/usr/share/pyshared/MMTK/ChargeFit.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | # This module contains code for charge fitting.
#
# Written by Konrad Hinsen
#
"""
Fit of point chages to an electrostatic potential surface
This module implements a numerically stable method (based on
Singular Value Decomposition) to fit point charges to values of an
electrostatic potential surface. Two types of constraints are
avaiable: a constraint on the total charge of the system or a subset
of the system, and constraints that force the charges of several atoms
to be equal. There is also a utility function that selects suitable
evaluation points for the electrostatic potential surface. For the
potential evaluation itself, some quantum chemistry program is needed.
The charge fitting method is described in:
| K. Hinsen and B. Roux,
| An accurate potential for simulating proton transfer in acetylacetone,
| J. Comp. Chem. 18, 1997: 368
See also Examples/Miscellaneous/charge_fit.py.
"""
__docformat__ = 'restructuredtext'
from MMTK import Random, Units, Utility
from Scientific.Geometry import Vector
from Scientific import N
from Scientific import LA
class ChargeFit(object):
"""
Fit of point charges to an electrostatic potential surface
A ChargeFit object acts like a dictionary that stores the fitted charge
value for each atom in the system.
"""
def __init__(self, system, points, constraints = None):
"""
:param system: any chemical object (usually a molecule)
:param points: a list of point/potential pairs (a vector for the
evaluation point, a number for the potential),
or a dictionary whose keys are Configuration objects
and whose values are lists of point/potential pairs.
The latter case permits combined fits for several
conformations of the system.
:param constraints: an optional list of constraint objects
(:class:`~MMTK.ChargeFit.TotalChargeConstraint`
and/or
:class:`~MMTK.ChargeFit.EqualityConstraint` objects).
If the constraints are inconsistent, a warning is
printed and the result will satisfy the
constraints only in a least-squares sense.
"""
self.atoms = system.atomList()
if type(points) != type({}):
points = {None: points}
if constraints is not None:
constraints = ChargeConstraintSet(self.atoms, constraints)
npoints = sum([len(v) for v in points.values()])
natoms = len(self.atoms)
if npoints < natoms:
raise ValueError("Not enough data points for fit")
m = N.zeros((npoints, natoms), N.Float)
phi = N.zeros((npoints,), N.Float)
i = 0
for conf, pointlist in points.items():
for r, p in pointlist:
for j in range(natoms):
m[i, j] = 1./(r-self.atoms[j].position(conf)).length()
phi[i] = p
i = i + 1
m = m*Units.electrostatic_energy
m_test = m
phi_test = phi
if constraints is not None:
phi -= N.dot(m, constraints.bi_c)
m = N.dot(m, constraints.p)
c_rank = constraints.rank
else:
c_rank = 0
u, s, vt = LA.singular_value_decomposition(m)
s_test = s[:len(s)-c_rank]
cutoff = 1.e-10*N.maximum.reduce(s_test)
nonzero = N.repeat(s_test, N.not_equal(s_test, 0.))
self.rank = len(nonzero)
self.condition = N.maximum.reduce(nonzero) / \
N.minimum.reduce(nonzero)
self.effective_rank = N.add.reduce(N.greater(s, cutoff))
if self.effective_rank < self.rank:
self.effective_condition = N.maximum.reduce(nonzero) / cutoff
else:
self.effective_condition = self.condition
if self.effective_rank < natoms-c_rank:
Utility.warning('Not all charges are uniquely determined' +
' by the available data')
for i in range(natoms):
if s[i] > cutoff:
s[i] = 1./s[i]
else:
s[i] = 0.
q = N.dot(N.transpose(vt),
s*N.dot(N.transpose(u)[:natoms, :], phi))
if constraints is not None:
q = constraints.bi_c + N.dot(constraints.p, q)
deviation = N.dot(m_test, q)-phi_test
self.rms_error = N.sqrt(N.dot(deviation, deviation))
deviation = N.fabs(deviation/phi_test)
self.relative_rms_error = N.sqrt(N.dot(deviation, deviation))
self.charges = {}
for i in range(natoms):
self.charges[self.atoms[i]] = q[i]
def __getitem__(self, item):
return self.charges[item]
class TotalChargeConstraint(object):
"""
Constraint on the total system charge
To be used with :class:`~MMTK.ChargeFit.ChargeFit`
"""
def __init__(self, system, charge):
"""
:param system: any chamical object whose total charge
is to be constrained
:param charge: the total charge value
:type charge: number
"""
self.atoms = system.atomList()
self.charge = charge
def __len__(self):
return 1
def setCoefficients(self, atoms, b, c, i):
for a in self.atoms:
j = atoms.index(a)
b[i, j] = 1.
c[i] = self.charge
class EqualityConstraint(object):
"""
Constraint forcing two charges to be equal
To be used with :class:`~MMTK.ChargeFit.ChargeFit`
Any atom may occur in more than one EqualityConstraint object,
in order to keep the charges of more than two atoms equal.
"""
def __init__(self, atom1, atom2):
"""
:param atom1: the first atom in the equality relation
:type atom1: :class:`~MMTK.ChemicalObjects.Atom`
:param atom2: the second atom in the equality relation
:type atom2: :class:`~MMTK.ChemicalObjects.Atom`
"""
self.a1 = atom1
self.a2 = atom2
def __len__(self):
return 1
def setCoefficients(self, atoms, b, c, i):
b[i, atoms.index(self.a1)] = 1.
b[i, atoms.index(self.a2)] = -1.
c[i] = 0.
class ChargeConstraintSet(object):
def __init__(self, atoms, constraints):
self.atoms = atoms
natoms = len(self.atoms)
nconst = sum([len(c) for c in constraints])
b = N.zeros((nconst, natoms), N.Float)
c = N.zeros((nconst,), N.Float)
i = 0
for cons in constraints:
cons.setCoefficients(self.atoms, b, c, i)
i = i + len(cons)
u, s, vt = LA.singular_value_decomposition(b)
self.rank = 0
for i in range(min(natoms, nconst)):
if s[i] > 0.:
self.rank = self.rank + 1
self.b = b
self.bi = LA.generalized_inverse(b)
self.p = N.identity(natoms)-N.dot(self.bi, self.b)
self.c = c
self.bi_c = N.dot(self.bi, c)
c_test = N.dot(self.b, self.bi_c)
if N.add.reduce((c_test-c)**2)/nconst > 1.e-12:
Utility.warning("The charge constraints are inconsistent."
" They will be applied as a least-squares"
" condition.")
def evaluationPoints(system, n, smallest = 0.3, largest = 0.5):
"""
Generate points in space around a molecule that are suitable
for potential evaluation in view of a subsequent charge fit.
The points are chosen at random and uniformly in a shell around the system.
:param system: the chemical object for which the charges
will be fitted
:param n: the number of evaluation points to be generated
:param smallest: the smallest allowed distance of any evaluation
point from any non-hydrogen atom
:param largest: the largest allowed value for the distance
from an evaluation point to the nearest atom
:returns: a list of evaluation points
:rtype: list of Scientific.Geometry.Vector
"""
atoms = system.atomList()
p1, p2 = system.boundingBox()
margin = Vector(largest, largest, largest)
p1 -= margin
p2 += margin
a, b, c = tuple(p2-p1)
offset = 0.5*Vector(a, b, c)
points = []
while len(points) < n:
p = p1 + Random.randomPointInBox(a, b, c) + offset
m = 2*largest
ok = 1
for atom in atoms:
d = (p-atom.position()).length()
m = min(m, d)
if d < smallest and atom.symbol != 'H':
ok = 0
if not ok: break
if ok and m <= largest:
points.append(p)
return points
if __name__ == '__main__':
from MMTK import *
a1 = Atom('C', position=Vector(-0.05,0.,0.))
a2 = Atom('C', position=Vector( 0.05,0.,0.))
system = Collection(a1, a2)
a1.charge = -0.75
a2.charge = 0.15
points = []
for r in evaluationPoints(system, 50):
p = 0.
for atom in system.atomList():
p = p + atom.charge/(r-atom.position()).length()
points.append((r, p*Units.electrostatic_energy))
constraints = [TotalChargeConstraint(system, 0.)]
constraints = [EqualityConstraint(a1, a2)]
constraints = None
f = ChargeFit(system, points, constraints)
print f[a1], a1.charge
print f[a2], a2.charge
|