This file is indexed.

/usr/share/pyshared/MMTK/ConfigIO.py is in python-mmtk 2.7.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# This module deals with input and output of configurations.
#
# Written by Konrad Hinsen
#

"""
I/O of molecular configurations

Input: Z-Matrix and Cartesian
Output: VRML
PDB files are handled in :class:`~MMTK.PDB`.
"""

__docformat__ = 'restructuredtext'

from MMTK import PDB, Units, Utility
from Scientific.Geometry.Objects3D import Sphere, Cone, Plane, Line, \
                                          rotatePoint
from Scientific.Geometry import Vector
from Scientific.Visualization import VRML
from Scientific import N
import os

#
# This class represents a Z-Matrix. Z-Matrix data consists of a list
# with one element for each atom being defined. Each entry is a
# list containing the data defining the atom.
#
class ZMatrix(object):

    """
    Z-Matrix specification of a molecule conformation

    ZMatrix objects can be used in chemical database entries
    to specify molecule conformations by internal coordinates.
    With the exception of the three first atoms, each atom is
    defined relative to three previously atoms by a distance,
    an angle, and a dihedral angle.
    """

    def __init__(self, data):
        """
        :param data: a list of atom definitions. Each atom definition (except
                     for the first three ones) is a list containing seven
                     elements:

                       - the atom to be defined
                       - a previously defined atom and the distance to it
                       - another previously defined atom and the angle to it
                       - a third previously defined atom and the dihedral
                         angle to it

                     The definition of the first atom contains only the first
                     element, the second atom needs the first three elements,
                     and the third atom is defined by the first five elements.
        """
        self.data = data
        self.coordinates = {}

    _substitute = True

    def findPositions(self):
        # First atom at origin
        self.coordinates[self.data[0][0]] = Vector(0,0,0)
        # Second atom along x-axis
        self.coordinates[self.data[1][0]] = Vector(self.data[1][2],0,0)
        # Third atom in xy-plane
        try:
            pos1 = self.coordinates[self.data[2][1]]
        except KeyError:
            raise ValueError("atom %d has no defined position"
                              % self.data[2][1].number)
        try:
            pos2 = self.coordinates[self.data[2][3]]
        except KeyError:
            raise ValueError("atom %d has no defined position"
                              % self.data[2][3].number)
        sphere = Sphere(pos1, self.data[2][2])
        cone = Cone(pos1, pos2-pos1, self.data[2][4])
        plane = Plane(Vector(0,0,0), Vector(0,0,1))
        points = sphere.intersectWith(cone).intersectWith(plane)
        self.coordinates[self.data[2][0]] = points[0]
        # All following atoms defined by distance + angle + dihedral
        for entry in self.data[3:]:
            try:
                pos1 = self.coordinates[entry[1]]
            except KeyError:
                raise ValueError("atom %d has no defined position"
                                  % entry[1].number)
            try:
                pos2 = self.coordinates[entry[3]]
            except KeyError:
                raise ValueError("atom %d has no defined position"
                                  % entry[3].number)
            try:
                pos3 = self.coordinates[entry[5]]
            except KeyError:
                raise ValueError("atom %d has no defined position"
                                  % entry[5].number)
            distance = entry[2]
            angle = entry[4]
            dihedral = entry[6]
            sphere = Sphere(pos1, distance)
            cone = Cone(pos1, pos2-pos1, angle)
            plane123 = Plane(pos3, pos2, pos1)
            points = sphere.intersectWith(cone).intersectWith(plane123)
            for p in points:
                if Plane(pos2, pos1, p).normal * plane123.normal > 0:
                    break
            p = rotatePoint(p, Line(pos1, pos2-pos1), dihedral)
            self.coordinates[entry[0]] = p

    def applyTo(self, object):
        """
        Define the positions of the atoms in a chemical object by the
        internal coordinates of the Z-Matrix.

        :param object: the object to which the Z-Matrix is applied
        """
        if not len(self.coordinates):
            self.findPositions()
        for entry in self.coordinates.items():
            object.setPosition(entry[0], entry[1])
        object.normalizePosition()

#
# This class represents a dictionary of Cartesian positions
#
class Cartesian(object):

    """
    Cartesian specification of a molecule conformation

    Cartesian objects can be used in chemical database entries
    to specify molecule conformations by Cartesian coordinates.
    """
    
    def __init__(self, data):
        """
        :param data: a dictionary mapping atoms to tuples of length three
                     that define its Cartesian coordinates
        """
        self.dict = data

    _substitute = True

    def applyTo(self, object):
        """
        Define the positions of the atoms in a chemical object by the
        stored coordinates.

        :param object: the object to which the coordinates are applied
        """
        for a, r in self.dict.items():
            object.setPosition(a, Vector(r[0], r[1], r[2]))

#
# VRML output
#
class VRMLWireframeFile(VRML.VRMLFile):

    def __init__(self, filename, color_values = None):
        VRML.VRMLFile.__init__(self, filename, 'w')
        self.warning = 0
        self.color_values = color_values
        if self.color_values is not None:
            lower = N.minimum.reduce(color_values.array)
            upper = N.maximum.reduce(color_values.array)
            self.color_scale = VRML.ColorScale((lower, upper))

    def write(self, object, configuration = None, distance = None):
        from MMTK.ChemicalObjects import isChemicalObject
        from MMTK.Universe import InfiniteUniverse
        if distance is None:
            try:
                distance = object.universe().distanceVector
            except AttributeError:
                distance = InfiniteUniverse().distanceVector
        if not isChemicalObject(object):
            for o in object:
                self.write(o, configuration, distance)
        else:
            for bu in object.bondedUnits():
                for a in bu.atomList():
                    self.writeAtom(a, configuration)
                if hasattr(bu, 'bonds'):
                    for b in bu.bonds:
                        self.writeBond(b, configuration, distance)

    def close(self):
        VRML.VRMLFile.close(self)
        if self.warning:
            Utility.warning('Some atoms are missing in the output file ' + \
                            'because their positions are undefined.')
            self.warning = 0

    def atomColor(self, atom):
        if self.color_values is None:
            return atom.color
        else:
            return self.color_scale(self.color_values[atom])

    def writeAtom(self, atom, configuration):
        pass

    def writeBond(self, bond, configuration, distance):
        p1 = bond.a1.position(configuration)
        p2 = bond.a2.position(configuration)
        if p1 is not None and p2 is not None:
            bond_vector = 0.5*distance(bond.a1, bond.a2, configuration)
            cut = bond_vector != 0.5*(p2-p1)
            color1 = self.atomColor(bond.a1)
            color2 = self.atomColor(bond.a2)
            material1 = VRML.EmissiveMaterial(color1)
            material2 = VRML.EmissiveMaterial(color2)
            if color1 == color2 and not cut:
                c = VRML.Line(p1, p2, material = material1)
                c.writeToFile(self)
            else:
                c = VRML.Line(p1, p1+bond_vector, material = material1)
                c.writeToFile(self)
                c = VRML.Line(p2, p2-bond_vector, material = material2)
                c.writeToFile(self)


class VRMLHighlight(VRMLWireframeFile):

    def writeAtom(self, atom, configuration):
        try:
            highlight = atom.highlight
        except AttributeError:
            highlight = 0
        if highlight:
            p = atom.position(configuration)
            if p is None:
                self.warning = 1
            else:
                s = VRML.Sphere(p, 0.1*Units.Ang,
                                material = VRML.DiffuseMaterial(atom.color),
                                reuse = 1)
                s.writeToFile(self)


class VRMLBallAndStickFile(VRMLWireframeFile):

    def writeAtom(self, atom, configuration):
        p = atom.position(configuration)
        if p is None:
            self.warning = 1
        else:
            color = self.atomColor(atom)
            s = VRML.Sphere(p, 0.1*Units.Ang,
                            material = VRML.DiffuseMaterial(color),
                            reuse = 1)
            s.writeToFile(self)

    def writeBond(self, bond, configuration, distance):
        p1 = bond.a1.position(configuration)
        p2 = bond.a2.position(configuration)
        if p1 is not None and p2 is not None:
            bond_vector = 0.5*distance(bond.a1, bond.a2, configuration)
            cut = bond_vector != 0.5*(p2-p1)
            color1 = self.atomColor(bond.a1)
            color2 = self.atomColor(bond.a2)
            material1 = VRML.EmissiveMaterial(color1)
            material2 = VRML.EmissiveMaterial(color2)
            if color1 == color2 and not cut:
                c = VRML.Cylinder(p1, p2, 0.03*Units.Ang,
                                  material = material1)
                c.writeToFile(self)
            else:
                c = VRML.Cylinder(p1, p1+bond_vector, 0.03*Units.Ang,
                                  material = material1)
                c.writeToFile(self)
                c = VRML.Cylinder(p2, p2-bond_vector, 0.03*Units.Ang,
                                  material = material2)
                c.writeToFile(self)


class VRMLChargeFile(VRMLWireframeFile):

    color_scale = VRML.SymmetricColorScale(1.)

    def writeAtom(self, atom, configuration):
        p = atom.position(configuration)
        c = atom.charge()
        c = max(min(c, 1.), -1.)
        if p is None:
            self.warning = 1
        else:
            s = VRML.Sphere(p, 0.1*Units.Ang,
                            material = VRML.Material(diffuse_color =
                                                     self.color_scale(c)))
            s.writeToFile(self)

    bond_material = VRML.DiffuseMaterial('black')

    def writeBond(self, bond, configuration, distance):
        p1 = bond.a1.position(configuration)
        p2 = bond.a2.position(configuration)
        if p1 is not None and p2 is not None:
            bond_vector = 0.5*distance(bond.a1, bond.a2, configuration)
            cut = bond_vector != 0.5*(p2-p1)
            if not cut:
                c = VRML.Line(p1, p2, material = self.bond_material)
                c.writeToFile(self)
            else:
                c = VRML.Line(p1, p1+bond_vector, material = self.bond_material)
                c.writeToFile(self)
                c = VRML.Line(p2, p2-bond_vector, material = self.bond_material)
                c.writeToFile(self)

VRMLFile = VRMLWireframeFile

#
# Recognize some standard file types by their extensions
#
def fileFormatFromExtension(filename):
    filename, ext = os.path.splitext(filename)
    if ext in _file_compressions:
        filename, ext = os.path.splitext(filename)
    try:
        return _file_formats[ext]
    except KeyError:
        raise IOError('Unknown file format')

_file_formats = {'.pdb': 'pdb', '.wrl': 'vrml'}
_file_compressions = ['.gz', '.Z']

#
# Output file for a specified format
#
def OutputFile(filename, format = None):
    if format is None:
        format = fileFormatFromExtension(filename)
    format = tuple(format.split('.'))
    try:
        return _file_types[format](filename)
    except KeyError:
        if len(format) == 1:
            return _file_types[format[0]](filename)
        else:
            _file_types[format[0]](filename, format[1])

_file_types = {'pdb': PDB.PDBOutputFile,
               ('vrml',): VRMLFile,
               ('vrml', 'wireframe'): VRMLWireframeFile,
               ('vrml', 'highlight'): VRMLHighlight,
               ('vrml', 'ball_and_stick'): VRMLBallAndStickFile,
               ('vrml', 'charge'): VRMLChargeFile}