This file is indexed.

/usr/share/pyshared/MMTK/Database.py is in python-mmtk 2.7.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# This module manages the chemical database.
#
# Written by Konrad Hinsen
#

"""
Management of the chemical database

The database contains definitions for atoms, groups, molecules, and
complexes. Each definition is a Python file that is executed in the
global environment of the module 'XEnvironment' (X standing for
'Atom', 'Group', 'Molecule', 'Complex', 'Protein', or 'Crystal').
Definitions made in that file will end up as attributes of an object
that is later used as a blueprint to create chemical objects.
"""

__docformat__ = 'restructuredtext'

from MMTK import Utility
import copy
import os
import sys

#
# Find database path
#
try:
    path = os.environ['MMTKDATABASE'].split()
except KeyError:
    path = ['~/.mmtk/Database',
            os.path.join(os.path.split(__file__)[0], 'Database')]

for i in range(len(path)):
    if not Utility.isURL(path[i]):
        path[i] = os.path.expanduser(path[i])

#
# Some miscellaneous functions for use by other modules
#
def databasePath(filename, directory, try_direct = False):
    if Utility.isURL(filename):
        return filename
    filename = os.path.expanduser(filename)
    if try_direct and os.path.exists(filename):
        return os.path.normcase(filename)
    entries = []
    if os.path.split(filename)[0] == '':
        for p in path:
            if Utility.isURL(p):
                url = Utility.joinURL(p, directory+'/'+filename)
                if Utility.checkURL(url):
                    entries.append(url)
            else:
                full_name = os.path.join(os.path.join(p, directory), filename)
                if os.path.exists(full_name):
                    entries.append(os.path.normcase(full_name))
    if len(entries) == 0:
        raise IOError("Database entry %s/%s not found" % (directory, filename))
    else:
        if len(entries) > 1:
            Utility.warning("multiple database entries for %s/%s, using first one"
                            % (directory, filename))
            for e in entries:
                sys.stderr.write(e+'\n')
        return entries[0]
        
def PDBPath(filename):
    return databasePath(filename, 'PDB', True)

def addDatabaseDirectory(directory):
    "Add a directory to the database search path"
    if not Utility.isURL(directory):
        directory = os.path.expanduser(directory)
        path.append(directory)

#
# The class that represents a database. There will be one instance
# for atoms, one for groups etc.
# 
class Database(object):

    def __init__(self, directory, type_constructor):
        self.directory = directory
        self.type_constructor = type_constructor
        self.types = {}

    def findType(self, name):
        name = name.lower()
        if not self.types.has_key(name):
            filename = databasePath(name, self.directory, False)
            self.types[name] = self.type_constructor(filename, name)
        return self.types[name]

#
# The base class for all the type classes. It defines how definitions
# are loaded from the database.
#
class ChemicalObjectType(object):

    def __init__(self, filename, database_name, module, instancevars):
        self.filename = filename
        self.database_name = database_name
        file_text = Utility.readURL(filename)
        newvars = {}
        exec file_text in vars(module), newvars
        for name, value in newvars.items():
            setattr(self, name, value)
        self.parent = None
        if not hasattr(self, 'instance'): self.instance = []
        for attr in instancevars+('parent',):
            if not hasattr(self, attr): setattr(self, attr, [])
            if attr not in self.instance: self.instance.append(attr)
        attributes = vars(self).items()
        attributes.sort(lambda a, b: cmp(a[0], b[0]))
        for name, object in attributes:
            if hasattr(object, 'is_instance_var'):
                if name not in self.instance:
                    self.instance.append(name)
                object.parent = self
                object.name = name
            if hasattr(object, 'object_list'):
                getattr(self, object.object_list).append(object)

    is_chemical_object_type = True

    def setReferences(self):
        atom_refs = []
        for i in range(len(self.atoms)):
            atom_refs.append(AtomReference(i))
        for attr in vars(self).items():
            if attr[0] not in self.instance:
                setattr(self, attr[0],
                        Utility.substitute(getattr(self, attr[0]),
                                           self.atoms, atom_refs))

    # Type objects are singletons, they are never copied
    def __copy__(self, memo = None):
        return self
    __deepcopy__ = __copy__

    # Pickle support. When pickled/unpickled through
    # MMTK.Utility.save and MMTK.Utility.load, type objects
    # are treated as external persistent objects. This is handled
    # by a specialized Pickler and Unpickler (see MMTK.Utility)
    # and the _restoreId() methods in the subclasses of
    # ChemicalObjectType. This mechanism maintains the singleton
    # nature of type objects.
    # When pickling using the unmodified pickle/cPickle routines,
    # there is no way to prevent type objects from being duplicated
    # at unpickle time. The best we can do is to make the newly created
    # type object a clone of the singleton object. This is handled
    # by the __setstate__ and __getstate__ methods that follow

    def __getstate__(self):
        return self._restoreId()

    def __setstate__(self, state):
        import sys
        singleton_type = eval("MMTK."+state, sys.modules)
        self.__dict__.update(singleton_type.__dict__)


    def writeXML(self, file, memo):
        if memo.get(id(self), None) is not None:
            return
        try:
            name = self.name
        except AttributeError:
            name = 'm' + `memo['counter']`
            memo['counter'] = memo['counter'] + 1
        memo[id(self)] = name
        atoms = copy.copy(self.atoms)
        bonds = copy.copy(self.bonds)
        for group in self.groups:
            group.type.writeXML(file, memo)
            for atom in group.atoms:
                atoms.remove(atom)
            for bond in group.bonds:
                bonds.remove(bond)
        file.write('<molecule id="%s">\n' % name)
        for group in self.groups:
            file.write('  <molecule ref="%s" title="%s"/>\n'
                       % (memo[id(group.type)], group.name))
        if atoms:
            file.write('  <atomArray>\n')
            for atom in atoms:
                file.write('    <atom title="%s" elementType="%s"/>\n'
                           % (atom.name, atom.type.symbol))
            file.write('  </atomArray>\n')
        if bonds:
            file.write('  <bondArray>\n')
            for bond in bonds:
                a1n = self.relativeName(bond.a1)
                a2n = self.relativeName(bond.a2)
                file.write('    <bond atomRefs2="%s %s"/>\n' % (a1n, a2n))
            file.write('  </bondArray>\n')
        file.write('</molecule>\n')

    def getXMLAtomOrder(self):
        atoms = copy.copy(self.atoms)
        atom_names = []
        for group in self.groups:
            for atom in group.atoms:
                atoms.remove(atom)
            group_name = self.relativeName(group)
            for atom in group.type.getXMLAtomOrder():
                atom_names.append(group_name + ':' + atom)
        for atom in atoms:
            atom_names.append(self.relativeName(atom))
        return atom_names

    def relativeName(self, object):
        name = ''
        while object is not None and object != self:
            for attr, value in object.parent.__dict__.items():
                if value is object:
                    name = attr + ':' + name
                    break
            object = object.parent
        return name[:-1]

#
# Atom type class
#
class AtomType(ChemicalObjectType):

    error = 'AtomTypeError'

    def __init__(self, filename, database_name):
        from MMTK import AtomEnvironment
        ChemicalObjectType.__init__(self, filename, database_name,
                                    AtomEnvironment, ())
        if not isinstance(self.mass, list):
            self.mass = [(self.mass, 100.)]
        total_probability = sum([m[1] for m in self.mass])
        if abs(total_probability-100.) > 1.e-4:
            raise self.error('Inconsistent mass specification: ' +
                              `total_probability-100.` + ' percent missing')
        self.average_mass = sum([m[0]*m[1] for m in self.mass])/100
        if not hasattr(self, 'pdbmap'):
            name = self.symbol.upper()
            self.pdbmap = [(name, {name: None})]

    def _restoreId(self):
        return 'Database.atom_types.findType("' + \
               self.database_name + '")'

    def writeXML(self, file, memo):
        file.write('<atom/>\n')

    def getXMLAtomOrder(self):
        return [self.name]

#
# Group type class
#
class GroupType(ChemicalObjectType):

    error = 'GroupTypeError'

    def __init__(self, filename, database_name):
        from MMTK import GroupEnvironment
        ChemicalObjectType.__init__(self, filename, database_name,
                                    GroupEnvironment,
                                    ('atoms', 'groups', 'bonds',
                                     'chain_links'))
        for g in self.groups:
            self.atoms = self.atoms + g.atoms
            self.bonds = self.bonds + g.bonds
        self.setReferences()

    def _restoreId(self):
        return 'Database.group_types.findType("' + \
               self.database_name + '")'

#
# Molecule type class
#
class MoleculeType(ChemicalObjectType):

    error = 'MoleculeTypeError'

    def __init__(self, filename, database_name):
        from MMTK import MoleculeEnvironment
        ChemicalObjectType.__init__(self, filename, database_name,
                                    MoleculeEnvironment,
                                    ('atoms', 'groups', 'bonds'))
        for g in self.groups:
            self.atoms = self.atoms + g.atoms
            self.bonds = self.bonds + g.bonds
        self.setReferences()

    def _restoreId(self):
        return 'Database.molecule_types.findType("' + \
               self.database_name + '")'

#
# Crystal type class
#
class CrystalType(ChemicalObjectType):

    error = 'CrystalTypeError'

    def __init__(self, filename, database_name):
        from MMTK import CrystalEnvironment
        ChemicalObjectType.__init__(self, filename, database_name,
                                    CrystalEnvironment,
                                    ('atoms', 'groups', 'molecules', 'bonds'))
        for g in self.groups:
            self.atoms = self.atoms + g.atoms
            self.bonds = self.bonds + g.bonds
        for m in self.molecules:
            self.atoms = self.atoms + m.atoms
            self.bonds = self.bonds + m.bonds
        self.setReferences()

    def _restoreId(self):
        return 'Database.crystal_types.findType("' + \
               self.database_name + '")'

#
# Complex type class
#
class ComplexType(ChemicalObjectType):

    error = 'ComplexTypeError'

    def __init__(self, filename, database_name):
        import ComplexEnvironment
        ChemicalObjectType.__init__(self, filename, database_name,
                                    ComplexEnvironment,
                                    ('atoms', 'molecules'))
        for m in self.molecules:
            self.atoms = self.atoms + m.atoms
        self.setReferences()

    def _restoreId(self):
        return 'Database.complex_types.findType("' + \
               self.database_name + '")'

#
# An atom reference object is substituted for all references to
# atom objects that are not in instance variables. A reference
# object contains only the number of the atom in the list of
# atoms of its parent object.
#
class AtomReference(object):

    def __init__(self, number):
        self.number = number

    def increaseBy(self, offset):
        self.number = self.number + offset

    def __repr__(self):
        return '<Atom number ' + `self.number` + '>'
    __str__ = __repr__

    def __eq__(self, other):
        if isinstance(other, AtomReference):
            return self.number == other.number
        else:
            return NotImplemented

    def __ne__(self, other):
        if isinstance(other, AtomReference):
            return self.number != other.number
        else:
            return NotImplemented

    def __hash__(self):
        return hash(self.number)

#
# The base class for all types that just contain references to
# the file names. These are for objects that tend to be big
# and used only in small numbers.
#
class ReferenceType(object):

    def __init__(self, filename, database_name, environment):
        self.filename = filename
        self.database_name = database_name
        self.environment = environment

    def createObject(self, newvars):
        file_text = Utility.readURL(self.filename)
        exec file_text in vars(self.environment), newvars

class ProteinType(ReferenceType):

    def __init__(self, filename, database_name):
        from MMTK import ProteinEnvironment
        ReferenceType.__init__(self, filename, database_name,
                               ProteinEnvironment)

    def _restoreId(self):
        return 'Database.protein_types.findType("' + \
               self.database_name + '")'

#
# The five databases.
#
atom_types = Database('Atoms', AtomType)
group_types = Database('Groups', GroupType)
molecule_types = Database('Molecules', MoleculeType)
crystal_types = Database('Crystals', CrystalType)
complex_types = Database('Complexes', ComplexType)
protein_types = Database('Proteins', ProteinType)

#
# The following classes represent the chemical objects
# in the type blueprints. They contain no information
# in addition to references to an object type. They
# are needed only to establish a test of identity;
# e.g. each hydrogen atom in a molecule must be represented
# by a different object.
#
class BlueprintObject(object):

    def __init__(self, original, database, memo):
        if isinstance(original, basestring):
            original = database.findType(original)
            self.type = original
        elif hasattr(original, 'is_blueprint'):
            self.type = original.type
            if hasattr(original, 'name'):
                self.name = original.name
        else:
            self.type = original
        if memo is None: memo = {}
        memo[id(original)] = self
        for attr in self.type.instance:
            setattr(self, attr, _blueprintCopy(getattr(original, attr), memo))

    is_instance_var = True
    is_blueprint = True

    def __getattr__(self, attr):
        return getattr(self.type, attr)

    def __copy__(self, memo = None):
        return self
    __deepcopy__ = __copy__

class BlueprintAtom(BlueprintObject):
    def __init__(self, type, memo = None):
        BlueprintObject.__init__(self, type, atom_types, memo)
    object_list = 'atoms'

class BlueprintGroup(BlueprintObject):
    def __init__(self, type, memo = None):
        BlueprintObject.__init__(self, type, group_types, memo)
    object_list = 'groups'

class BlueprintMolecule(BlueprintObject):
    def __init__(self, type, memo = None):
        BlueprintObject.__init__(self, type, molecule_types, memo)
    object_list = 'molecules'

class BlueprintCrystal(BlueprintObject):
    def __init__(self, type, memo = None):
        BlueprintObject.__init__(self, type, crystal_types, memo)
    object_list = 'crystals'

class BlueprintComplex(BlueprintObject):
    def __init__(self, type, memo = None):
        BlueprintObject.__init__(self, type, complex_types, memo)
    object_list = 'complexes'

#
# Blueprint class corresponding to ReferenceType
#
class ReferenceBlueprint(object):

    def __init__(self, original, database):
        if isinstance(original, basestring):
            self.type = database.findType(original)
        elif hasattr(original, 'is_blueprint'):
            self.type = original.type
        else:
            self.type = type
        self.type.createObject(self.__dict__)

    is_blueprint = True

class BlueprintProtein(ReferenceBlueprint):

    def __init__(self, type):
        ReferenceBlueprint.__init__(self, type, protein_types)

#
# This function copies the appropriate attributes of
# a blueprint object.
#
def _blueprintCopy(object, memo):
    key = id(object)
    try:
        return memo[key]
    except KeyError:
        pass
    if isinstance(object, list):
        return [_blueprintCopy(o, memo) for o in object]
    if hasattr(object, 'is_blueprint'):
        new = object.__class__(object, memo)
    elif hasattr(object, '_blueprintCopy'):
        new = object._blueprintCopy(memo)
    else:
        new = object
    memo[key] = new
    return new

#
# The bond class just keeps track of the two atoms involved.
#
class BlueprintBond(object):

    def __init__(self, a1, a2):
        self.a1 = a1
        self.a2 = a2

    is_instance_var = True

    def _blueprintCopy(self, memo):
        return BlueprintBond(_blueprintCopy(self.a1, memo),
                             _blueprintCopy(self.a2, memo))

    object_list = 'bonds'

    def __copy__(self, memo = None):
        return self
    __deepcopy__ = __copy__

#
# The function "instantiate" returns the real object corresponding
# to a given blueprint object. A list of previously instantiated
# objects is kept to make sure that references to the same blueprint
# object don't create several real objects.
#
def instantiate(blueprint, memo):
    key = id(blueprint)
    try:
        return memo[key]
    except KeyError:
        pass
    if isinstance(blueprint, list):
        newobject = [instantiate(e, memo) for e in blueprint]
    else:
        try:
            newobject = _instanceclass[blueprint.__class__](blueprint, memo)
        except KeyError:
            newobject = blueprint
    memo[key] = newobject
    return newobject

#
# Register the instanceclasses for each blueprintclass
#
def registerInstanceClass(blueprint, instance):
    _instanceclass[blueprint] = instance

_instanceclass = {}