation (with :meth:`_interpolate_single_key` or
# :meth:`_interpolate_multi_key`) shall be correctly handled even *inside*
# the pathologic triangles, to interact correctly with a TriRefiner class.
#
# Difficulties:
# Flat triangles have rank-deficient *J* (so-called jacobian matrix) and
# *metric* (the metric tensor = J x J.T). Computation of the local
# tangent plane is also problematic.
#
# Implementation:
# Most of the time, when computing the inverse of a rank-deficient matrix it
# is safe to simply return the null matrix (which is the implementation in
# :func:`_safe_inv22_vectorized`). This is because of point 2), itself
# enforced by:
# - null area hence null energy in :class:`_DOF_estimator_min_E`
# - angles close or equal to 0 or np.pi hence null weight in
# :class:`_DOF_estimator_geom`.
# Note that the function angle -> weight is continuous and maximum for an
# angle np.pi/2 (refer to :meth:`compute_geom_weights`)
# The exception is the computation of barycentric coordinates, which is done
# by inversion of the *metric* matrix. In this case, we need to compute a set
# of valid coordinates (1 among numerous possibilities), to ensure point 4).
# We benefit here from the symmetry of metric = J x J.T, which makes it easier
# to compute a pseudo-inverse in :func:`_pseudo_inv22sym_vectorized`
def _safe_inv22_vectorized(M):
"""
Inversion of arrays of (2,2) matrices, returns 0 for rank-deficient
matrices.
*M* : array of (2,2) matrices to inverse, shape (n,2,2)
"""
assert M.ndim == 3
assert M.shape[-2:] == (2, 2)
M_inv = np.empty_like(M)
prod1 = M[:, 0, 0]*M[:, 1, 1]
delta = prod1 - M[:, 0, 1]*M[:, 1, 0]
# We set delta_inv to 0. in case of a rank deficient matrix ; a
# rank-deficient input matrix *M* will lead to a null matrix in output
rank2 = (np.abs(delta) > 1e-8*np.abs(prod1))
if np.all(rank2):
# Normal 'optimized' flow.
delta_inv = 1./delta
else:
# 'Pathologic' flow.
delta_inv = np.zeros(M.shape[0])
delta_inv[rank2] = 1./delta[rank2]
M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv
M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv
M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv
M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv
return M_inv
def _pseudo_inv22sym_vectorized(M):
"""
Inversion of arrays of (2,2) SYMMETRIC matrices ; returns the
(Moore-Penrose) pseudo-inverse for rank-deficient matrices.
In case M is of rank 1, we have M = trace(M) x P where P is the orthogonal
projection on Im(M), and we return trace(M)^-1 x P == M / trace(M)**2
In case M is of rank 0, we return the null matrix.
*M* : array of (2,2) matrices to inverse, shape (n,2,2)
"""
assert M.ndim == 3
assert M.shape[-2:] == (2, 2)
M_inv = np.empty_like(M)
prod1 = M[:, 0, 0]*M[:, 1, 1]
delta = prod1 - M[:, 0, 1]*M[:, 1, 0]
rank2 = (np.abs(delta) > 1e-8*np.abs(prod1))
if np.all(rank2):
# Normal 'optimized' flow.
M_inv[:, 0, 0] = M[:, 1, 1] / delta
M_inv[:, 0, 1] = -M[:, 0, 1] / delta
M_inv[:, 1, 0] = -M[:, 1, 0] / delta
M_inv[:, 1, 1] = M[:, 0, 0] / delta
else:
# 'Pathologic' flow.
# Here we have to deal with 2 sub-cases
# 1) First sub-case: matrices of rank 2:
delta = delta[rank2]
M_inv[rank2, 0, 0] = M[rank2, 1, 1] / delta
M_inv[rank2, 0, 1] = -M[rank2, 0, 1] / delta
M_inv[rank2, 1, 0] = -M[rank2, 1, 0] / delta
M_inv[rank2, 1, 1] = M[rank2, 0, 0] / delta
# 2) Second sub-case: rank-deficient matrices of rank 0 and 1:
rank01 = ~rank2
tr = M[rank01, 0, 0] + M[rank01, 1, 1]
tr_zeros = (np.abs(tr) < 1.e-8)
sq_tr_inv = (1.-tr_zeros) / (tr**2+tr_zeros)
#sq_tr_inv = 1. / tr**2
M_inv[rank01, 0, 0] = M[rank01, 0, 0] * sq_tr_inv
M_inv[rank01, 0, 1] = M[rank01, 0, 1] * sq_tr_inv
M_inv[rank01, 1, 0] = M[rank01, 1, 0] * sq_tr_inv
M_inv[rank01, 1, 1] = M[rank01, 1, 1] * sq_tr_inv
return M_inv
def _prod_vectorized(M1, M2):
"""
Matrix product between arrays of matrices, or a matrix and an array of
matrices (*M1* and *M2*)
"""
sh1 = M1.shape
sh2 = M2.shape
assert len(sh1) >= 2
assert len(sh2) >= 2
assert sh1[-1] == sh2[-2]
ndim1 = len(sh1)
t1_index = range(ndim1-2) + [ndim1-1, ndim1-2]
return np.sum(np.transpose(M1, t1_index)[..., np.newaxis] *
M2[..., np.newaxis, :], -3)
def _scalar_vectorized(scalar, M):
"""
Scalar product between scalars and matrices.
"""
return scalar[:, np.newaxis, np.newaxis]*M
def _transpose_vectorized(M):
"""
Transposition of an array of matrices *M*.
"""
ndim = M.ndim
assert ndim == 3
return np.transpose(M, [0, ndim-1, ndim-2])
def _roll_vectorized(M, roll_indices, axis):
"""
Rolls an array of matrices along an axis according to an array of indices
*roll_indices*
*axis* can be either 0 (rolls rows) or 1 (rolls columns).
"""
assert axis in [0, 1]
ndim = M.ndim
assert ndim == 3
ndim_roll = roll_indices.ndim
assert ndim_roll == 1
sh = M.shape
r, c = sh[-2:]
assert sh[0] == roll_indices.shape[0]
vec_indices = np.arange(sh[0], dtype=np.int32)
# Builds the rolled matrix
M_roll = np.empty_like(M)
if axis == 0:
for ir in range(r):
for ic in range(c):
M_roll[:, ir, ic] = M[vec_indices, (-roll_indices+ir) % r, ic]
elif axis == 1:
for ir in range(r):
for ic in range(c):
M_roll[:, ir, ic] = M[vec_indices, ir, (-roll_indices+ic) % c]
return M_roll
def _to_matrix_vectorized(M):
"""
Builds an array of matrices from individuals np.arrays of identical
shapes.
*M*: ncols-list of nrows-lists of shape sh.
Returns M_res np.array of shape (sh, nrow, ncols) so that:
M_res[...,i,j] = M[i][j]
"""
assert isinstance(M, (tuple, list))
assert all([isinstance(item, (tuple, list)) for item in M])
c_vec = np.asarray([len(item) for item in M])
assert np.all(c_vec-c_vec[0] == 0)
r = len(M)
c = c_vec[0]
M00 = np.asarray(M[0][0])
dt = M00.dtype
sh = [M00.shape[0], r, c]
M_ret = np.empty(sh, dtype=dt)
for irow in range(r):
for icol in range(c):
M_ret[:, irow, icol] = np.asarray(M[irow][icol])
return M_ret
def _extract_submatrices(M, block_indices, block_size, axis):
"""
Extracts selected blocks of a matrices *M* depending on parameters
*block_indices* and *block_size*.
Returns the array of extracted matrices *Mres* so that:
M_res[...,ir,:] = M[(block_indices*block_size+ir), :]
"""
assert block_indices.ndim == 1
assert axis in [0, 1]
r, c = M.shape
if axis == 0:
sh = [block_indices.shape[0], block_size, c]
elif axis == 1:
sh = [block_indices.shape[0], r, block_size]
dt = M.dtype
M_res = np.empty(sh, dtype=dt)
if axis == 0:
for ir in range(block_size):
M_res[:, ir, :] = M[(block_indices*block_size+ir), :]
elif axis == 1:
for ic in range(block_size):
M_res[:, :, ic] = M[:, (block_indices*block_size+ic)]
return M_res
|