This file is indexed.

/usr/share/pyshared/MMTK/Collections.py is in python-mmtk 2.7.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
# This module defines collections of chemical objects.
#
# Written by Konrad Hinsen
#

"""
Collections of chemical objects
"""

__docformat__ = 'restructuredtext'

from MMTK import Utility, Units, ParticleProperties, Visualization
from MMTK.Geometry import superpositionFit
from Scientific.Geometry import Vector, Tensor, Objects3D
from Scientific.Geometry import Transformation
from Scientific import N
import copy, itertools, types

#
# This class defines groups of atoms. It is used as a base class
# for anything containing atoms, including chemical objects, collections,
# universes etc., but it can't be used directly. All its subclasses
# must define a method atomList() that returns a list of all their atoms.
#
class GroupOfAtoms(object):

    """
    Anything that consists of atoms

    A mix-in class that defines a large set of operations which are
    common to all objects that consist of atoms, i.e. any subset of
    a chemical system. Examples are atoms, molecules, collections,
    or universes.
    """
    
    def numberOfAtoms(self):
        """
        :returns: the number of atoms
        :rtype: int
        """
        return len(self.atomList())

    def numberOfPoints(self):
        """
        :returns: the number of geometrical points that define the
                  object. It is currently equal to the number of atoms,
                  but could be different e.g. for quantum systems, in which
                  each atom is described by a wave function or a path integral.
        :rtype: int
        """
        return sum([a.numberOfPoints() for a in self.atomIterator()])

    numberOfCartesianCoordinates = numberOfPoints

    def numberOfFixedAtoms(self):
        """
        :returns: the number of atoms that are fixed, i.e. that cannot move
        :rtype: int
        """
        n = 0
        for a in self.atomIterator():
            try:
                if a.fixed: n = n + 1
            except AttributeError: pass
        return n

    def degreesOfFreedom(self):
        """
        :returns: the number of mechanical degrees of freedom
        :rtype: int
        """
        return 3*(self.numberOfAtoms()-self.numberOfFixedAtoms())

    def atomCollection(self):
        """
        :returns: a collection containing all atoms in the object
        """
        return Collection(self.atomList())

    def atomsWithDefinedPositions(self, conf = None):
        """
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: a collection of all atoms that have a position in the
                  given configuration
        """
        return Collection([a for a in self.atomIterator()
                           if Utility.isDefinedPosition(a.position(conf))])

    def mass(self):
        """
        :returns: the total mass
        :rtype: float
        """
        return sum(a._mass for a in self.atomIterator())

    def centerOfMass(self, conf = None):
        """
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: the center of mass in the given configuration
        :rtype: Scientific.Geometry.Vector
        """
        offset = None
        universe = self.universe()
        if universe is not None:
            offset = universe.contiguousObjectOffset([self], conf)
        m = 0.
        mr = Vector(0.,0.,0.)
        if offset is None:
            for a in self.atomIterator():
                m += a._mass
                mr += a._mass * a.position(conf)
        else:
            for a in self.atomIterator():
                m += a._mass
                mr += a._mass * (a.position(conf)+offset[a])
        return mr/m

    position = centerOfMass

    def centerAndMomentOfInertia(self, conf = None):
        """
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: the center of mass and the moment of inertia tensor
                  in the given configuration
        """
        from Scientific.Geometry import delta
        offset = None
        universe = self.universe()
        if universe is not None:
            offset = universe.contiguousObjectOffset([self], conf)
        m = 0.
        mr = Vector(0.,0.,0.)
        t = Tensor(3*[3*[0.]])
        for a in self.atomIterator():
            ma = a._mass
            if offset is None:
                r = a.position(conf)
            else:
                r = a.position(conf)+offset[a]
            m += ma
            mr += ma*r
            t += ma*r.dyadicProduct(r)
        cm = mr/m
        t -= m*cm.dyadicProduct(cm)
        t = t.trace()*delta - t
        return cm, t

    def rotationalConstants(self, conf=None):
        """
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: a sorted array of rotational constants A, B, C
                  in internal units
        """
        com, i = self.centerAndMomentOfInertia(conf)
        pmi = i.eigenvalues()
        return N.sort(Units.h / (8.*N.pi*N.pi*pmi))[::-1]

    def boundingBox(self, conf = None):
        """
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: two opposite corners of a bounding box around the
                  object. The bounding box is the smallest rectangular
                  bounding box with edges parallel to the coordinate axes.
        :rtype: tuple of two Scientific.Geometry.Vector
        """
        atoms = self.atomList()
        min = atoms[0].position(conf).array
        max = min
        for a in atoms[1:]:
            r = a.position(conf).array
            min = N.minimum(min, r)
            max = N.maximum(max, r)
        return Vector(min), Vector(max)

    def boundingSphere(self, conf = None):
        """
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: a sphere that contains all atoms in the object.
                  This is B{not} the minimal bounding sphere, just B{some}
                  bounding sphere.
        :rtype: Scientific.Geometry.Objects3D.Sphere
        """
        atoms = self.atomList()
        center = sum((a.position(conf) for a in atoms),
                     Vector(0., 0., 0.)) / len(atoms)
        r = 0.
        for a in atoms:
            r = max(r, (a.position(conf)-center).length())
        return Objects3D.Sphere(center, r)

    def rmsDifference(self, conf1, conf2 = None):
        """
        :param conf1: a configuration object
        :type conf1: :class:`~MMTK.ParticleProperties.Configuration`
        :param conf2: a configuration object, or None for the
                      current configuration
        :type conf2: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: the RMS (root-mean-square) difference between the
                  conformations of the object in two universe configurations,
                  conf1 and conf2
        :rtype: float
        """
        universe = conf1.universe
        m = 0.
        rms = 0.
        for a in self.atomIterator():
            ma = a._mass
            dr = universe.distanceVector(a.position(conf1), a.position(conf2))
            m += ma
            rms += ma*dr*dr
        return N.sqrt(rms/m)

    def findTransformationAsQuaternion(self, conf1, conf2 = None):
        universe = self.universe()
        if universe.is_periodic:
            raise ValueError("superposition in periodic universe "
                             "is not defined")
        if conf1.universe != universe:
            raise ValueError("conformation is for a different universe")
        if conf2 is None:
            conf2 = conf1
            conf1 = universe.configuration()
        else:
            if conf2.universe != universe:
                raise ValueError("conformation is for a different universe")
        weights = universe.masses()
        return superpositionFit([(weights[a], conf1[a], conf2[a])
                                 for a in self.atomIterator()])

    def findTransformation(self, conf1, conf2 = None):
        """
        :param conf1: a configuration object
        :type conf1: :class:`~MMTK.ParticleProperties.Configuration`
        :param conf2: a configuration object, or None for the
                      current configuration
        :type conf2: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :returns: the linear transformation that, when applied to
                  the object in configuration conf1, minimizes the
                  RMS distance to the conformation in conf2, and the
                  minimal RMS distance.
                  If conf2 is None, returns the transformation from the
                  current configuration to conf1 and the associated
                  RMS distance.
        """
        q, cm1, cm2, rms = self.findTransformationAsQuaternion(conf1, conf2)
        return Transformation.Translation(cm2) * \
               q.asRotation() * \
               Transformation.Translation(-cm1), \
               rms

    def translateBy(self, vector):
        """
        Translate the object by a displacement vector
        
        :param vector: the displacement vector
        :type vector: Scientific.Geometry.Vector
        """
        for a in self.atomIterator():
            a.translateBy(vector)

    def translateTo(self, position):
        """
        Translate the object such that its center of mass is at position
        :param position: the final position
        :type position: Scientific.Geometry.Vector
        """
        self.translateBy(position-self.centerOfMass())

    def normalizePosition(self):
        """
        Translate the center of mass to the coordinate origin
        """
        self.translateTo(Vector(0., 0., 0.))

    def normalizeConfiguration(self, repr=None):
        """
        Apply a linear transformation such that the center of mass of
        the object is translated to the coordinate origin and its
        principal axes of inertia become parallel to the three
        coordinate axes.

        :param repr: the specific representation for axis alignment:
          - Ir    : x y z <--> b c a
          - IIr   : x y z <--> c a b
          - IIIr  : x y z <--> a b c
          - Il    : x y z <--> c b a
          - IIl   : x y z <--> a c b
          - IIIl  : x y z <--> b a c        
        """
        transformation = self.normalizingTransformation(repr)
        self.applyTransformation(transformation)

    def normalizingTransformation(self, repr=None):
        """
        Calculate a linear transformation that shifts the center of mass
        of the object to the coordinate origin and makes its
        principal axes of inertia parallel to the three coordinate
        axes.

        :param repr: the specific representation for axis alignment:
          Ir    : x y z <--> b c a
          IIr   : x y z <--> c a b
          IIIr  : x y z <--> a b c
          Il    : x y z <--> c b a
          IIl   : x y z <--> a c b
          IIIl  : x y z <--> b a c
        :returns: the normalizing transformation
        :rtype: Scientific.Geometry.Transformation.RigidBodyTransformation
        """
        from Scientific.LA import determinant
        cm, inertia = self.centerAndMomentOfInertia()
        ev, diag = inertia.diagonalization()
        if determinant(diag.array) < 0:
            diag.array[0] = -diag.array[0]
        if repr != None:
            seq = N.argsort(ev)
            if repr == 'Ir':
                seq = N.array([seq[1], seq[2], seq[0]])
            elif repr == 'IIr':
                seq = N.array([seq[2], seq[0], seq[1]])
            elif repr == 'Il':
                seq = N.seq[2::-1]
            elif repr == 'IIl':
                seq[1:3] = N.array([seq[2], seq[1]])
            elif repr == 'IIIl':
                seq[0:2] = N.array([seq[1], seq[0]])
            elif repr != 'IIIr':
                print 'unknown representation'
            diag.array = N.take(diag.array, seq)                
        return Transformation.Rotation(diag)*Transformation.Translation(-cm)

    def applyTransformation(self, t):
        """
        Apply a transformation to the object

        :param t: the transformation to be applied
        :type t: Scientific.Geometry.Transformation
        """
        for a in self.atomIterator():
            a.setPosition(t(a.position()))

    def displacementUnderTransformation(self, t):
        """
        :param t: the transformation to be applied
        :type t: Scientific.Geometry.Transformation
        :returns: the displacement vectors for the atoms in the object
                  that correspond to the transformation t.
        :rtype: :class:`~MMTK.ParticleProperties.ParticleVector`
        """
        d = ParticleProperties.ParticleVector(self.universe())
        for a in self.atomIterator():
            r = a.position()
            d[a] = t(r)-r
        return d

    def rotateAroundCenter(self, axis_direction, angle):
        """
        Rotate the object around an axis that passes through its center
        of mass.

        :param axis_direction: the direction of the axis of rotation
        :type axis_direction: Scientific.Geometry.Vector
        :param angle: the rotation angle (in radians)
        :type angle: float
        """
        cm = self.centerOfMass()
        t = Transformation.Translation(cm) * \
            Transformation.Rotation(axis_direction, angle) * \
            Transformation.Translation(-cm)
        self.applyTransformation(t)

    def rotateAroundOrigin(self, axis_direction, angle):
        """
        Rotate the object around an axis that passes through the
        coordinate origin.

        :param axis_direction: the direction of the axis of rotation
        :type axis_direction: Scientific.Geometry.Vector
        :param angle: the rotation angle (in radians)
        :type angle: float
        """
        self.applyTransformation(Transformation.Rotation(axis_direction, angle))

    def rotateAroundAxis(self, point1, point2, angle):
        """
        Rotate the object arond an axis specified by two points

        :param point1: the first point
        :type point1: Scientific.Geometry.Vector
        :param point2: the second point
        :type point2: Scientific.Geometry.Vector
        :param angle: the rotation angle (in radians)
        :type angle: float
        """
        tr1 = Transformation.Translation(-point1)
        tr2 = Transformation.Rotation(point2-point1, angle)
        tr3 = tr1.inverse()
        self.applyTransformation(tr3*tr2*tr1)

    def writeToFile(self, filename, configuration = None, format = None):
        """
        Write a representation of the object in a given
        configuration to a file.

        :param filename: the name of the file
        :type filename: str
        :param configuration: a configuration object, or None for the
                              current configuration
        :type configuration: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
        :param format: 'pdb' or 'vrml' (default: guess from filename)
                       A subformat specification can be added, separated
                       by a dot. Subformats of 'vrml' are 'wireframe'
                       (default), 'ball_and_stick', 'highlight' (like
                       'wireframe', but with a small sphere for
                       all atoms that have an attribute 'highlight' with a
                       non-zero value), and 'charge' (wireframe plus small
                       spheres for the atoms whose color indicates the
                       charge on a red-to-green color scale)
        :type format: str
        """
        from MMTK import ConfigIO
        universe = self.universe()
        if universe is not None:
            configuration = universe.contiguousObjectConfiguration(
                               [self], configuration)
        file = ConfigIO.OutputFile(filename, format)
        file.write(self, configuration)
        file.close()

    def view(self, configuration = None, format = 'pdb'):
        """
        Start an external viewer for the object in the given
        configuration.

        :param configuration: the configuration to be visualized
        :type configuration: :class:`~MMTK.ParticleProperties.Configuration`
        :param format: 'pdb' (for running $PDBVIEWER) or 'vrml'
                       (for running $VRMLVIEWER). An optional
                       subformat specification can be added, see
                       :class:`~MMTK.Collections.GroupOfAtoms.writeToFile` for the details.
        """
        universe = self.universe()
        if universe is not None:
            configuration = universe.contiguousObjectConfiguration([self],
                                                                configuration)
        Visualization.viewConfiguration(self, configuration, format)

    def kineticEnergy(self, velocities = None):
        """
        :param velocities: a set of velocities for all atoms, or
                           None for the current velocities
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        :returns: the kinetic energy
        :rtype: float
        """
        if velocities is None:
            velocities = self.atomList()[0].universe().velocities()
        energy = 0.
        for a in self.atomIterator():
            v = velocities[a]
            energy = energy + a._mass*(v*v)
        return 0.5*energy

    def temperature(self, velocities = None):
        """
        :param velocities: a set of velocities for all atoms, or
                           None for the current velocities
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        :returns: the temperature
        :rtype: float
        """
        energy = self.kineticEnergy(velocities)
        return 2.*energy/(self.degreesOfFreedom()*Units.k_B)

    def momentum(self, velocities = None):
        """
        :param velocities: a set of velocities for all atoms, or
                           None for the current velocities
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        :returns: the momentum
        :rtype: Scientific.Geometry.Vector
        """
        if velocities is None:
            velocities = self.atomList()[0].universe().velocities()
        return sum((a._mass*velocities[a] for a in self.atomIterator()),
                   Vector(0., 0., 0.))

    def angularMomentum(self, velocities = None, conf = None):
        """
        :param velocities: a set of velocities for all atoms, or
                           None for the current velocities
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration`
        :returns: the angluar momentum
        :rtype: Scientific.Geometry.Vector
        """
        if velocities is None:
            velocities = self.atomList()[0].universe().velocities()
        cm = self.centerOfMass(conf)
        return sum((a._mass*a.position(conf).cross(velocities[a])
                    for a in self.atomIterator()),
                   Vector(0., 0., 0.))

    def angularVelocity(self, velocities = None, conf = None):
        """
        :param velocities: a set of velocities for all atoms, or
                           None for the current velocities
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        :param conf: a configuration object, or None for the
                     current configuration
        :type conf: :class:`~MMTK.ParticleProperties.Configuration`
        :returns: the angluar velocity
        :rtype: Scientific.Geometry.Vector
        """
        if velocities is None:
            velocities = self.atomList()[0].universe().velocities()
        cm, inertia = self.centerAndMomentOfInertia(conf)
        l = sum((a._mass*a.position(conf).cross(velocities[a])
                 for a in self.atomIterator()),
                Vector(0., 0., 0.))
        return inertia.inverse()*l
        
    def universe(self):
        """
        :returns: the universe of which the object is part. For an
                  object that is not part of a universe, the result is
                  None
        :rtype: :class:`~MMTK.Universe.Universe`
        """
        atoms = self.atomList()
        if not atoms:
            return None
        universe = atoms[0].universe()
        for a in atoms[1:]:
            if a.universe() is not universe:
                return None
        return universe

    def charge(self):
        """
        :returns: the total charge of the object. This is defined only
                  for objects that are part of a universe with a force
                  field that defines charges.
        :rtype: float
        """
        return self.universe().forcefield().charge(self)

    def dipole(self, reference = None):
        """
        :returns: the total dipole moment of the object. This is defined only
                  for objects that are part of a universe with a force field
                  that defines charges.
        :rtype: Scientific.Geometry.Vector
        """
        return self.universe().forcefield().dipole(self, reference)

    def booleanMask(self):
        """
        :returns: a ParticleScalar object that contains a value of 1
                  for each atom that is in the object and a value of 0 for all
                  other atoms in the universe
        :rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
        """
        universe = self.universe()
        if universe is None:
            raise ValueError("object not in a universe")
        array = N.zeros((universe.numberOfAtoms(),), N.Int)
        mask = ParticleProperties.ParticleScalar(universe, array)
        for a in self.atomIterator():
            mask[a] = 1
        return mask

#
# This class defines a general collection that can contain
# chemical objects and other collections.
#
class Collection(GroupOfAtoms, Visualization.Viewable):

    """
    Collection of chemical objects

    Collections permit the grouping of arbitrary chemical objects
    (atoms, molecules, etc.) into one object for the purpose of analysis
    or manipulation.

    Collections permit length inquiry, item extraction by indexing,
    and iteration, like any Python sequence object. Two collections
    can be added to yield a collection that contains the combined
    elements.
    """

    def __init__(self, *objects):
        """
        :param objects: a chemical object or a sequence of or a generator
                        yielding chemical objects that define the initial
                        content of the collection.
        """
        self.objects = []
        if len(objects) == 1 and isinstance(objects[0], types.GeneratorType):
            for obj in objects[0]:
                self.addObject(obj)
        else:
            self.addObject(objects)

    is_collection = 1

    def addObject(self, object):
        """
        Add objects to the collection.

        :param object: the object(s) to be added. If it is another collection
                       or a list, all of its elements are added
        """
        from MMTK.ChemicalObjects import isChemicalObject
        if isChemicalObject(object):
            self.addChemicalObject(object)
        elif isCollection(object):
            self.addChemicalObjectList(object.objectList())
        elif Utility.isSequenceObject(object):
            if object and isChemicalObject(object[0]):
                self.addChemicalObjectList(list(object))
            else:
                for o in object:
                    self.addObject(o)
        else:
            raise TypeError('Wrong object type in collection')

    def addChemicalObject(self, object):
        self.objects.append(object)

    def addChemicalObjectList(self, list):
        self.objects.extend(list)

    def removeObject(self, object):
        """
        Remove an object or a list or collection of objects from the
        collection. The object(s) to be removed must be elements of the
        collection.

        :param object: the object to be removed, or a list or collection
                       of objects whose elements are to be removed
        :raises ValueError: if the object is not an element of the collection
        """
        from MMTK.ChemicalObjects import isChemicalObject
        if isChemicalObject(object):
            self.removeChemicalObject(object)
        elif isCollection(object) or Utility.isSequenceObject(object):
            for o in object:
                self.removeObject(o)
        else:
            raise ValueError('Object not in this collection')

    def removeChemicalObject(self, object):
        try:
            self.objects.remove(object)
        except ValueError:
            raise ValueError('Object not in this collection')

    def selectShell(self, point, r1, r2=0.):
        """
        Select objects in a spherical shell around a central point.

        :param point: the center of the spherical shell
        :type point: Scientific.Geometry.Vector
        :param r1: inner or outer radius of the shell
        :type r1: float
        :param r2: inner or outer radius of the shell (default: 0.)
        :type r2: float
        :returns: a collection of all elements whose
                  distance from point is between r1 and r2
        :rtype: :class:`~MMTK.Collections.Collection`
        """
        if r1 > r2:
            r1, r2 = r2, r1
        universe = self.universe()
        in_shell = []
        for o in self.objects:
            for a in o.atomIterator():
                r =  universe.distance(a.position(), point)
                if r >= r1 and r <= r2:
                    in_shell.append(o)
                    break
        return Collection(in_shell)

    def selectBox(self, p1, p2):
        """
        Select objects in a rectangular volume

        :param p1: one corner of the rectangular volume
        :type p1: Scientific.Geometry.Vector
        :param p2: the other corner of the rectangular volume
        :type p2: Scientific.Geometry.Vector
        :returns: a collection of all elements that lie
                  within the rectangular volume
        :rtype: :class:`~MMTK.Collections.Collection`
        """
        x1 = N.minimum(p1.array, p2.array)
        x2 = N.maximum(p1.array, p2.array)
        in_box = []
        for o in self.objects:
            r = o.position().array
            if N.logical_and.reduce( \
                N.logical_and(N.less_equal(x1, r),
                              N.less(r, x2))):
                in_box.append(o)
        return Collection(in_box)

    def objectList(self, type = None):
        """
        Make a list of all objects in the collection that are instances
        of a specific type or of one of its subtypes.

        :param type: the type that serves as a filter. If None,
                     all objects are returned
        :returns: the objects that match the given type
        :rtype: list
        """
        if type is None:
            return self.objects
        else:
            return [o for o in self.objects if isinstance(o, type)]

    def atomList(self):
        """
        :returns: a list containing all atoms of all objects in the collection
        :rtype: list
        """
        atoms = []
        for o in self.objectList():
            atoms.extend(o.atomList())
        return atoms

    def atomIterator(self):
        return itertools.chain(*(o.atomIterator() for o in self.objects))
    
    def numberOfAtoms(self):
        """
        :returns: the total number of atoms in the objects of the collection
        :rtype: int
        """
        return sum(o.numberOfAtoms() for o in self.objectList())
    
    def universe(self):
        """
        :returns: the universe of which all objects in the collection
                  are part. If no such universe exists, the return value
                  is None
        :rtype: :class:`~MMTK.Universe.Universe`
        """
        if not self.objects:
            return None
        universe = self.objects[0].universe()
        for o in self.objects[1:]:
            if o.universe() is not universe:
                return None
        return universe

    def __len__(self):
        """
        :returns: the number of objects in the collection
        :rtype: int
        """
        return len(self.objects)

    def __getitem__(self, item):
        """
        :param item: an index into the object list
        :type item: int
        :returns: the object with the given index
        """
        return self.objects[item]

    def __iter__(self):
        return self.objects.__iter__()

    def __add__(self, other):
        return Collection(self.objectList(), other.objectList())

    def __str__(self):
        return "Collection of %d objects" % len(self.objects)

    def map(self, function):
        """
        Apply a function to all objects in the collection and
        return the list of the results. If the results are chemical
        objects, a Collection object is returned instead of a list.

        :param function: the function to be applied
        :type function: callable
        :returns: the list or collection of the results
        """
        from MMTK.ChemicalObjects import isChemicalObject
        list = [function(o) for o in self.objectList()]
        if list and isChemicalObject(list[0]):
            return Collection(list)
        else:
            return list

    def bondedUnits(self):
        bu = []
        for o in self.objects:
            bu = bu + o.bondedUnits()
        return bu

    def degreesOfFreedom(self):
        return GroupOfAtoms.degreesOfFreedom(self) \
               - self.numberOfDistanceConstraints()

    def distanceConstraintList(self):
        """
        :returns: the list of distance constraints
        :rtype: list
        """
        dc = []
        for o in self.objects:
            dc.extend(o.distanceConstraintList())
        return dc

    def numberOfDistanceConstraints(self):
        """
        :returns: the number of distance constraints
        """
        return sum(o.numberOfDistanceConstraints() for o in self.objects)

    def setBondConstraints(self, universe=None):
        """
        Set distance constraints for all bonds
        """
        if universe is None:
            universe = self.universe()
        for o in self.objects:
            o.setBondConstraints(universe)

    def removeDistanceConstraints(self, universe=None):
        """
        Remove all distance constraints
        """
        if universe is None:
            universe = self.universe()
        for o in self.objects:
            o.removeDistanceConstraints(universe)

    def _graphics(self, conf, distance_fn, model, module, options):
        gobs = []
        for o in self.objects:
            gobs.extend(o._graphics(conf, distance_fn, model,
                                    module, options))
        return gobs

    def __copy__(self):
        return self.__class__(copy.copy(self.objects))


# type check for collections

def isCollection(object):
    """
    :param object: any Python object
    :returns: True if the object is a :class:`~MMTK.Collections.Collection`
    """
    return hasattr(object, 'is_collection')

#
# This class defines a partitioned collection. Such collections
# divide their objects into cubic boxes according to their positions.
# It is then possible to find potential neighbours much more efficiently.
#
class PartitionedCollection(Collection):

    """
    Collection with cubic partitions

    A PartitionedCollection differs from a plain Collection by
    sorting its elements into small cubic cells. This makes adding
    objects slower, but geometrical operations like 
    selectShell become much faster for a large number of
    objects.
    """

    def __init__(self, partition_size, *objects):
        """
        :param partition_size: the edge length of the cubic cells
        :param objects: a chemical object or a sequence of chemical objects that
                        define the initial content of the collection.
        """
        self.partition_size = 1.*partition_size
        self.undefined = []
        self.partition = {}
        self.addObject(objects)

    def addChemicalObject(self, object):
        p = object.position()
        if p is None:
            self.undefined.append(object)
        else:
            index = self.partitionIndex(p)
            try:
                partition = self.partition[index]
            except KeyError:
                partition = []
                self.partition[index] = partition
            partition.append(object)
        self.all = None

    def addChemicalObjectList(self, list):
        for object in list:
            self.addChemicalObject(object)

    def removeChemicalObject(self, object):
        p = object.position()
        if p is None:
            self.undefined.remove(object)
        else:
            index = self.partitionIndex(p)
            try:
                partition = self.partition[index]
            except KeyError:
                raise ValueError('Object not in this collection')
            try:
                partition.remove(object)
            except ValueError:
                raise ValueError('Object not in this collection')
        self.all = None

    def partitionIndex(self, x):
        return (int(N.floor(x[0]/self.partition_size)),
                int(N.floor(x[1]/self.partition_size)),
                int(N.floor(x[2]/self.partition_size)))

    def objectList(self):
        return sum(self.partition.values(), [self.undefined])

    def __len__(self):
        return sum(len(p) for p in self.partition.values()) + \
               len(self.undefined)

    def __getitem__(self, item):
        if self.all is None:
            self.all = self.objectList()
        if item >= len(self.all):
            self.all = None
            raise IndexError
        return self.all[item]

    def __copy__(self):
        return self.__class__(self.partition_size,
                              copy.copy(self.objectList()))

    def partitions(self):
        """
        :returns: a list of cubic partitions. Each partition is specified
                  by a tuple containing two vectors (describing the diagonally
                  opposite corners) and the list of objects in the partition.
        :rtype: list
        """
        list = []
        for index, objects in self.partition.items():
            min = Vector(index)*self.partition_size
            max = min + Vector(3*[self.partition_size])
            list.append((min, max, objects))
        return list

    def selectCube(self, point, edge):
        x = int(round(point[0]/self.partition_size))
        y = int(round(point[1]/self.partition_size))
        z = int(round(point[2]/self.partition_size))
        d = (Vector(x, y, z)*self.partition_size-point).length()
        n = int(N.ceil((edge + d)/(2.*self.partition_size)))
        objects = []
        for nx in range(-n, n):
            for ny in range(-n, n):
                for nz in range(-n, n):
                    try:
                        objects.append(self.partition[(nx+x, ny+y, nz+z)])
                    except KeyError: pass
        return Collection(objects)

    def selectShell(self, point, min, max=0):
        if min > max:
            min, max = max, min
        objects = Collection()
        minsq = min**2
        maxsq = max**2
        for index in self.partition.keys():
            d1 = self.partition_size*N.array(index) - point.array
            d2 = d1 + self.partition_size
            dmin = (d1 > 0.)*d1 - (d2 < 0.)*d2
            dminsq = N.add.reduce(dmin**2)
            dmaxsq = N.add.reduce(N.maximum(d1**2, d2**2))
            if dminsq >= minsq and dmaxsq <= maxsq:
                objects.addObject(self.partition[index])
            elif dmaxsq >= minsq and dminsq <= maxsq:
                o = Collection(self.partition[index]).selectShell(point,
                                                                  min, max)
                objects.addObject(o)
        return objects

    def pairsWithinCutoff(self, cutoff):
        """
        :param cutoff: a cutoff for pair distances
        :returns: a list containing all pairs of objects in the
                  collection whose center-of-mass distance is less than
                  the cutoff
        :rtype: list
        """
        pairs = []
        positions = {}
        for index, objects in self.partition.items():
            pos = map(lambda o: o.position(), objects)
            positions[index] = pos
            for o1, o2 in Utility.pairs(zip(objects, pos)):
                if (o2[1]-o1[1]).length() <= cutoff:
                    pairs.append((o1[0], o2[0]))
        partition_cutoff = int(N.floor((cutoff/self.partition_size)**2))
        ones = N.array([1,1,1])
        zeros = N.array([0,0,0])
        keys = self.partition.keys()
        for i in range(len(keys)):
            p1 = keys[i]
            for j in range(i+1, len(keys)):
                p2 = keys[j]
                d = N.maximum(abs(N.array(p2)-N.array(p1)) -
                              ones, zeros)
                if N.add.reduce(d*d) <= partition_cutoff:
                    for o1, pos1 in zip(self.partition[p1],
                                        positions[p1]):
                        for o2, pos2 in zip(self.partition[p2],
                                            positions[p2]):
                            if (pos2-pos1).length() <= cutoff:
                                pairs.append((o1, o2))
        return pairs

#
# A special form of partitioned collection that stores the atoms
# of all objects that are added to it.
#
class PartitionedAtomCollection(PartitionedCollection):

    """
    Partitioned collection of atoms

    PartitionedAtomCollection objects behave like PartitionedCollection
    atoms, except that they store only atoms. When a composite chemical
    object is added, its atoms are stored instead.
    """

    def __init__(*args):
        apply(PartitionedCollection.__init__, args)

    def addChemicalObject(self, object):
        for atom in object.atomIterator():
            PartitionedCollection.addChemicalObject(self, atom)

    def removeChemicalObject(self, object):
        for atom in object.atomIterator():
            PartitionedCollection.removeChemicalObject(self, atom)