This file is indexed.

/usr/share/pyshared/matplotlib/tri/trirefine.py is in python-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
Mesh refinement for triangular grids.
"""
from __future__ import print_function
import numpy as np
from matplotlib.tri.triangulation import Triangulation
import matplotlib.tri.triinterpolate


class TriRefiner(object):
    """
    Abstract base class for classes implementing mesh refinement.

    A TriRefiner encapsulates a Triangulation object and provides tools for
    mesh refinement and interpolation.

    Derived classes must implements:

        - ``refine_triangulation(return_tri_index=False, **kwargs)`` , where
          the optional keyword arguments *kwargs* are defined in each
          TriRefiner concrete implementation, and which returns :

              - a refined triangulation
              - optionally (depending on *return_tri_index*), for each
                point of the refined triangulation: the index of
                the initial triangulation triangle to which it belongs.

        - ``refine_field(z, triinterpolator=None, **kwargs)`` , where:

              - *z* array of field values (to refine) defined at the base
                triangulation nodes
              - *triinterpolator* is a
                :class:`~matplotlib.tri.TriInterpolator` (optional)
              - the other optional keyword arguments *kwargs* are defined in
                each TriRefiner concrete implementation
          and which returns (as a tuple) a refined triangular mesh and the
          interpolated values of the field at the refined triangulation nodes.

    """
    def __init__(self, triangulation):
        if not isinstance(triangulation, Triangulation):
            raise ValueError("Expected a Triangulation object")
        self._triangulation = triangulation


class UniformTriRefiner(TriRefiner):
    """
    Uniform mesh refinement by recursive subdivisions.

    Parameters
    ----------
    triangulation : :class:`~matplotlib.tri.Triangulation`
                     The encapsulated triangulation (to be refined)
    """
#    See Also
#    --------
#    :class:`~matplotlib.tri.CubicTriInterpolator` and
#    :class:`~matplotlib.tri.TriAnalyzer`.
#    """
    def __init__(self, triangulation):
        TriRefiner.__init__(self, triangulation)

    def refine_triangulation(self, return_tri_index=False, subdiv=3):
        """
        Computes an uniformly refined triangulation *refi_triangulation* of
        the encapsulated :attr:`triangulation`.

        This function refines the encapsulated triangulation by splitting each
        father triangle into 4 child sub-triangles built on the edges midside
        nodes, recursively (level of recursion *subdiv*).
        In the end, each triangle is hence divided into ``4**subdiv``
        child triangles.
        The default value for *subdiv* is 3 resulting in 64 refined
        subtriangles for each triangle of the initial triangulation.

        Parameters
        ----------
        return_tri_index : boolean, optional
            Boolean indicating whether an index table indicating the father
            triangle index of each point will be returned. Default value
            False.
        subdiv : integer, optional
            Recursion level for the subdivision. Defaults value 3.
            Each triangle will be divided into ``4**subdiv`` child triangles.

        Returns
        -------
        refi_triangulation : :class:`~matplotlib.tri.Triangulation`
            The returned refined triangulation
        found_index : array-like of integers
            Index of the initial triangulation containing triangle, for each
            point of *refi_triangulation*.
            Returned only if *return_tri_index* is set to True.

        """
        refi_triangulation = self._triangulation
        ntri = refi_triangulation.triangles.shape[0]

        # Computes the triangulation ancestors numbers in the reference
        # triangulation.
        ancestors = np.arange(ntri, dtype=np.int32)
        for _ in range(subdiv):
            refi_triangulation, ancestors = self._refine_triangulation_once(
                refi_triangulation, ancestors)
        refi_npts = refi_triangulation.x.shape[0]
        refi_triangles = refi_triangulation.triangles

        # Now we compute found_index table if needed
        if return_tri_index:
            # We have to initialize found_index with -1 because some nodes
            # may very well belong to no triangle at all, e.g., in case of
            # Delaunay Triangulation with DuplicatePointWarning.
            found_index = - np.ones(refi_npts, dtype=np.int32)
            tri_mask = self._triangulation.mask
            if tri_mask is None:
                found_index[refi_triangles] = np.repeat(ancestors, 3)
            else:
                # There is a subtlety here: we want to avoid whenever possible
                # that refined points container is a masked triangle (which
                # would result in artifacts in plots).
                # So we impose the numbering from masked ancestors first,
                # then overwrite it with unmasked ancestor numbers.
                ancestor_mask = tri_mask[ancestors]
                found_index[refi_triangles[ancestor_mask, :]
                            ] = np.repeat(ancestors[ancestor_mask], 3)
                found_index[refi_triangles[~ancestor_mask, :]
                            ] = np.repeat(ancestors[~ancestor_mask], 3)
            return refi_triangulation, found_index
        else:
            return refi_triangulation

    def refine_field(self, z, triinterpolator=None, subdiv=3):
        """
        Refines a field defined on the encapsulated triangulation.

        Returns *refi_tri* (refined triangulation), *refi_z* (interpolated
        values of the field at the node of the refined triangulation).

        Parameters
        ----------
        z : 1d-array-like of length ``n_points``
            Values of the field to refine, defined at the nodes of the
            encapsulated triangulation. (``n_points`` is the number of points
            in the initial triangulation)
        triinterpolator : :class:`~matplotlib.tri.TriInterpolator`, optional
            Interpolator used for field interpolation. If not specified,
            a :class:`~matplotlib.tri.CubicTriInterpolator` will
            be used.
        subdiv : integer, optional
            Recursion level for the subdivision. Defaults to 3.
            Each triangle will be divided into ``4**subdiv`` child triangles.

        Returns
        -------
        refi_tri : :class:`~matplotlib.tri.Triangulation` object
                     The returned refined triangulation
        refi_z : 1d array of length: *refi_tri* node count.
                   The returned interpolated field (at *refi_tri* nodes)

        Examples
        --------
        The main application of this method is to plot high-quality
        iso-contours on a coarse triangular grid (e.g., triangulation built
        from relatively sparse test data):

        .. plot:: mpl_examples/pylab_examples/tricontour_smooth_user.py

        """
        if triinterpolator is None:
            interp = matplotlib.tri.CubicTriInterpolator(
                self._triangulation, z)
        else:
            if not isinstance(triinterpolator,
                              matplotlib.tri.TriInterpolator):
                raise ValueError("Expected a TriInterpolator object")
            interp = triinterpolator

        refi_tri, found_index = self.refine_triangulation(
            subdiv=subdiv, return_tri_index=True)
        refi_z = interp._interpolate_multikeys(
            refi_tri.x, refi_tri.y, tri_index=found_index)[0]
        return refi_tri, refi_z

    @staticmethod
    def _refine_triangulation_once(triangulation, ancestors=None):
        """
        This function refines a matplotlib.tri *triangulation* by splitting
        each triangle into 4 child-masked_triangles built on the edges midside
        nodes.
        The masked triangles, if present, are also splitted but their children
        returned masked.

        If *ancestors* is not provided, returns only a new triangulation:
        child_triangulation.

        If the array-like key table *ancestor* is given, it shall be of shape
        (ntri,) where ntri is the number of *triangulation* masked_triangles.
        In this case, the function returns
        (child_triangulation, child_ancestors)
        child_ancestors is defined so that the 4 child masked_triangles share
        the same index as their father: child_ancestors.shape = (4 * ntri,).

        """
        x = triangulation.x
        y = triangulation.y

        #    According to tri.triangulation doc:
        #         neighbors[i,j] is the triangle that is the neighbor
        #         to the edge from point index masked_triangles[i,j] to point
        #         index masked_triangles[i,(j+1)%3].
        neighbors = triangulation.neighbors
        triangles = triangulation.triangles
        npts = np.shape(x)[0]
        ntri = np.shape(triangles)[0]
        if ancestors is not None:
            ancestors = np.asarray(ancestors)
            if np.shape(ancestors) != (ntri,):
                raise ValueError(
                    "Incompatible shapes provide for triangulation"
                    ".masked_triangles and ancestors: {0} and {1}".format(
                        np.shape(triangles), np.shape(ancestors)))

        # Initiating tables refi_x and refi_y of the refined triangulation
        # points
        # hint: each apex is shared by 2 masked_triangles except the borders.
        borders = np.sum(neighbors == -1)
        added_pts = (3*ntri + borders) / 2
        refi_npts = npts + added_pts
        refi_x = np.zeros(refi_npts)
        refi_y = np.zeros(refi_npts)

        # First part of refi_x, refi_y is just the initial points
        refi_x[:npts] = x
        refi_y[:npts] = y

        # Second part contains the edge midside nodes.
        # Each edge belongs to 1 triangle (if border edge) or is shared by 2
        # masked_triangles (interior edge).
        # We first build 2 * ntri arrays of edge starting nodes (edge_elems,
        # edge_apexes) ; we then extract only the masters to avoid overlaps.
        # The so-called 'master' is the triangle with biggest index
        # The 'slave' is the triangle with lower index
        # (can be -1 if border edge)
        # For slave and master we will identify the apex pointing to the edge
        # start
        edge_elems = np.ravel(np.vstack([np.arange(ntri, dtype=np.int32),
                                         np.arange(ntri, dtype=np.int32),
                                         np.arange(ntri, dtype=np.int32)]))
        edge_apexes = np.ravel(np.vstack([np.zeros(ntri, dtype=np.int32),
                                          np.ones(ntri, dtype=np.int32),
                                          np.ones(ntri, dtype=np.int32)*2]))
        edge_neighbors = neighbors[edge_elems, edge_apexes]
        mask_masters = (edge_elems > edge_neighbors)

        # Identifying the "masters" and adding to refi_x, refi_y vec
        masters = edge_elems[mask_masters]
        apex_masters = edge_apexes[mask_masters]
        x_add = (x[triangles[masters, apex_masters]] +
                 x[triangles[masters, (apex_masters+1) % 3]]) * 0.5
        y_add = (y[triangles[masters, apex_masters]] +
                 y[triangles[masters, (apex_masters+1) % 3]]) * 0.5
        refi_x[npts:] = x_add
        refi_y[npts:] = y_add

        # Building the new masked_triangles ; each old masked_triangles hosts
        # 4 new masked_triangles
        # there are 6 pts to identify per 'old' triangle, 3 new_pt_corner and
        # 3 new_pt_midside
        new_pt_corner = triangles

        # What is the index in refi_x, refi_y of point at middle of apex iapex
        #  of elem ielem ?
        # If ielem is the apex master: simple count, given the way refi_x was
        #  built.
        # If ielem is the apex slave: yet we do not know ; but we will soon
        # using the neighbors table.
        new_pt_midside = np.empty([ntri, 3], dtype=np.int32)
        cum_sum = npts
        for imid in range(3):
            mask_st_loc = (imid == apex_masters)
            n_masters_loc = np.sum(mask_st_loc)
            elem_masters_loc = masters[mask_st_loc]
            new_pt_midside[:, imid][elem_masters_loc] = np.arange(
                n_masters_loc, dtype=np.int32) + cum_sum
            cum_sum += n_masters_loc

        # Now dealing with slave elems.
        # for each slave element we identify the master and then the inode
        # onces slave_masters is indentified, slave_masters_apex is such that:
        # neighbors[slaves_masters, slave_masters_apex] == slaves
        mask_slaves = np.logical_not(mask_masters)
        slaves = edge_elems[mask_slaves]
        slaves_masters = edge_neighbors[mask_slaves]
        diff_table = np.abs(neighbors[slaves_masters, :] -
                            np.outer(slaves, np.ones(3, dtype=np.int32)))
        slave_masters_apex = np.argmin(diff_table, axis=1)
        slaves_apex = edge_apexes[mask_slaves]
        new_pt_midside[slaves, slaves_apex] = new_pt_midside[
            slaves_masters, slave_masters_apex]

        # Builds the 4 child masked_triangles
        child_triangles = np.empty([ntri*4, 3], dtype=np.int32)
        child_triangles[0::4, :] = np.vstack([
            new_pt_corner[:, 0], new_pt_midside[:, 0],
            new_pt_midside[:, 2]]).T
        child_triangles[1::4, :] = np.vstack([
            new_pt_corner[:, 1], new_pt_midside[:, 1],
            new_pt_midside[:, 0]]).T
        child_triangles[2::4, :] = np.vstack([
            new_pt_corner[:, 2], new_pt_midside[:, 2],
            new_pt_midside[:, 1]]).T
        child_triangles[3::4, :] = np.vstack([
            new_pt_midside[:, 0], new_pt_midside[:, 1],
            new_pt_midside[:, 2]]).T
        child_triangulation = Triangulation(refi_x, refi_y, child_triangles)

        # Builds the child mask
        if triangulation.mask is not None:
            child_triangulation.set_mask(np.repeat(triangulation.mask, 4))

        if ancestors is None:
            return child_triangulation
        else:
            return child_triangulation, np.repeat(ancestors, 4)