/usr/share/pyshared/MMTK/Collections.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | # This module defines collections of chemical objects.
#
# Written by Konrad Hinsen
#
"""
Collections of chemical objects
"""
__docformat__ = 'restructuredtext'
from MMTK import Utility, Units, ParticleProperties, Visualization
from MMTK.Geometry import superpositionFit
from Scientific.Geometry import Vector, Tensor, Objects3D
from Scientific.Geometry import Transformation
from Scientific import N
import copy, itertools, types
#
# This class defines groups of atoms. It is used as a base class
# for anything containing atoms, including chemical objects, collections,
# universes etc., but it can't be used directly. All its subclasses
# must define a method atomList() that returns a list of all their atoms.
#
class GroupOfAtoms(object):
"""
Anything that consists of atoms
A mix-in class that defines a large set of operations which are
common to all objects that consist of atoms, i.e. any subset of
a chemical system. Examples are atoms, molecules, collections,
or universes.
"""
def numberOfAtoms(self):
"""
:returns: the number of atoms
:rtype: int
"""
return len(self.atomList())
def numberOfPoints(self):
"""
:returns: the number of geometrical points that define the
object. It is currently equal to the number of atoms,
but could be different e.g. for quantum systems, in which
each atom is described by a wave function or a path integral.
:rtype: int
"""
return sum([a.numberOfPoints() for a in self.atomIterator()])
numberOfCartesianCoordinates = numberOfPoints
def numberOfFixedAtoms(self):
"""
:returns: the number of atoms that are fixed, i.e. that cannot move
:rtype: int
"""
n = 0
for a in self.atomIterator():
try:
if a.fixed: n = n + 1
except AttributeError: pass
return n
def degreesOfFreedom(self):
"""
:returns: the number of mechanical degrees of freedom
:rtype: int
"""
return 3*(self.numberOfAtoms()-self.numberOfFixedAtoms())
def atomCollection(self):
"""
:returns: a collection containing all atoms in the object
"""
return Collection(self.atomList())
def atomsWithDefinedPositions(self, conf = None):
"""
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: a collection of all atoms that have a position in the
given configuration
"""
return Collection([a for a in self.atomIterator()
if Utility.isDefinedPosition(a.position(conf))])
def mass(self):
"""
:returns: the total mass
:rtype: float
"""
return sum(a._mass for a in self.atomIterator())
def centerOfMass(self, conf = None):
"""
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: the center of mass in the given configuration
:rtype: Scientific.Geometry.Vector
"""
offset = None
universe = self.universe()
if universe is not None:
offset = universe.contiguousObjectOffset([self], conf)
m = 0.
mr = Vector(0.,0.,0.)
if offset is None:
for a in self.atomIterator():
m += a._mass
mr += a._mass * a.position(conf)
else:
for a in self.atomIterator():
m += a._mass
mr += a._mass * (a.position(conf)+offset[a])
return mr/m
position = centerOfMass
def centerAndMomentOfInertia(self, conf = None):
"""
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: the center of mass and the moment of inertia tensor
in the given configuration
"""
from Scientific.Geometry import delta
offset = None
universe = self.universe()
if universe is not None:
offset = universe.contiguousObjectOffset([self], conf)
m = 0.
mr = Vector(0.,0.,0.)
t = Tensor(3*[3*[0.]])
for a in self.atomIterator():
ma = a._mass
if offset is None:
r = a.position(conf)
else:
r = a.position(conf)+offset[a]
m += ma
mr += ma*r
t += ma*r.dyadicProduct(r)
cm = mr/m
t -= m*cm.dyadicProduct(cm)
t = t.trace()*delta - t
return cm, t
def rotationalConstants(self, conf=None):
"""
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: a sorted array of rotational constants A, B, C
in internal units
"""
com, i = self.centerAndMomentOfInertia(conf)
pmi = i.eigenvalues()
return N.sort(Units.h / (8.*N.pi*N.pi*pmi))[::-1]
def boundingBox(self, conf = None):
"""
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: two opposite corners of a bounding box around the
object. The bounding box is the smallest rectangular
bounding box with edges parallel to the coordinate axes.
:rtype: tuple of two Scientific.Geometry.Vector
"""
atoms = self.atomList()
min = atoms[0].position(conf).array
max = min
for a in atoms[1:]:
r = a.position(conf).array
min = N.minimum(min, r)
max = N.maximum(max, r)
return Vector(min), Vector(max)
def boundingSphere(self, conf = None):
"""
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: a sphere that contains all atoms in the object.
This is B{not} the minimal bounding sphere, just B{some}
bounding sphere.
:rtype: Scientific.Geometry.Objects3D.Sphere
"""
atoms = self.atomList()
center = sum((a.position(conf) for a in atoms),
Vector(0., 0., 0.)) / len(atoms)
r = 0.
for a in atoms:
r = max(r, (a.position(conf)-center).length())
return Objects3D.Sphere(center, r)
def rmsDifference(self, conf1, conf2 = None):
"""
:param conf1: a configuration object
:type conf1: :class:`~MMTK.ParticleProperties.Configuration`
:param conf2: a configuration object, or None for the
current configuration
:type conf2: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: the RMS (root-mean-square) difference between the
conformations of the object in two universe configurations,
conf1 and conf2
:rtype: float
"""
universe = conf1.universe
m = 0.
rms = 0.
for a in self.atomIterator():
ma = a._mass
dr = universe.distanceVector(a.position(conf1), a.position(conf2))
m += ma
rms += ma*dr*dr
return N.sqrt(rms/m)
def findTransformationAsQuaternion(self, conf1, conf2 = None):
universe = self.universe()
if universe.is_periodic:
raise ValueError("superposition in periodic universe "
"is not defined")
if conf1.universe != universe:
raise ValueError("conformation is for a different universe")
if conf2 is None:
conf2 = conf1
conf1 = universe.configuration()
else:
if conf2.universe != universe:
raise ValueError("conformation is for a different universe")
weights = universe.masses()
return superpositionFit([(weights[a], conf1[a], conf2[a])
for a in self.atomIterator()])
def findTransformation(self, conf1, conf2 = None):
"""
:param conf1: a configuration object
:type conf1: :class:`~MMTK.ParticleProperties.Configuration`
:param conf2: a configuration object, or None for the
current configuration
:type conf2: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:returns: the linear transformation that, when applied to
the object in configuration conf1, minimizes the
RMS distance to the conformation in conf2, and the
minimal RMS distance.
If conf2 is None, returns the transformation from the
current configuration to conf1 and the associated
RMS distance.
"""
q, cm1, cm2, rms = self.findTransformationAsQuaternion(conf1, conf2)
return Transformation.Translation(cm2) * \
q.asRotation() * \
Transformation.Translation(-cm1), \
rms
def translateBy(self, vector):
"""
Translate the object by a displacement vector
:param vector: the displacement vector
:type vector: Scientific.Geometry.Vector
"""
for a in self.atomIterator():
a.translateBy(vector)
def translateTo(self, position):
"""
Translate the object such that its center of mass is at position
:param position: the final position
:type position: Scientific.Geometry.Vector
"""
self.translateBy(position-self.centerOfMass())
def normalizePosition(self):
"""
Translate the center of mass to the coordinate origin
"""
self.translateTo(Vector(0., 0., 0.))
def normalizeConfiguration(self, repr=None):
"""
Apply a linear transformation such that the center of mass of
the object is translated to the coordinate origin and its
principal axes of inertia become parallel to the three
coordinate axes.
:param repr: the specific representation for axis alignment:
- Ir : x y z <--> b c a
- IIr : x y z <--> c a b
- IIIr : x y z <--> a b c
- Il : x y z <--> c b a
- IIl : x y z <--> a c b
- IIIl : x y z <--> b a c
"""
transformation = self.normalizingTransformation(repr)
self.applyTransformation(transformation)
def normalizingTransformation(self, repr=None):
"""
Calculate a linear transformation that shifts the center of mass
of the object to the coordinate origin and makes its
principal axes of inertia parallel to the three coordinate
axes.
:param repr: the specific representation for axis alignment:
Ir : x y z <--> b c a
IIr : x y z <--> c a b
IIIr : x y z <--> a b c
Il : x y z <--> c b a
IIl : x y z <--> a c b
IIIl : x y z <--> b a c
:returns: the normalizing transformation
:rtype: Scientific.Geometry.Transformation.RigidBodyTransformation
"""
from Scientific.LA import determinant
cm, inertia = self.centerAndMomentOfInertia()
ev, diag = inertia.diagonalization()
if determinant(diag.array) < 0:
diag.array[0] = -diag.array[0]
if repr != None:
seq = N.argsort(ev)
if repr == 'Ir':
seq = N.array([seq[1], seq[2], seq[0]])
elif repr == 'IIr':
seq = N.array([seq[2], seq[0], seq[1]])
elif repr == 'Il':
seq = N.seq[2::-1]
elif repr == 'IIl':
seq[1:3] = N.array([seq[2], seq[1]])
elif repr == 'IIIl':
seq[0:2] = N.array([seq[1], seq[0]])
elif repr != 'IIIr':
print 'unknown representation'
diag.array = N.take(diag.array, seq)
return Transformation.Rotation(diag)*Transformation.Translation(-cm)
def applyTransformation(self, t):
"""
Apply a transformation to the object
:param t: the transformation to be applied
:type t: Scientific.Geometry.Transformation
"""
for a in self.atomIterator():
a.setPosition(t(a.position()))
def displacementUnderTransformation(self, t):
"""
:param t: the transformation to be applied
:type t: Scientific.Geometry.Transformation
:returns: the displacement vectors for the atoms in the object
that correspond to the transformation t.
:rtype: :class:`~MMTK.ParticleProperties.ParticleVector`
"""
d = ParticleProperties.ParticleVector(self.universe())
for a in self.atomIterator():
r = a.position()
d[a] = t(r)-r
return d
def rotateAroundCenter(self, axis_direction, angle):
"""
Rotate the object around an axis that passes through its center
of mass.
:param axis_direction: the direction of the axis of rotation
:type axis_direction: Scientific.Geometry.Vector
:param angle: the rotation angle (in radians)
:type angle: float
"""
cm = self.centerOfMass()
t = Transformation.Translation(cm) * \
Transformation.Rotation(axis_direction, angle) * \
Transformation.Translation(-cm)
self.applyTransformation(t)
def rotateAroundOrigin(self, axis_direction, angle):
"""
Rotate the object around an axis that passes through the
coordinate origin.
:param axis_direction: the direction of the axis of rotation
:type axis_direction: Scientific.Geometry.Vector
:param angle: the rotation angle (in radians)
:type angle: float
"""
self.applyTransformation(Transformation.Rotation(axis_direction, angle))
def rotateAroundAxis(self, point1, point2, angle):
"""
Rotate the object arond an axis specified by two points
:param point1: the first point
:type point1: Scientific.Geometry.Vector
:param point2: the second point
:type point2: Scientific.Geometry.Vector
:param angle: the rotation angle (in radians)
:type angle: float
"""
tr1 = Transformation.Translation(-point1)
tr2 = Transformation.Rotation(point2-point1, angle)
tr3 = tr1.inverse()
self.applyTransformation(tr3*tr2*tr1)
def writeToFile(self, filename, configuration = None, format = None):
"""
Write a representation of the object in a given
configuration to a file.
:param filename: the name of the file
:type filename: str
:param configuration: a configuration object, or None for the
current configuration
:type configuration: :class:`~MMTK.ParticleProperties.Configuration` or NoneType
:param format: 'pdb' or 'vrml' (default: guess from filename)
A subformat specification can be added, separated
by a dot. Subformats of 'vrml' are 'wireframe'
(default), 'ball_and_stick', 'highlight' (like
'wireframe', but with a small sphere for
all atoms that have an attribute 'highlight' with a
non-zero value), and 'charge' (wireframe plus small
spheres for the atoms whose color indicates the
charge on a red-to-green color scale)
:type format: str
"""
from MMTK import ConfigIO
universe = self.universe()
if universe is not None:
configuration = universe.contiguousObjectConfiguration(
[self], configuration)
file = ConfigIO.OutputFile(filename, format)
file.write(self, configuration)
file.close()
def view(self, configuration = None, format = 'pdb'):
"""
Start an external viewer for the object in the given
configuration.
:param configuration: the configuration to be visualized
:type configuration: :class:`~MMTK.ParticleProperties.Configuration`
:param format: 'pdb' (for running $PDBVIEWER) or 'vrml'
(for running $VRMLVIEWER). An optional
subformat specification can be added, see
:class:`~MMTK.Collections.GroupOfAtoms.writeToFile` for the details.
"""
universe = self.universe()
if universe is not None:
configuration = universe.contiguousObjectConfiguration([self],
configuration)
Visualization.viewConfiguration(self, configuration, format)
def kineticEnergy(self, velocities = None):
"""
:param velocities: a set of velocities for all atoms, or
None for the current velocities
:type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the kinetic energy
:rtype: float
"""
if velocities is None:
velocities = self.atomList()[0].universe().velocities()
energy = 0.
for a in self.atomIterator():
v = velocities[a]
energy = energy + a._mass*(v*v)
return 0.5*energy
def temperature(self, velocities = None):
"""
:param velocities: a set of velocities for all atoms, or
None for the current velocities
:type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the temperature
:rtype: float
"""
energy = self.kineticEnergy(velocities)
return 2.*energy/(self.degreesOfFreedom()*Units.k_B)
def momentum(self, velocities = None):
"""
:param velocities: a set of velocities for all atoms, or
None for the current velocities
:type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the momentum
:rtype: Scientific.Geometry.Vector
"""
if velocities is None:
velocities = self.atomList()[0].universe().velocities()
return sum((a._mass*velocities[a] for a in self.atomIterator()),
Vector(0., 0., 0.))
def angularMomentum(self, velocities = None, conf = None):
"""
:param velocities: a set of velocities for all atoms, or
None for the current velocities
:type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration`
:returns: the angluar momentum
:rtype: Scientific.Geometry.Vector
"""
if velocities is None:
velocities = self.atomList()[0].universe().velocities()
cm = self.centerOfMass(conf)
return sum((a._mass*a.position(conf).cross(velocities[a])
for a in self.atomIterator()),
Vector(0., 0., 0.))
def angularVelocity(self, velocities = None, conf = None):
"""
:param velocities: a set of velocities for all atoms, or
None for the current velocities
:type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
:param conf: a configuration object, or None for the
current configuration
:type conf: :class:`~MMTK.ParticleProperties.Configuration`
:returns: the angluar velocity
:rtype: Scientific.Geometry.Vector
"""
if velocities is None:
velocities = self.atomList()[0].universe().velocities()
cm, inertia = self.centerAndMomentOfInertia(conf)
l = sum((a._mass*a.position(conf).cross(velocities[a])
for a in self.atomIterator()),
Vector(0., 0., 0.))
return inertia.inverse()*l
def universe(self):
"""
:returns: the universe of which the object is part. For an
object that is not part of a universe, the result is
None
:rtype: :class:`~MMTK.Universe.Universe`
"""
atoms = self.atomList()
if not atoms:
return None
universe = atoms[0].universe()
for a in atoms[1:]:
if a.universe() is not universe:
return None
return universe
def charge(self):
"""
:returns: the total charge of the object. This is defined only
for objects that are part of a universe with a force
field that defines charges.
:rtype: float
"""
return self.universe().forcefield().charge(self)
def dipole(self, reference = None):
"""
:returns: the total dipole moment of the object. This is defined only
for objects that are part of a universe with a force field
that defines charges.
:rtype: Scientific.Geometry.Vector
"""
return self.universe().forcefield().dipole(self, reference)
def booleanMask(self):
"""
:returns: a ParticleScalar object that contains a value of 1
for each atom that is in the object and a value of 0 for all
other atoms in the universe
:rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
"""
universe = self.universe()
if universe is None:
raise ValueError("object not in a universe")
array = N.zeros((universe.numberOfAtoms(),), N.Int)
mask = ParticleProperties.ParticleScalar(universe, array)
for a in self.atomIterator():
mask[a] = 1
return mask
#
# This class defines a general collection that can contain
# chemical objects and other collections.
#
class Collection(GroupOfAtoms, Visualization.Viewable):
"""
Collection of chemical objects
Collections permit the grouping of arbitrary chemical objects
(atoms, molecules, etc.) into one object for the purpose of analysis
or manipulation.
Collections permit length inquiry, item extraction by indexing,
and iteration, like any Python sequence object. Two collections
can be added to yield a collection that contains the combined
elements.
"""
def __init__(self, *objects):
"""
:param objects: a chemical object or a sequence of or a generator
yielding chemical objects that define the initial
content of the collection.
"""
self.objects = []
if len(objects) == 1 and isinstance(objects[0], types.GeneratorType):
for obj in objects[0]:
self.addObject(obj)
else:
self.addObject(objects)
is_collection = 1
def addObject(self, object):
"""
Add objects to the collection.
:param object: the object(s) to be added. If it is another collection
or a list, all of its elements are added
"""
from MMTK.ChemicalObjects import isChemicalObject
if isChemicalObject(object):
self.addChemicalObject(object)
elif isCollection(object):
self.addChemicalObjectList(object.objectList())
elif Utility.isSequenceObject(object):
if object and isChemicalObject(object[0]):
self.addChemicalObjectList(list(object))
else:
for o in object:
self.addObject(o)
else:
raise TypeError('Wrong object type in collection')
def addChemicalObject(self, object):
self.objects.append(object)
def addChemicalObjectList(self, list):
self.objects.extend(list)
def removeObject(self, object):
"""
Remove an object or a list or collection of objects from the
collection. The object(s) to be removed must be elements of the
collection.
:param object: the object to be removed, or a list or collection
of objects whose elements are to be removed
:raises ValueError: if the object is not an element of the collection
"""
from MMTK.ChemicalObjects import isChemicalObject
if isChemicalObject(object):
self.removeChemicalObject(object)
elif isCollection(object) or Utility.isSequenceObject(object):
for o in object:
self.removeObject(o)
else:
raise ValueError('Object not in this collection')
def removeChemicalObject(self, object):
try:
self.objects.remove(object)
except ValueError:
raise ValueError('Object not in this collection')
def selectShell(self, point, r1, r2=0.):
"""
Select objects in a spherical shell around a central point.
:param point: the center of the spherical shell
:type point: Scientific.Geometry.Vector
:param r1: inner or outer radius of the shell
:type r1: float
:param r2: inner or outer radius of the shell (default: 0.)
:type r2: float
:returns: a collection of all elements whose
distance from point is between r1 and r2
:rtype: :class:`~MMTK.Collections.Collection`
"""
if r1 > r2:
r1, r2 = r2, r1
universe = self.universe()
in_shell = []
for o in self.objects:
for a in o.atomIterator():
r = universe.distance(a.position(), point)
if r >= r1 and r <= r2:
in_shell.append(o)
break
return Collection(in_shell)
def selectBox(self, p1, p2):
"""
Select objects in a rectangular volume
:param p1: one corner of the rectangular volume
:type p1: Scientific.Geometry.Vector
:param p2: the other corner of the rectangular volume
:type p2: Scientific.Geometry.Vector
:returns: a collection of all elements that lie
within the rectangular volume
:rtype: :class:`~MMTK.Collections.Collection`
"""
x1 = N.minimum(p1.array, p2.array)
x2 = N.maximum(p1.array, p2.array)
in_box = []
for o in self.objects:
r = o.position().array
if N.logical_and.reduce( \
N.logical_and(N.less_equal(x1, r),
N.less(r, x2))):
in_box.append(o)
return Collection(in_box)
def objectList(self, type = None):
"""
Make a list of all objects in the collection that are instances
of a specific type or of one of its subtypes.
:param type: the type that serves as a filter. If None,
all objects are returned
:returns: the objects that match the given type
:rtype: list
"""
if type is None:
return self.objects
else:
return [o for o in self.objects if isinstance(o, type)]
def atomList(self):
"""
:returns: a list containing all atoms of all objects in the collection
:rtype: list
"""
atoms = []
for o in self.objectList():
atoms.extend(o.atomList())
return atoms
def atomIterator(self):
return itertools.chain(*(o.atomIterator() for o in self.objects))
def numberOfAtoms(self):
"""
:returns: the total number of atoms in the objects of the collection
:rtype: int
"""
return sum(o.numberOfAtoms() for o in self.objectList())
def universe(self):
"""
:returns: the universe of which all objects in the collection
are part. If no such universe exists, the return value
is None
:rtype: :class:`~MMTK.Universe.Universe`
"""
if not self.objects:
return None
universe = self.objects[0].universe()
for o in self.objects[1:]:
if o.universe() is not universe:
return None
return universe
def __len__(self):
"""
:returns: the number of objects in the collection
:rtype: int
"""
return len(self.objects)
def __getitem__(self, item):
"""
:param item: an index into the object list
:type item: int
:returns: the object with the given index
"""
return self.objects[item]
def __iter__(self):
return self.objects.__iter__()
def __add__(self, other):
return Collection(self.objectList(), other.objectList())
def __str__(self):
return "Collection of %d objects" % len(self.objects)
def map(self, function):
"""
Apply a function to all objects in the collection and
return the list of the results. If the results are chemical
objects, a Collection object is returned instead of a list.
:param function: the function to be applied
:type function: callable
:returns: the list or collection of the results
"""
from MMTK.ChemicalObjects import isChemicalObject
list = [function(o) for o in self.objectList()]
if list and isChemicalObject(list[0]):
return Collection(list)
else:
return list
def bondedUnits(self):
bu = []
for o in self.objects:
bu = bu + o.bondedUnits()
return bu
def degreesOfFreedom(self):
return GroupOfAtoms.degreesOfFreedom(self) \
- self.numberOfDistanceConstraints()
def distanceConstraintList(self):
"""
:returns: the list of distance constraints
:rtype: list
"""
dc = []
for o in self.objects:
dc.extend(o.distanceConstraintList())
return dc
def numberOfDistanceConstraints(self):
"""
:returns: the number of distance constraints
"""
return sum(o.numberOfDistanceConstraints() for o in self.objects)
def setBondConstraints(self, universe=None):
"""
Set distance constraints for all bonds
"""
if universe is None:
universe = self.universe()
for o in self.objects:
o.setBondConstraints(universe)
def removeDistanceConstraints(self, universe=None):
"""
Remove all distance constraints
"""
if universe is None:
universe = self.universe()
for o in self.objects:
o.removeDistanceConstraints(universe)
def _graphics(self, conf, distance_fn, model, module, options):
gobs = []
for o in self.objects:
gobs.extend(o._graphics(conf, distance_fn, model,
module, options))
return gobs
def __copy__(self):
return self.__class__(copy.copy(self.objects))
# type check for collections
def isCollection(object):
"""
:param object: any Python object
:returns: True if the object is a :class:`~MMTK.Collections.Collection`
"""
return hasattr(object, 'is_collection')
#
# This class defines a partitioned collection. Such collections
# divide their objects into cubic boxes according to their positions.
# It is then possible to find potential neighbours much more efficiently.
#
class PartitionedCollection(Collection):
"""
Collection with cubic partitions
A PartitionedCollection differs from a plain Collection by
sorting its elements into small cubic cells. This makes adding
objects slower, but geometrical operations like
selectShell become much faster for a large number of
objects.
"""
def __init__(self, partition_size, *objects):
"""
:param partition_size: the edge length of the cubic cells
:param objects: a chemical object or a sequence of chemical objects that
define the initial content of the collection.
"""
self.partition_size = 1.*partition_size
self.undefined = []
self.partition = {}
self.addObject(objects)
def addChemicalObject(self, object):
p = object.position()
if p is None:
self.undefined.append(object)
else:
index = self.partitionIndex(p)
try:
partition = self.partition[index]
except KeyError:
partition = []
self.partition[index] = partition
partition.append(object)
self.all = None
def addChemicalObjectList(self, list):
for object in list:
self.addChemicalObject(object)
def removeChemicalObject(self, object):
p = object.position()
if p is None:
self.undefined.remove(object)
else:
index = self.partitionIndex(p)
try:
partition = self.partition[index]
except KeyError:
raise ValueError('Object not in this collection')
try:
partition.remove(object)
except ValueError:
raise ValueError('Object not in this collection')
self.all = None
def partitionIndex(self, x):
return (int(N.floor(x[0]/self.partition_size)),
int(N.floor(x[1]/self.partition_size)),
int(N.floor(x[2]/self.partition_size)))
def objectList(self):
return sum(self.partition.values(), [self.undefined])
def __len__(self):
return sum(len(p) for p in self.partition.values()) + \
len(self.undefined)
def __getitem__(self, item):
if self.all is None:
self.all = self.objectList()
if item >= len(self.all):
self.all = None
raise IndexError
return self.all[item]
def __copy__(self):
return self.__class__(self.partition_size,
copy.copy(self.objectList()))
def partitions(self):
"""
:returns: a list of cubic partitions. Each partition is specified
by a tuple containing two vectors (describing the diagonally
opposite corners) and the list of objects in the partition.
:rtype: list
"""
list = []
for index, objects in self.partition.items():
min = Vector(index)*self.partition_size
max = min + Vector(3*[self.partition_size])
list.append((min, max, objects))
return list
def selectCube(self, point, edge):
x = int(round(point[0]/self.partition_size))
y = int(round(point[1]/self.partition_size))
z = int(round(point[2]/self.partition_size))
d = (Vector(x, y, z)*self.partition_size-point).length()
n = int(N.ceil((edge + d)/(2.*self.partition_size)))
objects = []
for nx in range(-n, n):
for ny in range(-n, n):
for nz in range(-n, n):
try:
objects.append(self.partition[(nx+x, ny+y, nz+z)])
except KeyError: pass
return Collection(objects)
def selectShell(self, point, min, max=0):
if min > max:
min, max = max, min
objects = Collection()
minsq = min**2
maxsq = max**2
for index in self.partition.keys():
d1 = self.partition_size*N.array(index) - point.array
d2 = d1 + self.partition_size
dmin = (d1 > 0.)*d1 - (d2 < 0.)*d2
dminsq = N.add.reduce(dmin**2)
dmaxsq = N.add.reduce(N.maximum(d1**2, d2**2))
if dminsq >= minsq and dmaxsq <= maxsq:
objects.addObject(self.partition[index])
elif dmaxsq >= minsq and dminsq <= maxsq:
o = Collection(self.partition[index]).selectShell(point,
min, max)
objects.addObject(o)
return objects
def pairsWithinCutoff(self, cutoff):
"""
:param cutoff: a cutoff for pair distances
:returns: a list containing all pairs of objects in the
collection whose center-of-mass distance is less than
the cutoff
:rtype: list
"""
pairs = []
positions = {}
for index, objects in self.partition.items():
pos = map(lambda o: o.position(), objects)
positions[index] = pos
for o1, o2 in Utility.pairs(zip(objects, pos)):
if (o2[1]-o1[1]).length() <= cutoff:
pairs.append((o1[0], o2[0]))
partition_cutoff = int(N.floor((cutoff/self.partition_size)**2))
ones = N.array([1,1,1])
zeros = N.array([0,0,0])
keys = self.partition.keys()
for i in range(len(keys)):
p1 = keys[i]
for j in range(i+1, len(keys)):
p2 = keys[j]
d = N.maximum(abs(N.array(p2)-N.array(p1)) -
ones, zeros)
if N.add.reduce(d*d) <= partition_cutoff:
for o1, pos1 in zip(self.partition[p1],
positions[p1]):
for o2, pos2 in zip(self.partition[p2],
positions[p2]):
if (pos2-pos1).length() <= cutoff:
pairs.append((o1, o2))
return pairs
#
# A special form of partitioned collection that stores the atoms
# of all objects that are added to it.
#
class PartitionedAtomCollection(PartitionedCollection):
"""
Partitioned collection of atoms
PartitionedAtomCollection objects behave like PartitionedCollection
atoms, except that they store only atoms. When a composite chemical
object is added, its atoms are stored instead.
"""
def __init__(*args):
apply(PartitionedCollection.__init__, args)
def addChemicalObject(self, object):
for atom in object.atomIterator():
PartitionedCollection.addChemicalObject(self, atom)
def removeChemicalObject(self, object):
for atom in object.atomIterator():
PartitionedCollection.removeChemicalObject(self, atom)
|