This file is indexed.

/usr/share/pyshared/MMTK/Field.py is in python-mmtk 2.7.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# This module defines scalar and vector fields in molecular systems
#
# Written by Konrad Hinsen
#

"""
Scalar and vector fields in molecular systems

This module defines field objects that are useful in the analysis
and visualization of collective motions in molecular systems. Atomic
quantities characterizing collective motions vary slowly in space, and
can be considered functions of position instead of values per atom.
Functions of position are called fields, and mathematical techniques
for the analysis of fields have proven useful in many branches of
physics. Fields can be described numerically by values on a
regular grid. In addition to permitting the application of vector
analysis methods to atomic quantities, the introduction of
fields is a valuable visualization aid, because information defined on
a coarse regular grid can be added to a picture of a molecular system
without overloading it.
"""

__docformat__ = 'restructuredtext'

from MMTK import Collections, ParticleProperties, Visualization
from Scientific.Visualization import Color
from Scientific.Geometry import Vector, TensorAnalysis
from Scientific import N


class AtomicField(object):

    """
    A field whose values are determined by atomic quantities

    This is an abstract base class. To create field objects,
    use one of its subclasses.
    """

    def __init__(self, system, grid_size, values):
        self.system = system
        if isinstance(grid_size, tuple):
            self.box, self.field, self.points, self.colors = grid_size
        else:
            if values.data_rank != 1:
                raise TypeError("data not a particle variable")
            self.box = Collections.PartitionedAtomCollection(grid_size, system)
            self._setField(values)

    def _setField(self, data):
        points = []
        values = []
        colors = []
        default_color = Color.ColorByName('black')
        for min, max, atoms in self.box.partitions():
            center = 0.5*(min+max)
            points.append(center.array)
            v = data.zero()
            total_weight = 0.
            color = default_color
            for a in atoms:
                d = a.position()-center
                weight = N.exp(-d*d/self.box.partition_size**2)
                v = v + weight*data[a]
                total_weight = total_weight + weight
                c = default_color
                try: c = a.color
                except AttributeError: pass
                if isinstance(c, basestring):
                    c = Color.ColorByName(c)
                color = color + c
            values.append(v/total_weight)
            colors.append(color)
        min = N.minimum.reduce(points)
        max = N.maximum.reduce(points)
        axes = (N.arange(min[0], max[0]+1, self.box.partition_size),
                N.arange(min[1], max[1]+1, self.box.partition_size),
                N.arange(min[2], max[2]+1, self.box.partition_size))
        array = N.zeros(tuple(map(len, axes)) + data.value_rank*(3,), N.Float)
        inside = N.zeros(tuple(map(len, axes)), N.Float)
        for p, v in zip(points, values):
            indices = N.floor((p-min)/self.box.partition_size+0.5)
            indices = tuple(indices.astype(N.Int))
            array[indices] = v
            inside[indices] = 1.
        self.field = self.field_class(axes, array, data.zero())
        inside = TensorAnalysis.ScalarField(axes, inside).gradient().length()
        self.points = []
        self.colors = []
        for i in range(len(points)):
            p = points[i]
            test = 0
            try:
                test = apply(inside, tuple(p)) > 1.e-10
            except ValueError: pass
            if test:
                self.points.append(p)
                self.colors.append(colors[i])

    def __call__(self, point):
        return self.field(point)

    def particleValues(self):
        """
        :returns: the values of the field at the positions of the atoms
        :rtype: :class:`~MMTK.ParticleProperties.ParticleProperty`
        """
        universe = self.system.universe()
        rank = self.field.rank
        if rank == 0:
            v = ParticleProperties.ParticleScalar(universe)
        elif rank == 1:
            v = ParticleProperties.ParticleVector(universe)
        else:
            raise ValueError("no appropriate return type")
        for a in self.system.atomList():
            v[a] = self.field(a.position())
        return v

    def writeToFile(self, filename, scale = 1., length_scale=1., color = None):
        """
        Writes a graphical representation of the field to a VRML file.

        :param filename: the name of the destination file
        :type filename: str
        :param scale: scale factor applied to all field values
        :type scale: float
        :param color: the color for all graphics objects
        :type color: Scientific.Visualization.Color
        """
        from Scientific.Visualization import VRML2
        objects = self.graphicsObjects(scale=scale,
                                       length_scale=length_scale,
                                       color=color,
                                       graphics_module=VRML2)
        VRML2.Scene(objects).writeToFile(filename)

    def view(self, scale = 1., length_scale = 1., color = None):
        """
        Shows a graphical representation of the field using a VRML viewer.

        :param scale: scale factor applied to all field values
        :type scale: float
        :param color: the color for all graphics objects
        :type color: Scientific.Visualization.Color
        """
        from Scientific.Visualization import VRML2
        objects = self.graphicsObjects(scale=scale,
                                       length_scale=length_scale,
                                       color=color,
                                       graphics_module=VRML2)
        VRML2.Scene(objects).view()


class AtomicScalarField(AtomicField, Visualization.Viewable):

    """
    Scalar field defined by atomic quantities

    For visualization, scalar fields are represented by a small cube
    on each grid point whose color indicates the field's value on a symmetric
    red-to-green color scale defined by the range of the field values.

    Additional keyword options exist for graphics object generation:
      - scale=factor, to multiply all field values by a factor
      - range=(min, max), to eliminate graphics objects for values
        that are smaller than min or larger than max

    """

    def __init__(self, system, grid_size, values):
        """
        :param system: any subset of a molecular system
        :param grid_size: the spacing of a cubic grid on which the field
                          values are defined. The value for a point is obtained
                          by averaging the atomic quantities over all
                          atoms in a cube centered on the point.
        :type grid_size: float
        :param values: the atomic values that define the field
        :type values: :class:`~MMTK.ParticleProperties.ParticleScalar`
        """
        if values is not None and values.value_rank != 0:
            raise TypeError("data not a vector field")
        self.field_class = TensorAnalysis.ScalarField
        AtomicField.__init__(self, system, grid_size, values)

    def gradient(self):
        """
        :returns: the gradient of the field
        :rtype: :class:`~MMTK.Field.AtomicVectorField`
        """
        field = self.field.gradient()
        return AtomicVectorField(self.system, (self.box, field,
                                               self.points, self.colors), None)

    def laplacian(self):
        """
        :returns: the laplacian of the field
        :rtype: :class:`~MMTK.Field.AtomicScalarField`
        """
        field = self.field.laplacian()
        return AtomicScalarField(self.system, (self.box, field,
                                               self.points, self.colors), None)

    def _graphics(self, conf, distance_fn, model, module, options):
        scale = options.get('scale', 1.)
        range = options.get('range', (None, None))
        length_scale = options.get('length_scale', 1.)

        lower, upper = range
        size = self.box.partition_size/10.
        objects = []
        color_scale = module.SymmetricColorScale(1.)
        for p, c in zip(self.points, self.colors):
            p = tuple(p)
            v = apply(self.field, p)
            if (lower is None or v > lower) and (upper is None or v < upper):
                p = apply(Vector, p)
                v = scale*v
                if v < -1. or v > 1.:
                    m = module.DiffuseMaterial('black')
                else:
                    m = module.Material(diffuse_color = color_scale(scale*v))
                objects.append(module.Cube(length_scale*p,
                                           length_scale*size,
                                           material = m))
        return objects


class AtomicVectorField(AtomicField, Visualization.Viewable):

    """
    Vector field defined by atomic quantities

    For visualization, scalar fields are represented by a small arrow
    on each grid point. The arrow starts at the grid point and represents
    the vector value at that point.
    
    Additional keyword options exist for graphics object generation:
      - scale=factor, to multiply all field values by a factor
      - diameter=number, to define the diameter of the arrow objects
        (default: 1.)
      - range=(min, max), to eliminate graphics objects for values
        that are smaller than min or larger than max
      - color=string, to define the color of the arrows by a color name

    """

    def __init__(self, system, grid_size, values):
        """
        :param system: any subset of a molecular system
        :param grid_size: the spacing of a cubic grid on which the field
                          values are defined. The value for a point is obtained
                          by averaging the atomic quantities over all
                          atoms in a cube centered on the point.
        :type grid_size: float
        :param values: the atomic values that define the field
        :type values: :class:`~MMTK.ParticleProperties.ParticleVector`
        """
        if values is not None and values.value_rank != 1:
            raise TypeError("data not a vector field")
        self.field_class = TensorAnalysis.VectorField
        AtomicField.__init__(self, system, grid_size, values)

    def length(self):
        """
        :returns: a field of the length of the field vectors
        :rtype: :class:`~MMTK.Field.AtomicScalarField`
        """
        field = self.field.length()
        return AtomicScalarField(self.system, (self.box, field,
                                               self.points, self.colors), None)

    def divergence(self):
        """
        :returns: the divergence of the field
        :rtype: :class:`~MMTK.Field.AtomicScalarField`
        """
        field = self.field.divergence()
        return AtomicScalarField(self.system, (self.box, field,
                                               self.points, self.colors), None)

    def curl(self):
        """
        :returns: the curl of the field
        :rtype: :class:`~MMTK.Field.AtomicVectorField`
        """
        field = self.field.curl()
        return AtomicVectorField(self.system, (self.box, field,
                                               self.points, self.colors), None)

    def laplacian(self):
        """
        :returns: the laplacian of the field
        :rtype: :class:`~MMTK.Field.AtomicVectorField`
        """
        field = self.field.curl()
        return AtomicVectorField(self.system, (self.box, field,
                                               self.points, self.colors), None)

    def _graphics(self, conf, distance_fn, model, module, options):
        scale = options.get('scale', 1.)
        diameter = options.get('diameter', 1.)
        color = options.get('color', None)
        range = options.get('range', (None, None))
        length_scale = options.get('length_scale', 1.)

        lower, upper = range
        size = diameter*self.box.partition_size/50.
        if color is not None:
            color = module.ColorByName(color)
        objects = []
        materials = {}
        for p, c in zip(self.points, self.colors):
            p = tuple(p)
            v = apply(self.field, p)
            lv = v.length()
            if (lower is None or lv > lower) and (upper is None or lv < upper):
                p = apply(Vector, p)
                if color is not None:
                    c = color
                try: m = materials[c]
                except KeyError: m = module.Material(diffuse_color = c)
                materials[c] = m
                objects.append(module.Arrow(length_scale*p,
                                            length_scale*(p+scale*v),
                                            length_scale*size,
                                            material = m))
        return objects