/usr/share/pyshared/MMTK/Proteins.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 | # This module implements classes for peptide chains and proteins.
#
# Written by Konrad Hinsen
#
"""
Peptide chains and proteins
"""
__docformat__ = 'restructuredtext'
from MMTK import Biopolymers, Bonds, ChemicalObjects, Collections, \
ConfigIO, Database, Units, Universe, Utility
from Scientific.Geometry import Vector
from MMTK.Biopolymers import defineAminoAcidResidue
#
# Residues are special groups
#
class Residue(Biopolymers.Residue):
"""
Amino acid residue
Amino acid residues are a special kind of group. They are defined
in the chemical database. Each residue has two subgroups
('peptide' and 'sidechain') and is usually connected to other
residues to form a peptide chain. The database contains three
variants of each residue (N-terminal, C-terminal,
non-terminal) and various models (all-atom, united-atom,
|C_alpha|).
"""
def __init__(self, name = None, model = 'all'):
"""
:param name: the name of the residue in the chemical database. This
is the full name of the residue plus the suffix
"_nt" or "_ct" for the terminal variants.
:type name: str
:param model: one of "all" (all-atom), "none" (no hydrogens),
"polar" (united-atom with only polar hydrogens),
"polar_charmm" (like "polar", but defining
polar hydrogens like in the CHARMM force field),
"polar_opls" (like "polar", but defining
polar hydrogens like in the latest OPLS force field),
"calpha" (only the |C_alpha| atom).
:type model: str
"""
if name is not None:
blueprint = _residueBlueprint(name, model)
ChemicalObjects.Group.__init__(self, blueprint)
self.model = model
self._init()
def _init(self):
Biopolymers.Residue._init(self)
# create peptide attribute for calpha model
if self.model == 'calpha':
self.peptide = self
def isNTerminus(self):
return hasattr(self.peptide, 'H_3')
def isCTerminus(self):
return hasattr(self.peptide, 'O_2')
def _makeCystine(self):
if self.model == 'calpha':
return self
if self.symbol.lower() != 'cys':
raise ValueError(`self` + " is not cysteine.")
new_residue = 'cystine_ss'
if self.isNTerminus():
new_residue = new_residue + '_nt'
elif self.isCTerminus():
new_residue = new_residue + '_ct'
new_residue = Residue(new_residue, self.model)
for g in ['peptide', 'sidechain']:
g_old = getattr(self, g)
g_new = getattr(new_residue, g)
for a in getattr(g_new, 'atoms'):
set_method = getattr(getattr(g_new, a.name), 'setPosition')
set_method(getattr(getattr(g_old, a.name), 'position')())
return new_residue
def isSubsetModel(self):
return self.model == 'calpha'
def backbone(self):
"""
:returns: the peptide group
:rtype: :class:`~MMTK.ChemicalObjects.Group`
"""
return self.peptide
def sidechains(self):
"""
:returns: the sidechain group
:rtype: :class:`~MMTK.ChemicalObjects.Group`
"""
return self.sidechain
def phiPsi(self, conf = None):
"""
:returns: the values of the backbone dihedral angles phi and psi.
:rtype: tuple (float, float)
"""
universe = self.universe()
if universe is None:
universe = Universe.InfiniteUniverse()
C = None
for a in self.peptide.N.bondedTo():
if a.parent.parent != self:
C = a
break
if C is None:
phi = None
else:
phi = universe.dihedral(self.peptide.C, self.peptide.C_alpha,
self.peptide.N, C, conf)
N = None
for a in self.peptide.C.bondedTo():
if a.parent.parent != self:
N = a
break
if N is None:
psi = None
else:
psi = universe.dihedral(N, self.peptide.C, self.peptide.C_alpha,
self.peptide.N, conf)
return phi, psi
def phiAngle(self):
"""
:returns: an object representing the phi angle and allowing to modify it
:rtype: MMTK.InternalCoordinates.DihedralAngle
"""
from MMTK.InternalCoordinates import DihedralAngle
C = None
for a in self.peptide.N.bondedTo():
if a.parent.parent != self:
C = a
break
if C is None:
raise ValueError("residue is N-terminus")
return DihedralAngle(self.peptide.C, self.peptide.C_alpha,
self.peptide.N, C)
def psiAngle(self):
"""
:returns: an object representing the psi angle and allowing to modify it
:rtype: MMTK.InternalCoordinates.DihedralAngle
"""
from MMTK.InternalCoordinates import DihedralAngle
N = None
for a in self.peptide.C.bondedTo():
if a.parent.parent != self:
N = a
break
if N is None:
raise ValueError("residue is C-terminus")
return DihedralAngle(N, self.peptide.C, self.peptide.C_alpha,
self.peptide.N)
def chiAngle(self):
"""
:returns: an object representing the chi angle and allowing to modify it
:rtype: MMTK.InternalCoordinates.DihedralAngle
"""
from MMTK.InternalCoordinates import DihedralAngle
try:
C_beta = self.sidechain.C_beta
except AttributeError:
raise ValueError("no C_beta in sidechain")
X = None
for atom_name in ['C_gamma', 'C_gamma_1', 'S_gamma',
'O_gamma', 'O_gamma_1', 'H_beta_1']:
try:
X = getattr(self.sidechain, atom_name)
break
except AttributeError:
pass
if X is None:
raise ValueError("no sidechain reference atom found")
return DihedralAngle(self.peptide.N, self.peptide.C_alpha,
C_beta, X)
def _residueBlueprint(name, model):
try:
blueprint = _residue_blueprints[(name, model)]
except KeyError:
if model == 'polar':
name = name + '_uni'
elif model == 'polar_charmm':
name = name + '_uni2'
elif model == 'polar_oldopls':
name = name + '_uni3'
elif model == 'none':
name = name + '_noh'
elif model == 'calpha':
name = name + '_calpha'
blueprint = Database.BlueprintGroup(name)
_residue_blueprints[(name, model)] = blueprint
return blueprint
_residue_blueprints = {}
#
# Peptide chains are molecules with added features.
#
class PeptideChain(Biopolymers.ResidueChain):
"""
Peptide chain
Peptide chains consist of amino acid residues that are linked
by peptide bonds. They are a special kind of molecule, i.e.
all molecule operations are available.
Peptide chains act as sequences of residues. If p is a PeptideChain
object, then
* len(p) yields the number of residues
* p[i] yields residue number i
* p[i:j] yields the subchain from residue number i up to
but excluding residue number j
:param sequence: the amino acid sequence. This can be a string
containing the one-letter codes, or a list
of three-letter codes, or a
:class:`~MMTK.PDB.PDBPeptideChain` object.
If a PDBPeptideChain object is supplied, the atomic
positions it contains are assigned to the atoms
of the newly generated peptide chain, otherwise the
positions of all atoms are undefined.
:keyword model: one of "all" (all-atom), "no_hydrogens" or "none"
(no hydrogens), "polar_hydrogens" or "polar"
(united-atom with only polar hydrogens),
"polar_charmm" (like "polar", but defining
polar hydrogens like in the CHARMM force field),
"polar_opls" (like "polar", but defining
polar hydrogens like in the latest OPLS force field),
"calpha" (only the |C_alpha| atom of each residue).
Default is "all".
:type model: str
:keyword n_terminus: if True, the first residue is constructed
using the N-terminal variant, if False the
non-terminal version is used. Default is True.
:type n_terminus: bool
:keyword c_terminus: if True, the last residue is constructed
using the C-terminal variant, if False the
non-terminal version is used. Default is True.
:type c_terminus: bool
:keyword circular: if True, a peptide bond is constructed
between the first and the last residues.
Default is False.
:type circular: bool
:keyword name: a name for the chain (a string)
:type name: str
"""
def __init__(self, sequence, **properties):
if sequence is not None:
model = 'all'
if properties.has_key('model'):
model = properties['model'].lower()
elif properties.has_key('hydrogens'):
model = properties['hydrogens']
if model == 1: model = 'all'
elif model == 0: model = 'none'
else: model = model.lower()
if model == 'no_hydrogens':
model = 'none'
elif model == 'polar_hydrogens':
model = 'polar'
n_term = self.binaryProperty(properties, 'n_terminus', True)
c_term = self.binaryProperty(properties, 'c_terminus', True)
circular = self.binaryProperty(properties, 'circular', False)
self.version_spec = {'n_terminus': n_term,
'c_terminus': c_term,
'model': model,
'circular': circular}
if type(sequence[0]) == type(''):
conf = None
numbers = range(len(sequence))
else:
conf = sequence
sequence = conf.sequence()
numbers = [r.number for r in conf]
sequence = map(Biopolymers._fullName, sequence)
if model != 'calpha':
if n_term:
sequence[0] = sequence[0] + '_nt'
if c_term:
sequence[-1] = sequence[-1] + '_ct'
self.groups = []
n = 0
for residue, number in zip(sequence, numbers):
n = n + 1
r = Residue(residue, model)
r.name = r.symbol + str(number)
r.sequence_number = n
r.parent = self
self.groups.append(r)
self._setupChain(circular, properties, conf)
is_peptide_chain = True
def __getslice__(self, first, last):
return SubChain(self, self.groups[first:last])
def sequence(self):
"""
:returns: the primary sequence as a list of three-letter
residue codes.
:rtype: list
"""
return [r.symbol for r in self.groups]
def backbone(self):
"""
:returns: the peptide groups of all residues
:rtype: :class:`~MMTK.Collections.Collection`
"""
backbone = Collections.Collection()
for r in self.groups:
try:
backbone.addObject(r.peptide)
except AttributeError:
pass
return backbone
def sidechains(self):
"""
:returns: the sidechain groups of all residues
:rtype: :class:`~MMTK.Collections.Collection`
"""
sidechains = Collections.Collection()
for r in self.groups:
try:
sidechains.addObject(r.sidechain)
except AttributeError:
pass
return sidechains
def phiPsi(self, conf = None):
"""
:returns: a list of the (phi, psi) backbone angles for each residue
:rtype: list of tuple of float
"""
universe = self.universe()
if universe is None:
universe = Universe.InfiniteUniverse()
angles = []
for i in range(len(self)):
r = self[i]
if i == 0:
phi = None
else:
phi = universe.dihedral(r.peptide.C, r.peptide.C_alpha,
r.peptide.N,
self[i-1].peptide.C, conf)
if i == len(self)-1:
psi = None
else:
psi = universe.dihedral(self[i+1].peptide.N,
r.peptide.C, r.peptide.C_alpha,
r.peptide.N, conf)
angles.append((phi, psi))
return angles
def replaceResidue(self, r_old, r_new):
"""
:param r_old: the residue to be replaced (must be part of the chain)
:type r_old: Residue
:param r_new: the residue that replaces r_old
:type r_new: Residue
"""
n = self.groups.index(r_old)
for a in r_old.atoms:
self.atoms.remove(a)
obsolete_bonds = []
for b in self.bonds:
if b.a1 in r_old.atoms or b.a2 in r_old.atoms:
obsolete_bonds.append(b)
for b in obsolete_bonds:
self.bonds.remove(b)
r_old.parent = None
self.atoms.extend(r_new.atoms)
self.bonds.extend(r_new.bonds)
r_new.sequence_number = n+1
r_new.name = r_new.symbol+`n+1`
r_new.parent = self
self.groups[n] = r_new
if n > 0:
peptide_old = self.bonds.bondsOf(r_old.peptide.N)
if peptide_old:
self.bonds.remove(peptide_old[0])
if not (self.groups[n-1].isCTerminus()
or self.groups[n].isNTerminus()):
# ConnectedChain objects can have N/C-terminal
# residues inside the (virtual) chain, so the
# test is necessary.
self.bonds.append(Bonds.Bond((self.groups[n-1].peptide.C,
self.groups[n].peptide.N)))
if n < len(self.groups)-1:
peptide_old = self.bonds.bondsOf(r_old.peptide.C)
if peptide_old:
self.bonds.remove(peptide_old[0])
if not (self.groups[n].isCTerminus()
or self.groups[n+1].isNTerminus()):
self.bonds.append(Bonds.Bond((self.groups[n].peptide.C,
self.groups[n+1].peptide.N)))
if isinstance(self.parent, ChemicalObjects.Complex):
self.parent.recreateAtomList()
universe = self.universe()
if universe is not None:
universe._changed(True)
# add sulfur bridges between cysteine residues
def _addSSBridges(self, bonds):
for b in bonds:
cys1 = b[0]
if cys1.symbol.lower() == 'cyx':
cys_ss1 = cys1
else:
cys_ss1 = cys1._makeCystine()
self.replaceResidue(cys1, cys_ss1)
cys2 = b[1]
if cys2.symbol.lower() == 'cyx':
cys_ss2 = cys2
else:
cys_ss2 = cys2._makeCystine()
self.replaceResidue(cys2, cys_ss2)
self.bonds.append(Bonds.Bond((cys_ss1.sidechain.S_gamma,
cys_ss2.sidechain.S_gamma)))
def _descriptionSpec(self):
kwargs = ','.join([name + '=' + `self.version_spec[name]`
for name in sorted(self.version_spec.keys())])
return "S", kwargs
def _typeName(self):
return ''.join(self.sequence())
def _graphics(self, conf, distance_fn, model, module, options):
if model != 'backbone':
return ChemicalObjects.Molecule._graphics(self, conf,
distance_fn, model,
module, options)
color = options.get('color', 'black')
material = module.EmissiveMaterial(color)
objects = []
for i in range(len(self.groups)-1):
a1 = self.groups[i].peptide.C_alpha
a2 = self.groups[i+1].peptide.C_alpha
p1 = a1.position(conf)
p2 = a2.position(conf)
if p1 is not None and p2 is not None:
bond_vector = 0.5*distance_fn(a1, a2, conf)
cut = bond_vector != 0.5*(p2-p1)
if not cut:
objects.append(module.Line(p1, p2, material = material))
else:
objects.append(module.Line(p1, p1+bond_vector,
material = material))
objects.append(module.Line(p2, p2-bond_vector,
material = material))
return objects
#
# Subchains are created by slicing chains or extracting a chain from
# a group of connected chains.
#
class SubChain(PeptideChain):
"""
A contiguous part of a peptide chain
SubChain objects are the result of slicing operations on
PeptideChain objects. They cannot be created directly.
SubChain objects permit all operations of PeptideChain
objects, but cannot be added to a universe.
"""
def __init__(self, chain=None, groups=None, name = ''):
if chain is not None:
self.groups = groups
self.atoms = []
self.bonds = []
for g in self.groups:
self.atoms.extend(g.atoms)
self.bonds.extend(g.bonds)
for i in range(len(self.groups)-1):
link1 = self.groups[i].chain_links[1]
link2 = self.groups[i+1].chain_links[0]
self.bonds.append(Bonds.Bond((link1, link2)))
self.bonds = Bonds.BondList(self.bonds)
self.name = name
self.model = chain.model
self.parent = chain.parent
self.type = None
self.configurations = {}
self.part_of = chain
is_incomplete = True
def __repr__(self):
if self.name == '':
return 'SubChain of ' + repr(self.part_of)
else:
return ChemicalObjects.Molecule.__repr__(self)
__str__ = __repr__
def replaceResidue(self, r_old, r_new):
for a in r_old.atoms:
self.atoms.remove(a)
obsolete_bonds = []
for b in self.bonds:
if b.a1 in r_old.atoms or b.a2 in r_old.atoms:
obsolete_bonds.append(b)
for b in obsolete_bonds:
self.bonds.remove(b)
n = self.groups.index(r_old)
if n > 0:
for b in self.bonds.bondsOf(r_old.peptide.N):
self.bonds.remove(b)
if n < len(self.groups)-1:
for b in self.bonds.bondsOf(r_old.peptide.C):
self.bonds.remove(b)
PeptideChain.replaceResidue(self.part_of, r_old, r_new)
self.groups[n] = r_new
self.atoms.extend(r_new.atoms)
self.bonds.extend(r_new.bonds)
if n > 0:
self.bonds.append(Bonds.Bond((self.groups[n-1].peptide.C,
self.groups[n].peptide.N)))
if n < len(self.groups)-1:
self.bonds.append(Bonds.Bond((self.groups[n].peptide.C,
self.groups[n+1].peptide.N)))
def _distanceConstraintList(self):
atoms = self.atomList()
return [(a1, a2, d)
for a1, a2, d in self.part_of._distanceConstraintList()
if a1 in atoms and a2 in atoms]
def addDistanceConstraint(self, atom1, atom2, distance):
chain = self
while True:
try:
chain = chain.part_of
except AttributeError:
break
try:
chain.distance_constraints.append((atom1, atom2, distance))
except AttributeError:
chain.distance_constraints = [(atom1, atom2, distance)]
def removeDistanceConstraints(self, universe=None):
raise NotImplementedError
#
# Connected chains are collections of peptide chains connected by s-s bridges.
#
class ConnectedChains(PeptideChain):
"""
Peptide chains connected by disulfide bridges
A group of peptide chains connected by disulfide bridges must be considered
a single molecule due to the presence of chemical bonds. Such a molecule
is represented by a ConnectedChains object. These objects are created
automatically when a Protein object is assembled. They are normally
not used directly by application programs. When a chain with disulfide
bridges to other chains is extracted from a Protein object, the
return value is a SubChain object that indirectly refers to a
ConnectedChains object.
"""
def __init__(self, chains=None):
if chains is not None:
self.chains = []
self.groups = []
self.atoms = []
self.bonds = Bonds.BondList([])
self.chain_names = []
self.model = chains[0].model
version_spec = chains[0].version_spec
for c in chains:
if c.version_spec['model'] != version_spec['model']:
raise ValueError("mixing chains of different model: " +
c.version_spec['model'] + "/" +
version_spec['model'])
ng = len(self.groups)
self.chains.append((c.name, ng, ng+len(c.groups),
c.version_spec))
self.groups.extend(c.groups)
self.atoms.extend(c.atoms)
self.bonds.extend(c.bonds)
try: name = c.name
except AttributeError: name = ''
self.chain_names.append(name)
for g in self.groups:
g.parent = self
self.name = ''
self.parent = None
self.type = None
self.configurations = {}
is_connected_chains = True
def _finalize(self):
for i in range(len(self.chains)):
c = self.chains[i]
sub_chain = SubChain(self, self.groups[c[1]:c[2]], c[0])
sub_chain.version_spec = c[3]
for g in sub_chain.groups:
g.parent = sub_chain
self.chains[i] = sub_chain
def __len__(self):
return len(self.chains)
def __getitem__(self, item):
return self.chains[item]
def __getslice__(self, first, last):
raise TypeError("Can't slice connected chains")
def _graphics(self, conf, distance_fn, model, module, options):
if model != 'backbone':
return ChemicalObjects.Molecule._graphics(self, conf,
distance_fn, model,
module, options)
objects = []
for chain in self:
objects = objects + chain._graphics(conf, distance_fn,
model, module, options)
return objects
#
# Proteins are complexes of peptide chains, connected peptide chains,
# and possibly other things.
#
class Protein(ChemicalObjects.Complex):
"""
Protein
A Protein object is a special kind of :class:`~MMTK.ChemicalObjects.Complex`
object which is made up of peptide chains and possibly ligands.
If the atoms in the peptide chains that make up a protein have
defined positions, sulfur bridges within chains and between
chains will be constructed automatically during protein generation
based on a distance criterion between cystein sidechains.
Proteins act as sequences of chains. If p is a Protein object, then
* len(p) yields the number of chains
* p[i] yields chain number i
"""
def __init__(self, *items, **properties):
"""
:param items: either a sequence of peptide chain objects, or
a string, which is interpreted as the name of a
database definition for a protein.
If that definition does not exist, the string
is taken to be the name of a PDB file, from which
all peptide chains are constructed and
assembled into a protein.
:keyword model: one of "all" (all-atom), "no_hydrogens" or "none"
(no hydrogens),"polar_hydrogens" or "polar"
(united-atom with only polar hydrogens),
"polar_charmm" (like "polar", but defining
polar hydrogens like in the CHARMM force field),
"polar_opls" (like "polar", but defining
polar hydrogens like in the latest OPLS force field),
"calpha" (only the |C_alpha| atom of each residue).
Default is "all".
:type model: str
:keyword position: the center-of-mass position of the protein
:type position: Scientific.Geometry.Vector
:keyword name: a name for the protein
:type name: str
"""
if items == (None,):
return
self.name = ''
if len(items) == 1 and type(items[0]) == type(''):
try:
filename = Database.databasePath(items[0], 'Proteins')
found = 1
except IOError:
found = 0
if found:
blueprint = Database.BlueprintProtein(items[0])
items = blueprint.chains
for attr, value in vars(blueprint).items():
if attr not in ['type', 'chains']:
setattr(self, attr, value)
else:
import PDB
conf = PDB.PDBConfiguration(items[0])
model = properties.get('model', 'all')
items = conf.createPeptideChains(model)
molecules = []
for i in items:
if ChemicalObjects.isChemicalObject(i):
molecules.append(i)
else:
molecules = molecules + list(i)
for m, i in zip(molecules, range(len(molecules))):
m._numbers = [i]
if not m.name:
m.name = 'chain'+`i`
ss = self._findSSBridges(molecules)
new_mol = {}
for m in molecules:
new_mol[m] = ([m],[])
for bond in ss:
m1 = new_mol[bond[0].topLevelChemicalObject()]
m2 = new_mol[bond[1].topLevelChemicalObject()]
if m1 == m2:
m1[1].append(bond)
else:
combined = (m1[0] + m2[0], m1[1] + m2[1] + [bond])
for m in combined[0]:
new_mol[m] = combined
self.molecules = []
while new_mol:
m = new_mol.values()[0]
for i in m[0]:
del new_mol[i]
bonds = m[1]
if len(m[0]) == 1:
m = m[0][0]
m._addSSBridges(bonds)
else:
numbers = sum((i._numbers for i in m[0]), [])
m = ConnectedChains(m[0])
m._numbers = numbers
m._addSSBridges(bonds)
m._finalize()
for c in m:
c.parent = self
m.parent = self
self.molecules.append(m)
self.atoms = []
self.chains = []
for m in self.molecules:
self.atoms.extend(m.atoms)
if hasattr(m, 'is_connected_chains'):
for c, name, i in zip(range(len(m)),
m.chain_names, m._numbers):
self.chains.append((m, c, name, i))
else:
try: name = m.name
except AttributeError: name = ''
self.chains.append((m, None, name, m._numbers[0]))
self.chains.sort(lambda c1, c2: cmp(c1[3], c2[3]))
self.chains = map(lambda c: c[:3], self.chains)
self.parent = None
self.type = None
self.configurations = {}
try:
self.name = properties['name']
del properties['name']
except KeyError: pass
if properties.has_key('position'):
self.translateTo(properties['position'])
del properties['position']
self.addProperties(properties)
undefined = 0
for a in self.atoms:
if a.position() is None:
undefined += 1
if undefined > 0 and undefined != len(self.atoms):
Utility.warning('Some atoms in a protein ' +
'have undefined positions.')
is_protein = True
def __len__(self):
return len(self.chains)
def __getitem__(self, item):
if isinstance(item, int):
m, c, name = self.chains[item]
else:
for m, c, name in self.chains:
if name == item:
break
if name != item:
raise ValueError('No chain with name ' + item)
if c is None:
return m
else:
return m[c]
def residuesOfType(self, *types):
"""
:param types: a sequence of residue codes (one- or three-letter)
:type types: sequence of str
:returns: all residues whose type (one- or three-letter code)
is contained in types
:rtype: :class:`~MMTK.Collections.Collection`
"""
rlist = Collections.Collection([])
for m in self.molecules:
if isPeptideChain(m):
rlist = rlist + apply(m.residuesOfType, types)
return rlist
def backbone(self):
"""
:returns: the peptide groups of all residues in all chains
:rtype: :class:`~MMTK.Collections.Collection`
"""
rlist = Collections.Collection([])
for m in self.molecules:
if isPeptideChain(m):
rlist = rlist + m.backbone()
return rlist
def sidechains(self):
"""
:returns: the sidechain groups of all residues in all chains
:rtype: :class:`~MMTK.Collections.Collection`
"""
rlist = Collections.Collection([])
for m in self.molecules:
if isPeptideChain(m):
rlist = rlist + m.sidechains()
return rlist
def residues(self):
"""
:returns: all residues in all chains
:rtype: :class:`~MMTK.Collections.Collection`
"""
rlist = Collections.Collection([])
for m in self.molecules:
if isPeptideChain(m):
rlist = rlist + m.residues()
return rlist
def phiPsi(self, conf = None):
"""
:returns: a list of the (phi, psi) backbone angles for all residue
in all chains
:rtype: list of list of tuple of float
"""
return [chain.phiPsi(conf) for chain in self]
_ss_bond_max = 0.25*Units.nm
def _findSSBridges(self, molecules):
molecules = filter(lambda m: hasattr(m, 'is_peptide_chain'), molecules)
cys = Collections.Collection([])
for m in molecules:
if m.version_spec['model'] != 'calpha':
cys = cys + m.residuesOfType('cys') + m.residuesOfType('cyx')
s = cys.map(lambda r: r.sidechain.S_gamma)
ns = len(s)
ss = []
for i in xrange(ns-1):
for j in xrange(i+1,ns):
r1 = s[i].position()
r2 = s[j].position()
if r1 and r2 and (r1-r2).length() < self._ss_bond_max:
ss.append((cys[i], cys[j]))
return ss
def _subunits(self):
return list(self)
def _description(self, tag, index_map, toplevel):
if not toplevel:
raise ValueError
return 'l(' + `self.__class__.__name__` + ',' + `self.name` + ',[' + \
','.join(o._description(tag, index_map, True) for o in self) + \
'])'
def _graphics(self, conf, distance_fn, model, module, options):
if model != 'backbone':
return ChemicalObjects.Complex._graphics(self, conf, distance_fn,
model, module, options)
objects = []
for chain in self:
objects.extend(chain._graphics(conf, distance_fn,
model, module, options))
return objects
#
# Type check functions
#
def isPeptideChain(x):
"""
:param x: any object
:returns: True if x is a peptide chain
:rtype: bool
"""
return hasattr(x, 'is_peptide_chain')
def isProtein(x):
"""
:param x: any object
:returns: True if x is a protein
:rtype: bool
"""
return hasattr(x, 'is_protein')
|