/usr/share/pyshared/MMTK/Field.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | # This module defines scalar and vector fields in molecular systems
#
# Written by Konrad Hinsen
#
"""
Scalar and vector fields in molecular systems
This module defines field objects that are useful in the analysis
and visualization of collective motions in molecular systems. Atomic
quantities characterizing collective motions vary slowly in space, and
can be considered functions of position instead of values per atom.
Functions of position are called fields, and mathematical techniques
for the analysis of fields have proven useful in many branches of
physics. Fields can be described numerically by values on a
regular grid. In addition to permitting the application of vector
analysis methods to atomic quantities, the introduction of
fields is a valuable visualization aid, because information defined on
a coarse regular grid can be added to a picture of a molecular system
without overloading it.
"""
__docformat__ = 'restructuredtext'
from MMTK import Collections, ParticleProperties, Visualization
from Scientific.Visualization import Color
from Scientific.Geometry import Vector, TensorAnalysis
from Scientific import N
class AtomicField(object):
"""
A field whose values are determined by atomic quantities
This is an abstract base class. To create field objects,
use one of its subclasses.
"""
def __init__(self, system, grid_size, values):
self.system = system
if isinstance(grid_size, tuple):
self.box, self.field, self.points, self.colors = grid_size
else:
if values.data_rank != 1:
raise TypeError("data not a particle variable")
self.box = Collections.PartitionedAtomCollection(grid_size, system)
self._setField(values)
def _setField(self, data):
points = []
values = []
colors = []
default_color = Color.ColorByName('black')
for min, max, atoms in self.box.partitions():
center = 0.5*(min+max)
points.append(center.array)
v = data.zero()
total_weight = 0.
color = default_color
for a in atoms:
d = a.position()-center
weight = N.exp(-d*d/self.box.partition_size**2)
v = v + weight*data[a]
total_weight = total_weight + weight
c = default_color
try: c = a.color
except AttributeError: pass
if isinstance(c, basestring):
c = Color.ColorByName(c)
color = color + c
values.append(v/total_weight)
colors.append(color)
min = N.minimum.reduce(points)
max = N.maximum.reduce(points)
axes = (N.arange(min[0], max[0]+1, self.box.partition_size),
N.arange(min[1], max[1]+1, self.box.partition_size),
N.arange(min[2], max[2]+1, self.box.partition_size))
array = N.zeros(tuple(map(len, axes)) + data.value_rank*(3,), N.Float)
inside = N.zeros(tuple(map(len, axes)), N.Float)
for p, v in zip(points, values):
indices = N.floor((p-min)/self.box.partition_size+0.5)
indices = tuple(indices.astype(N.Int))
array[indices] = v
inside[indices] = 1.
self.field = self.field_class(axes, array, data.zero())
inside = TensorAnalysis.ScalarField(axes, inside).gradient().length()
self.points = []
self.colors = []
for i in range(len(points)):
p = points[i]
test = 0
try:
test = apply(inside, tuple(p)) > 1.e-10
except ValueError: pass
if test:
self.points.append(p)
self.colors.append(colors[i])
def __call__(self, point):
return self.field(point)
def particleValues(self):
"""
:returns: the values of the field at the positions of the atoms
:rtype: :class:`~MMTK.ParticleProperties.ParticleProperty`
"""
universe = self.system.universe()
rank = self.field.rank
if rank == 0:
v = ParticleProperties.ParticleScalar(universe)
elif rank == 1:
v = ParticleProperties.ParticleVector(universe)
else:
raise ValueError("no appropriate return type")
for a in self.system.atomList():
v[a] = self.field(a.position())
return v
def writeToFile(self, filename, scale = 1., length_scale=1., color = None):
"""
Writes a graphical representation of the field to a VRML file.
:param filename: the name of the destination file
:type filename: str
:param scale: scale factor applied to all field values
:type scale: float
:param color: the color for all graphics objects
:type color: Scientific.Visualization.Color
"""
from Scientific.Visualization import VRML2
objects = self.graphicsObjects(scale=scale,
length_scale=length_scale,
color=color,
graphics_module=VRML2)
VRML2.Scene(objects).writeToFile(filename)
def view(self, scale = 1., length_scale = 1., color = None):
"""
Shows a graphical representation of the field using a VRML viewer.
:param scale: scale factor applied to all field values
:type scale: float
:param color: the color for all graphics objects
:type color: Scientific.Visualization.Color
"""
from Scientific.Visualization import VRML2
objects = self.graphicsObjects(scale=scale,
length_scale=length_scale,
color=color,
graphics_module=VRML2)
VRML2.Scene(objects).view()
class AtomicScalarField(AtomicField, Visualization.Viewable):
"""
Scalar field defined by atomic quantities
For visualization, scalar fields are represented by a small cube
on each grid point whose color indicates the field's value on a symmetric
red-to-green color scale defined by the range of the field values.
Additional keyword options exist for graphics object generation:
- scale=factor, to multiply all field values by a factor
- range=(min, max), to eliminate graphics objects for values
that are smaller than min or larger than max
"""
def __init__(self, system, grid_size, values):
"""
:param system: any subset of a molecular system
:param grid_size: the spacing of a cubic grid on which the field
values are defined. The value for a point is obtained
by averaging the atomic quantities over all
atoms in a cube centered on the point.
:type grid_size: float
:param values: the atomic values that define the field
:type values: :class:`~MMTK.ParticleProperties.ParticleScalar`
"""
if values is not None and values.value_rank != 0:
raise TypeError("data not a vector field")
self.field_class = TensorAnalysis.ScalarField
AtomicField.__init__(self, system, grid_size, values)
def gradient(self):
"""
:returns: the gradient of the field
:rtype: :class:`~MMTK.Field.AtomicVectorField`
"""
field = self.field.gradient()
return AtomicVectorField(self.system, (self.box, field,
self.points, self.colors), None)
def laplacian(self):
"""
:returns: the laplacian of the field
:rtype: :class:`~MMTK.Field.AtomicScalarField`
"""
field = self.field.laplacian()
return AtomicScalarField(self.system, (self.box, field,
self.points, self.colors), None)
def _graphics(self, conf, distance_fn, model, module, options):
scale = options.get('scale', 1.)
range = options.get('range', (None, None))
length_scale = options.get('length_scale', 1.)
lower, upper = range
size = self.box.partition_size/10.
objects = []
color_scale = module.SymmetricColorScale(1.)
for p, c in zip(self.points, self.colors):
p = tuple(p)
v = apply(self.field, p)
if (lower is None or v > lower) and (upper is None or v < upper):
p = apply(Vector, p)
v = scale*v
if v < -1. or v > 1.:
m = module.DiffuseMaterial('black')
else:
m = module.Material(diffuse_color = color_scale(scale*v))
objects.append(module.Cube(length_scale*p,
length_scale*size,
material = m))
return objects
class AtomicVectorField(AtomicField, Visualization.Viewable):
"""
Vector field defined by atomic quantities
For visualization, scalar fields are represented by a small arrow
on each grid point. The arrow starts at the grid point and represents
the vector value at that point.
Additional keyword options exist for graphics object generation:
- scale=factor, to multiply all field values by a factor
- diameter=number, to define the diameter of the arrow objects
(default: 1.)
- range=(min, max), to eliminate graphics objects for values
that are smaller than min or larger than max
- color=string, to define the color of the arrows by a color name
"""
def __init__(self, system, grid_size, values):
"""
:param system: any subset of a molecular system
:param grid_size: the spacing of a cubic grid on which the field
values are defined. The value for a point is obtained
by averaging the atomic quantities over all
atoms in a cube centered on the point.
:type grid_size: float
:param values: the atomic values that define the field
:type values: :class:`~MMTK.ParticleProperties.ParticleVector`
"""
if values is not None and values.value_rank != 1:
raise TypeError("data not a vector field")
self.field_class = TensorAnalysis.VectorField
AtomicField.__init__(self, system, grid_size, values)
def length(self):
"""
:returns: a field of the length of the field vectors
:rtype: :class:`~MMTK.Field.AtomicScalarField`
"""
field = self.field.length()
return AtomicScalarField(self.system, (self.box, field,
self.points, self.colors), None)
def divergence(self):
"""
:returns: the divergence of the field
:rtype: :class:`~MMTK.Field.AtomicScalarField`
"""
field = self.field.divergence()
return AtomicScalarField(self.system, (self.box, field,
self.points, self.colors), None)
def curl(self):
"""
:returns: the curl of the field
:rtype: :class:`~MMTK.Field.AtomicVectorField`
"""
field = self.field.curl()
return AtomicVectorField(self.system, (self.box, field,
self.points, self.colors), None)
def laplacian(self):
"""
:returns: the laplacian of the field
:rtype: :class:`~MMTK.Field.AtomicVectorField`
"""
field = self.field.curl()
return AtomicVectorField(self.system, (self.box, field,
self.points, self.colors), None)
def _graphics(self, conf, distance_fn, model, module, options):
scale = options.get('scale', 1.)
diameter = options.get('diameter', 1.)
color = options.get('color', None)
range = options.get('range', (None, None))
length_scale = options.get('length_scale', 1.)
lower, upper = range
size = diameter*self.box.partition_size/50.
if color is not None:
color = module.ColorByName(color)
objects = []
materials = {}
for p, c in zip(self.points, self.colors):
p = tuple(p)
v = apply(self.field, p)
lv = v.length()
if (lower is None or lv > lower) and (upper is None or lv < upper):
p = apply(Vector, p)
if color is not None:
c = color
try: m = materials[c]
except KeyError: m = module.Material(diffuse_color = c)
materials[c] = m
objects.append(module.Arrow(length_scale*p,
length_scale*(p+scale*v),
length_scale*size,
material = m))
return objects
|