/usr/share/pyshared/MMTK/ChemicalObjects.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 | # This module implements classes that represent atoms, molecules, and
# complexes. They are made as copies from blueprints in the database.
#
# Written by Konrad Hinsen
#
"""
Atoms, groups, molecules and similar objects
"""
__docformat__ = 'restructuredtext'
from MMTK import Bonds, Collections, Database, \
Units, Utility, Visualization
from Scientific.Geometry import Vector
from Scientific.Geometry import Objects3D
from Scientific import N
import copy
#
# The base class for all chemical objects.
#
class ChemicalObject(Collections.GroupOfAtoms, Visualization.Viewable):
"""
General chemical object
This is an abstract base class that implements methods which
are applicable to any chemical object (atom, molecule, etc.).
"""
def __init__(self, blueprint, memo):
if isinstance(blueprint, basestring):
blueprint = self.blueprintclass(blueprint)
self.type = blueprint.type
if hasattr(blueprint, 'name'):
self.name = blueprint.name
if memo is None: memo = {}
memo[id(blueprint)] = self
for attr in blueprint.instance:
setattr(self, attr,
Database.instantiate(getattr(blueprint, attr), memo))
is_chemical_object = True
is_incomplete = False
is_modified = False
__safe_for_unpickling__ = True
__had_initargs__ = True
def __hash__(self):
return id(self)
def __getattr__(self, attr):
if attr[:1] == '_' or attr[:3] == 'is_':
raise AttributeError
else:
return getattr(self.type, attr)
def isSubsetModel(self):
return False
def addProperties(self, properties):
if properties:
for item in properties.items():
if hasattr(self, item[0]) and item[0] != 'name':
raise TypeError('attribute '+item[0]+' already defined')
setattr(self, item[0], item[1])
def binaryProperty(self, properties, name, default):
value = default
try:
value = properties[name]
del properties[name]
except KeyError:
pass
return value
def topLevelChemicalObject(self):
"""Returns the highest-level chemical object of which
the current object is a part."""
if self.parent is None or not isChemicalObject(self.parent):
return self
else:
return self.parent.topLevelChemicalObject()
def universe(self):
"""
:returns: the universe to which the object belongs,
or None if the object does not belong to any universe
:rtype: :class:`~MMTK.Universe.Universe`
"""
if self.parent is None:
return None
else:
return self.parent.universe()
def bondedUnits(self):
"""
:returns: the largest subobjects which can contain bonds.
There are no bonds between any of the subobjects
in the list.
:rtype: list
"""
return [self]
def atomList(self):
"""
:returns: a list containing all atoms in the object
:rtype: list
"""
pass
def atomIterator(self):
"""
:returns: an iterator over all atoms in the object
:rtype: iterator
"""
pass
def fullName(self):
"""
:returns: the full name of the object. The full name consists
of the proper name of the object preceded by
the full name of its parent separated by a dot.
:rtype: str
"""
if self.parent is None or not isChemicalObject(self.parent):
return self.name
else:
return self.parent.fullName() + '.' + self.name
def degreesOfFreedom(self):
"""
:returns: the number of degrees of freedom of the object
:rtype: int
"""
return Collections.GroupOfAtoms.degreesOfFreedom(self) \
- self.numberOfDistanceConstraints()
def distanceConstraintList(self):
"""
:returns: the distance constraints of the object
:rtype: list
"""
return []
def _distanceConstraintList(self):
return []
def traverseBondTree(self, function = None):
return []
def numberOfDistanceConstraints(self):
"""
:returns: the number of distance constraints of the object
:rtype: int
"""
return 0
def setBondConstraints(self, universe=None):
"""
Sets distance constraints for all bonds.
"""
pass
def removeDistanceConstraints(self, universe=None):
"""
Removes all distance constraints.
"""
pass
def setRigidBodyConstraints(self, universe = None):
"""
Sets distance constraints that make the object fully rigid.
"""
if universe is None:
universe = self.universe()
if universe is None:
import Universe
universe = Universe.InfiniteUniverse()
atoms = self.atomList()
if len(atoms) > 1:
self.addDistanceConstraint(atoms[0], atoms[1],
universe.distance(atoms[0], atoms[1]))
if len(atoms) > 2:
self.addDistanceConstraint(atoms[0], atoms[2],
universe.distance(atoms[0], atoms[2]))
self.addDistanceConstraint(atoms[1], atoms[2],
universe.distance(atoms[1], atoms[2]))
if len(atoms) > 3:
for a in atoms[3:]:
self.addDistanceConstraint(atoms[0], a,
universe.distance(atoms[0], a))
self.addDistanceConstraint(atoms[1], a,
universe.distance(atoms[1], a))
self.addDistanceConstraint(atoms[2], a,
universe.distance(atoms[2], a))
def getAtomProperty(self, atom, property):
"""
Retrieve atom properties from the chemical database.
Note: the property is first looked up in the database entry
for the object on which the method is called. If the lookup
fails, the complete hierarchy from the atom to the top-level
object is constructed and traversed starting from the top-level
object until the property is found. This permits database entries
for higher-level objects to override property definitions in
its constituents.
At the atom level, the property is retrieved from an attribute
with the same name. This means that properties at the atom
level can be defined both in the chemical database and for
each atom individually by assignment to the attribute.
:returns: the value of the specified property for the given
atom from the chemical database.
"""
def writeXML(self, file, memo, toplevel=1):
if self.type is None:
name = 'm' + `memo['counter']`
memo['counter'] = memo['counter'] + 1
memo[id(self)] = name
atoms = copy.copy(self.atoms)
bonds = copy.copy(self.bonds)
for group in self.groups:
group.writeXML(file, memo, 0)
for atom in group.atoms:
atoms.remove(atom)
for bond in group.bonds:
bonds.remove(bond)
file.write('<molecule id="%s">\n' % name)
for group in self.groups:
file.write(' <molecule ref="%s" title="%s"/>\n'
% (memo[id(group.type)], group.name))
if atoms:
file.write(' <atomArray>\n')
for atom in atoms:
file.write(' <atom title="%s" elementType="%s"/>\n'
% (atom.name, atom.type.symbol))
file.write(' </atomArray>\n')
if bonds:
file.write(' <bondArray>\n')
for bond in bonds:
a1n = self.relativeName(bond.a1)
a2n = self.relativeName(bond.a2)
file.write(' <bond atomRefs2="%s %s"/>\n' % (a1n, a2n))
file.write(' </bondArray>\n')
file.write('</molecule>\n')
else:
name = self.name
self.type.writeXML(file, memo)
atom_names = self.type.getXMLAtomOrder()
if toplevel:
return ['<molecule ref="%s"/>' % name]
else:
return None
def getXMLAtomOrder(self):
if self.type is None:
atoms = []
for group in self.groups:
atoms.extend(group.getXMLAtomOrder())
for atom in self.atoms:
if atom not in atoms:
atoms.append(atom)
else:
atom_names = self.type.getXMLAtomOrder()
atoms = []
for name in atom_names:
parts = name.split(':')
object = self
for attr in parts:
object = getattr(object, attr)
atoms.append(object)
return atoms
def relativeName(self, object):
name = ''
while object is not None and object != self:
name = object.name + ':' + name
object = object.parent
return name[:-1]
def relativeName_unused(self, object):
name = ''
while object is not None and object != self:
for attr, value in object.parent.__dict__.items():
if value is object:
name = attr + ':' + name
break
object = object.parent
return name[:-1]
def description(self, index_map = None):
tag = Utility.uniqueAttribute()
s = self._description(tag, index_map, 1)
for a in self.atomList():
delattr(a, tag)
return s
def __repr__(self):
return self.__class__.__name__ + ' ' + self.fullName()
__str__ = __repr__
def __copy__(self):
return copy.deepcopy(self, {id(self.parent): None})
# Type check
def isChemicalObject(object):
"""
:returns: True if object is a chemical object
"""
return hasattr(object, 'is_chemical_object')
#
# The second base class for all composite chemical objects.
#
class CompositeChemicalObject(object):
"""
Chemical object containing subobjects
This is an abstract base class that implements methods
which can be used with any composite chemical object,
i.e. any chemical object that is not an atom.
"""
def __init__(self, properties):
if properties.has_key('configuration'):
conf = properties['configuration']
self.configurations[conf].applyTo(self)
del properties['configuration']
elif hasattr(self, 'configurations') and \
self.configurations.has_key('default'):
self.configurations['default'].applyTo(self)
if properties.has_key('position'):
self.translateTo(properties['position'])
del properties['position']
self.addProperties(properties)
def atomList(self):
return self.atoms
def atomIterator(self):
return iter(self.atoms)
def setPosition(self, atom, position):
if atom.__class__ is Database.AtomReference:
atom = self.atoms[atom.number]
atom.setPosition(position)
def setIndex(self, atom, index):
if atom.__class__ is Database.AtomReference:
atom = self.atoms[atom.number]
atom.setIndex(index)
def getAtom(self, atom):
if atom.__class__ is Database.AtomReference:
atom = self.atoms[atom.number]
return atom
def getReference(self, atom):
if atom.__class__ is Database.AtomReference:
return atom
return Database.AtomReference(self.atoms.index(atom))
def getAtomProperty(self, atom, property, levels = None):
try:
return atom.__dict__[property]
except KeyError:
try:
return getattr(self, property)[self.getReference(atom)]
except (AttributeError, KeyError):
if levels is None:
object = atom
levels = []
while object != self:
levels.append(object)
object = object.parent
if not levels:
raise KeyError('Property ' + property +
' not defined for ', `atom`)
return levels[-1].getAtomProperty(atom, property, levels[:-1])
def deleteUndefinedAtoms(self):
delete = [a for a in self.atoms if a.position() is None]
for a in delete:
a.delete()
def _deleteAtom(self, atom):
self.atoms.remove(atom)
self.is_modified = True
self.type = None
if self.parent is not None:
self.parent._deleteAtom(atom)
def distanceConstraintList(self):
dc = self._distanceConstraintList()
for o in self._subunits():
dc = dc + o._distanceConstraintList()
return dc
def _distanceConstraintList(self):
try:
return self.distance_constraints
except AttributeError:
return []
def numberOfDistanceConstraints(self):
n = len(self._distanceConstraintList()) + \
sum(len(o._distanceConstraintList()) for o in self._subunits())
return n
def setBondConstraints(self, universe=None):
if universe is None:
universe = self.universe()
bond_database = universe.bondLengthDatabase()
for o in self.bondedUnits():
o._setBondConstraints(universe, bond_database)
def _setBondConstraints(self, universe, bond_database):
self.distance_constraints = []
for bond in self.bonds:
d = bond_database.bondLength(bond)
if d is None:
d = universe.distance(bond.a1, bond.a2)
self.addDistanceConstraint(bond.a1, bond.a2, d)
def addDistanceConstraint(self, atom1, atom2, distance):
try:
self.distance_constraints.append((atom1, atom2, distance))
except AttributeError:
self.distance_constraints = [(atom1, atom2, distance)]
def removeDistanceConstraints(self, universe=None):
try:
del self.distance_constraints
except AttributeError:
pass
for o in self._subunits():
o.removeDistanceConstraints()
def traverseBondTree(self, function = None):
self.setBondAttributes()
todo = [self.atoms[0]]
done = {todo[0]: True}
bonds = []
while todo:
next_todo = []
for atom in todo:
bonded = atom.bondedTo()
for other in bonded:
if not done.get(other, False):
if function is None:
bonds.append((atom, other))
else:
bonds.append((function(atom), function(other)))
next_todo.append(other)
done[other] = True
todo = next_todo
self.clearBondAttributes()
return bonds
def _description(self, tag, index_map, toplevel):
letter, kwargs = self._descriptionSpec()
s = [letter, '(', `self.name`, ',[']
s.extend([o._description(tag, index_map, 0) + ','
for o in self._subunits()])
s.extend([a._description(tag, index_map, 0) + ','
for a in self.atoms if not hasattr(a, tag)])
s.append(']')
if toplevel:
s.extend([',', `self._typeName()`])
if kwargs is not None:
s.extend([',', kwargs])
constraints = self._distanceConstraintList()
if constraints:
s.append(',dc=[')
if index_map is None:
s.extend(['(%d,%d,%f),' % (c[0].index, c[1].index, c[2])
for c in constraints])
else:
s.extend(['(%d,%d,%f),' % (index_map[c[0].index],
index_map[c[1].index], c[2])
for c in constraints])
s.append(']')
s.append(')')
return ''.join(s)
def _typeName(self):
return self.type.name
def _graphics(self, conf, distance_fn, model, module, options):
glist = []
for bu in self.bondedUnits():
for a in bu.atomList():
glist.extend(a._graphics(conf, distance_fn, model,
module, options))
if hasattr(bu, 'bonds'):
for b in bu.bonds:
glist.extend(b._graphics(conf, distance_fn, model,
module, options))
return glist
#
# The classes for atoms, groups, molecules, and complexes.
#
class Atom(ChemicalObject):
"""
Atom
"""
def __init__(self, atom_spec, _memo = None, **properties):
"""
:param atom_spec: a string (not case sensitive) specifying
the chemical element
:type atom_spec: str
:keyword position: the position of the atom
:type position: Scientific.Geometry.Vector
:keyword name: a name given to the atom
:type name: str
"""
Utility.uniqueID.registerObject(self)
ChemicalObject.__init__(self, atom_spec, _memo)
self._mass = self.type.average_mass
self.array = None
self.index = None
if properties.has_key('position'):
self.setPosition(properties['position'])
del properties['position']
self.addProperties(properties)
blueprintclass = Database.BlueprintAtom
def __getstate__(self):
state = copy.copy(self.__dict__)
if self.array is not None:
state['array'] = None
state['pos'] = Vector(self.array[self.index,:])
return state
def atomList(self):
return [self]
def atomIterator(self):
yield self
def setPosition(self, position):
"""
Changes the position of the atom.
:param position: the new position
:type position: Scientific.Geometry.Vector
"""
if position is None:
if self.array is None:
try: del self.pos
except AttributeError: pass
else:
self.array[self.index,0] = Utility.undefined
self.array[self.index,1] = Utility.undefined
self.array[self.index,2] = Utility.undefined
else:
if self.array is None:
self.pos = position
else:
self.array[self.index,0] = position[0]
self.array[self.index,1] = position[1]
self.array[self.index,2] = position[2]
translateTo = setPosition
def position(self, conf = None):
"""
:returns: the position in configuration conf. If conf is
'None', use the current configuration. If the atom has
not been assigned a position, the return value is None.
:rtype: Scientific.Geometry.Vector
"""
if conf is None:
if self.array is None:
try:
return self.pos
except AttributeError:
return None
else:
if N.logical_or.reduce(
N.greater(self.array[self.index, :],
Utility.undefined_limit)):
return None
else:
return Vector(self.array[self.index,:])
else:
return conf[self]
centerOfMass = position
def setMass(self, mass):
"""
Changes the mass of the atom.
:param mass: the mass
:type mass: float
"""
self._mass = mass
universe = self.universe()
if universe is not None:
universe._changed(True)
def getAtom(self, atom):
return self
def translateBy(self, vector):
if self.array is None:
self.pos = self.pos + vector
else:
self.array[self.index,0] = self.array[self.index,0] + vector[0]
self.array[self.index,1] = self.array[self.index,1] + vector[1]
self.array[self.index,2] = self.array[self.index,2] + vector[2]
def numberOfPoints(self):
return 1
numberOfCartesianCoordinates = numberOfPoints
def setIndex(self, index):
if self.index is not None and self.index != index:
raise ValueError('Wrong atom index')
self.index = index
def setArray(self, index):
self.index = index
self.array = None
def getArray(self):
return self.array
def unsetArray(self):
self.pos = self.position()
self.array = None
def setBondAttribute(self, atom):
try:
self.bonded_to__.append(atom)
except AttributeError:
self.bonded_to__ = [atom]
def clearBondAttribute(self):
try:
del self.bonded_to__
except AttributeError:
pass
def bondedTo(self):
"""
:returns: a list of all atoms to which a chemical bond exists.
:rtype: list
"""
try:
return self.bonded_to__
except AttributeError:
if self.parent is None or not isChemicalObject(self.parent):
return []
else:
return self.parent.bondedTo(self)
def delete(self):
if self.parent is not None:
self.parent._deleteAtom(self)
def getAtomProperty(self, atom, property, levels = None):
if self != atom:
raise ValueError("Wrong atom")
return getattr(self, property)
def _description(self, tag, index_map, toplevel):
setattr(self, tag, None)
if index_map is None:
index = self.index
else:
index = index_map[self.index]
if toplevel:
return 'A(' + `self.name` + ',' + `index` + ',' + \
`self.symbol` + ')'
else:
return 'A(' + `self.name` + ',' + `index` + ')'
def _graphics(self, conf, distance_fn, model, module, options):
#PJC change:
if model == 'ball_and_stick':
color = self._atomColor(self, options)
material = module.DiffuseMaterial(color)
radius = options.get('ball_radius', 0.03)
return [module.Sphere(self.position(), radius, material=material)]
elif model == 'vdw' or model == 'vdw_and_stick':
color = self._atomColor(self, options)
material = module.DiffuseMaterial(color)
try:
radius = self.vdW_radius
except:
radius = options.get('ball_radius', 0.03)
return [module.Sphere(self.position(), radius, material=material)]
else:
return []
if model != 'ball_and_stick':
return []
color = self._atomColor(self, options)
material = module.DiffuseMaterial(color)
radius = options.get('ball_radius', 0.03)
return [module.Sphere(self.position(), radius, material=material)]
def writeXML(self, file, memo, toplevel=1):
return ['<atom title="%s" elementType="%s"/>'
% (self.name, self.type.symbol)]
def getXMLAtomOrder(self):
return [self]
class Group(CompositeChemicalObject, ChemicalObject):
"""
Group of bonded atoms
Groups can contain atoms and other groups, and link them by chemical
bonds. They are used to represent functional groups or any other
part of a molecule that has a well-defined identity.
Groups cannot be created in application programs, but only in
database definitions for molecules or through a MoleculeFactory.
"""
def __init__(self, group_spec, _memo = None, **properties):
"""
:param group_spec: a string (not case sensitive) that specifies
the group name in the chemical database
:type group_spec: str
:keyword position: the position of the center of mass of the group
:type position: Scientific.Geometry.Vector
:keyword name: a name given to the group
:type name: str
"""
if group_spec is not None:
# group_spec is None when called from MoleculeFactory
ChemicalObject.__init__(self, group_spec, _memo)
self.addProperties(properties)
blueprintclass = Database.BlueprintGroup
is_incomplete = True
def bondedTo(self, atom):
if self.parent is None or not isChemicalObject(self.parent):
return []
else:
return self.parent.bondedTo(atom)
def setBondAttributes(self):
pass
def clearBondAttributes(self):
pass
def _subunits(self):
return self.groups
def _descriptionSpec(self):
return "G", None
class Molecule(CompositeChemicalObject, ChemicalObject):
"""Molecule
Molecules consist of atoms and groups linked by bonds.
"""
def __init__(self, molecule_spec, _memo = None, **properties):
"""
:param molecule_spec: a string (not case sensitive) that specifies
the molecule name in the chemical database
:type molecule_spec: str
:keyword position: the position of the center of mass of the molecule
:type position: Scientific.Geometry.Vector
:keyword name: a name given to the molecule
:type name: str
:keyword configuration: the name of a configuration listed in the
database definition of the molecule, which
is used to initialize the atom positions.
If no configuration is specified, the
configuration named "default" will be used,
if it exists. Otherwise the atom positions
are undefined.
:type configuration: str
"""
if molecule_spec is not None:
# molecule_spec is None when called from MoleculeFactory
ChemicalObject.__init__(self, molecule_spec, _memo)
properties = copy.copy(properties)
CompositeChemicalObject.__init__(self, properties)
self.bonds = Bonds.BondList(self.bonds)
blueprintclass = Database.BlueprintMolecule
def bondedTo(self, atom):
return self.bonds.bondedTo(atom)
def setBondAttributes(self):
self.bonds.setBondAttributes()
def clearBondAttributes(self):
for a in self.atoms:
a.clearBondAttribute()
def _subunits(self):
return self.groups
def _descriptionSpec(self):
return "M", None
def addGroup(self, group, bond_atom_pairs):
for a1, a2 in bond_atom_pairs:
o1 = a1.topLevelChemicalObject()
o2 = a2.topLevelChemicalObject()
if set([o1, o2]) != set([self, group]):
raise ValueError("bond %s-%s outside object" %
(str(a1), str(a2)))
self.groups.append(group)
self.atoms = self.atoms + group.atoms
group.parent = self
self.clearBondAttributes()
for a1, a2 in bond_atom_pairs:
self.bonds.append(Bonds.Bond((a1, a2)))
for b in group.bonds:
self.bonds.append(b)
# construct positions of missing hydrogens
def findHydrogenPositions(self):
"""
Find reasonable positions for hydrogen atoms that have no
position assigned.
This method uses a heuristic approach based on standard geometry
data. It was developed for proteins and DNA and may not give
good results for other molecules. It raises an exception
if presented with a topology it cannot handle.
"""
self.setBondAttributes()
try:
unknown = {}
for a in self.atoms:
if a.position() is None:
if a.symbol != 'H':
raise ValueError('position of ' + a.fullName() + \
' is undefined')
bonded = a.bondedTo()[0]
unknown.setdefault(bonded, []).append(a)
for a, list in unknown.items():
bonded = a.bondedTo()
n = len(bonded)
known = [b for b in bonded if b.position() is not None]
nb = len(list)
try:
method = self._h_methods[a.symbol][n][nb]
except KeyError:
raise ValueError("Can't handle this yet: " +
a.symbol + ' with ' + `n` + ' bonds (' +
a.fullName() + ').')
method(self, a, known, list)
finally:
self.clearBondAttributes()
# default C-H bond length and X-C-H angle
_ch_bond = 1.09*Units.Ang
_hch_angle = N.arccos(-1./3.)*Units.rad
_nh_bond = 1.03*Units.Ang
_hnh_angle = 120.*Units.deg
_oh_bond = 0.95*Units.Ang
_coh_angle = 114.9*Units.deg
_sh_bond = 1.007*Units.Ang
_csh_angle = 96.5*Units.deg
def _C4oneH(self, atom, known, unknown):
r = atom.position()
n0 = (known[0].position()-r).normal()
n1 = (known[1].position()-r).normal()
n2 = (known[2].position()-r).normal()
n3 = (n0 + n1 + n2).normal()
unknown[0].setPosition(r-self._ch_bond*n3)
def _C4twoH(self, atom, known, unknown):
r = atom.position()
r1 = known[0].position()
r2 = known[1].position()
plane = Objects3D.Plane(r, r1, r2)
axis = -((r1-r)+(r2-r)).normal()
plane = plane.rotate(Objects3D.Line(r, axis), 90.*Units.deg)
cone = Objects3D.Cone(r, axis, 0.5*self._hch_angle)
sphere = Objects3D.Sphere(r, self._ch_bond)
circle = sphere.intersectWith(cone)
points = circle.intersectWith(plane)
unknown[0].setPosition(points[0])
unknown[1].setPosition(points[1])
def _C4threeH(self, atom, known, unknown):
self._tetrahedralH(atom, known, unknown, self._ch_bond)
def _C3oneH(self, atom, known, unknown):
r = atom.position()
n1 = (known[0].position()-r).normal()
n2 = (known[1].position()-r).normal()
n3 = -(n1 + n2).normal()
unknown[0].setPosition(r+self._ch_bond*n3)
def _C3twoH(self, atom, known, unknown):
r = atom.position()
r1 = known[0].position()
others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
r2 = others[0].position()
try:
plane = Objects3D.Plane(r, r1, r2)
except ZeroDivisionError:
# We get here if all three points are colinear.
# Add a small random displacement as a fix.
from MMTK.Random import randomPointInSphere
plane = Objects3D.Plane(r, r1, r2 + randomPointInSphere(0.001))
axis = (r-r1).normal()
cone = Objects3D.Cone(r, axis, 0.5*self._hch_angle)
sphere = Objects3D.Sphere(r, self._ch_bond)
circle = sphere.intersectWith(cone)
points = circle.intersectWith(plane)
unknown[0].setPosition(points[0])
unknown[1].setPosition(points[1])
def _C2oneH(self, atom, known, unknown):
r = atom.position()
r1 = known[0].position()
x = r + self._ch_bond * (r - r1).normal()
unknown[0].setPosition(x)
def _N2oneH(self, atom, known, unknown):
r = atom.position()
r1 = known[0].position()
others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
r2 = others[0].position()
try:
plane = Objects3D.Plane(r, r1, r2)
except ZeroDivisionError:
# We get here when all three points are colinear.
# Add a small random displacement as a fix.
from MMTK.Random import randomPointInSphere
plane = Objects3D.Plane(r, r1, r2 + randomPointInSphere(0.001))
axis = (r-r1).normal()
cone = Objects3D.Cone(r, axis, 0.5*self._hch_angle)
sphere = Objects3D.Sphere(r, self._nh_bond)
circle = sphere.intersectWith(cone)
points = circle.intersectWith(plane)
unknown[0].setPosition(points[0])
def _N3oneH(self, atom, known, unknown):
r = atom.position()
n1 = (known[0].position()-r).normal()
n2 = (known[1].position()-r).normal()
n3 = -(n1 + n2).normal()
unknown[0].setPosition(r+self._nh_bond*n3)
def _N3twoH(self, atom, known, unknown):
r = atom.position()
r1 = known[0].position()
others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
r2 = others[0].position()
plane = Objects3D.Plane(r, r1, r2)
axis = (r-r1).normal()
cone = Objects3D.Cone(r, axis, 0.5*self._hnh_angle)
sphere = Objects3D.Sphere(r, self._nh_bond)
circle = sphere.intersectWith(cone)
points = circle.intersectWith(plane)
unknown[0].setPosition(points[0])
unknown[1].setPosition(points[1])
def _N4threeH(self, atom, known, unknown):
self._tetrahedralH(atom, known, unknown, self._nh_bond)
def _N4twoH(self, atom, known, unknown):
r = atom.position()
r1 = known[0].position()
r2 = known[1].position()
plane = Objects3D.Plane(r, r1, r2)
axis = -((r1-r)+(r2-r)).normal()
plane = plane.rotate(Objects3D.Line(r, axis), 90.*Units.deg)
cone = Objects3D.Cone(r, axis, 0.5*self._hnh_angle)
sphere = Objects3D.Sphere(r, self._nh_bond)
circle = sphere.intersectWith(cone)
points = circle.intersectWith(plane)
unknown[0].setPosition(points[0])
unknown[1].setPosition(points[1])
def _N4oneH(self, atom, known, unknown):
r = atom.position()
n0 = (known[0].position()-r).normal()
n1 = (known[1].position()-r).normal()
n2 = (known[2].position()-r).normal()
n3 = (n0 + n1 + n2).normal()
unknown[0].setPosition(r-self._nh_bond*n3)
def _O2(self, atom, known, unknown):
others = known[0].bondedTo()
for a in others:
r = a.position()
if a != atom and r is not None: break
dihedral = 180.*Units.deg
self._findPosition(unknown[0], atom.position(), known[0].position(), r,
self._oh_bond, self._coh_angle, dihedral)
def _S2(self, atom, known, unknown):
c2 = filter(lambda a: a.symbol == 'C', known[0].bondedTo())[0]
self._findPosition(unknown[0], atom.position(), known[0].position(),
c2.position(),
self._sh_bond, self._csh_angle,
180.*Units.deg)
def _tetrahedralH(self, atom, known, unknown, bond):
r = atom.position()
n = (known[0].position()-r).normal()
cone = Objects3D.Cone(r, n, N.arccos(-1./3.))
sphere = Objects3D.Sphere(r, bond)
circle = sphere.intersectWith(cone)
others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
others.remove(atom)
other = others[0]
ref = (Objects3D.Plane(circle.center, circle.normal) \
.projectionOf(other.position())-circle.center).normal()
p0 = circle.center + ref*circle.radius
p0 = Objects3D.rotatePoint(p0,
Objects3D.Line(circle.center, circle.normal),
60.*Units.deg)
p1 = Objects3D.rotatePoint(p0,
Objects3D.Line(circle.center, circle.normal),
120.*Units.deg)
p2 = Objects3D.rotatePoint(p1,
Objects3D.Line(circle.center, circle.normal),
120.*Units.deg)
unknown[0].setPosition(p0)
unknown[1].setPosition(p1)
unknown[2].setPosition(p2)
def _findPosition(self, unknown, a1, a2, a3, bond, angle, dihedral):
sphere = Objects3D.Sphere(a1, bond)
cone = Objects3D.Cone(a1, a2-a1, angle)
plane = Objects3D.Plane(a3, a2, a1)
plane = plane.rotate(Objects3D.Line(a1, a2-a1), dihedral)
points = sphere.intersectWith(cone).intersectWith(plane)
for p in points:
if (a1-a2).cross(p-a1)*(plane.normal) > 0:
unknown.setPosition(p)
break
_h_methods = {'C': {4: {3: _C4threeH,
2: _C4twoH,
1: _C4oneH},
3: {2: _C3twoH,
1: _C3oneH},
2: {1: _C2oneH}},
'N': {4: {3: _N4threeH,
2: _N4twoH,
1: _N4oneH},
3: {2: _N3twoH,
1: _N3oneH},
2: {1: _N2oneH}},
'O': {2: {1: _O2}},
'S': {2: {1: _S2}},
}
class ChainMolecule(Molecule):
"""
ChainMolecule
ChainMolecules are generated by a MoleculeFactory from
templates that have a sequence attribute.
"""
def __len__(self):
return len(self.sequence)
def __getitem__(self, item):
return getattr(self, self.sequence[item])
class Crystal(CompositeChemicalObject, ChemicalObject):
def __init__(self, blueprint, _memo = None, **properties):
ChemicalObject.__init__(self, blueprint, _memo)
properties = copy.copy(properties)
CompositeChemicalObject.__init__(self, properties)
self.bonds = Bonds.BondList(self.bonds)
blueprintclass = Database.BlueprintCrystal
def _subunits(self):
return self.groups
def _descriptionSpec(self):
return "X", None
class Complex(CompositeChemicalObject, ChemicalObject):
"""
Complex
A complex is an assembly of molecules that are not connected by
chemical bonds.
"""
def __init__(self, complex_spec, _memo = None, **properties):
"""
:param complex_spec: a string (not case sensitive) that specifies
the complex name in the chemical database
:type complex_spec: str
:keyword position: the position of the center of mass of the complex
:type position: Scientific.Geometry.Vector
:keyword name: a name given to the complex
:type name: str
:keyword configuration: the name of a configuration listed in the
database definition of the complex, which
is used to initialize the atom positions.
If no configuration is specified, the
configuration named "default" will be used,
if it exists. Otherwise the atom positions
are undefined.
:type configuration: str
"""
ChemicalObject.__init__(self, complex_spec, _memo)
properties = copy.copy(properties)
CompositeChemicalObject.__init__(self, properties)
blueprintclass = Database.BlueprintComplex
def recreateAtomList(self):
self.atoms = []
for m in self.molecules:
self.atoms.extend(m.atoms)
def bondedUnits(self):
return self.molecules
def setBondAttributes(self):
for m in self.molecules:
m.setBondAttributes()
def clearBondAttributes(self):
for m in self.molecules:
m.clearBondAttributes()
def _subunits(self):
return self.molecules
def _descriptionSpec(self):
return "C", None
def writeXML(self, file, memo, toplevel=1):
if self.type is None:
name = 'm' + `memo['counter']`
memo['counter'] = memo['counter'] + 1
memo[id(self)] = name
for molecule in self.molecules:
molecule.writeXML(file, memo, 0)
file.write('<molecule id="%s">\n' % name)
for molecule in self.molecules:
file.write(' <molecule ref="%s"/>\n' % memo[id(molecule)])
file.write('</molecule>\n')
else:
ChemicalObject.writeXML(self, file, memo, toplevel)
if toplevel:
return ['<molecule ref="%s"/>' % name]
else:
return None
def getXMLAtomOrder(self):
if self.type is None:
atoms = []
for molecule in self.molecules:
atoms.extend(molecule.getXMLAtomOrder())
return atoms
else:
return ChemicalObject.getXMLAtomOrder(self)
Database.registerInstanceClass(Atom.blueprintclass, Atom)
Database.registerInstanceClass(Group.blueprintclass, Group)
Database.registerInstanceClass(Molecule.blueprintclass, Molecule)
Database.registerInstanceClass(Crystal.blueprintclass, Crystal)
Database.registerInstanceClass(Complex.blueprintclass, Complex)
class AtomCluster(CompositeChemicalObject, ChemicalObject):
"""
An agglomeration of atoms
An atom cluster acts like a molecule without any bonds or atom
properties. It can be used to represent a group of atoms that
are known to form a chemical unit but whose chemical properties
are not sufficiently known to define a molecule.
"""
def __init__(self, atoms, **properties):
"""
:param atoms: a list of atoms in the cluster
:type atoms: list
:keyword position: the position of the center of mass of the cluster
:type position: Scientific.Geometry.Vector
:keyword name: a name given to the cluster
:type name: str
"""
self.atoms = list(atoms)
self.parent = None
self.name = ''
self.type = None
for a in self.atoms:
if a.parent is not None:
raise ValueError(repr(a)+' is part of ' + repr(a.parent))
a.parent = self
if a.name != '':
setattr(self, a.name, a)
properties = copy.copy(properties)
CompositeChemicalObject.__init__(self, properties)
self.bonds = Bonds.BondList([])
def bondedTo(self, atom):
return []
def setBondAttributes(self):
pass
def clearBondAttributes(self):
pass
def _subunits(self):
return []
def _description(self, tag, index_map, toplevel):
s = 'AC(' + `self.name` + ',['
for a in self.atoms:
s = s + a._description(tag, index_map, 1) + ','
s = s + ']'
constraints = self._distanceConstraintList()
if constraints:
s = s + ',dc=['
if index_map is None:
for c in constraints:
s = s + '(%d,%d,%f),' % (c[0].index, c[1].index, c[2])
else:
for c in constraints:
s = s + '(%d,%d,%f),' % (index_map[c[0].index],
index_map[c[1].index], c[2])
s = s + ']'
return s + ')'
|