This file is indexed.

/usr/share/pyshared/MMTK/Random.py is in python-mmtk 2.7.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Functions for finding random points and orientations.
#
# Written by: Konrad Hinsen
# 

"""
Random quantities for use in molecular simulations
"""

__docformat__ = 'restructuredtext'

from Scientific.Geometry import Vector
from Scientific.Geometry.Transformation import Rotation
from Scientific import N
from MMTK import ParticleProperties, Units

try:
    numeric = N.package
except AttributeError:
    numeric = "Numeric"

RNG = None
try:
    if numeric == "Numeric":
        import RNG
    elif numeric == "NumPy":
        import numpy.oldnumeric.rng as RNG
except ImportError:
    pass


if RNG is None:

    if numeric == "Numeric":
        from RandomArray import uniform, seed
    elif numeric == "NumPy":
        from numpy.oldnumeric.random_array import uniform, seed
    random = __import__('random')
    seed(1, 1)
    random.seed(1)

    def initializeRandomNumbersFromTime():
        random.seed()
        seed(0, 0)

    def gaussian(mean, std, shape=None):
        if shape is None:
            x = random.normalvariate(0., 1.)
        else:
            x = N.zeros(shape, N.Float)
            xflat = N.ravel(x)
            for i in range(len(xflat)):
                xflat[i] = random.normalvariate(0., 1.)
        return mean + std*x

else:

    _uniform_generator = \
                    RNG.CreateGenerator(-1, RNG.UniformDistribution(0., 1.))
    _gaussian_generator = \
                    RNG.CreateGenerator(-1, RNG.NormalDistribution(0., 1.))

    def initializeRandomNumbersFromTime():
        global _uniform_generator, _gaussian_generator
        _uniform_generator = \
                       RNG.CreateGenerator(0, RNG.UniformDistribution(0., 1.))
        _gaussian_generator = \
                       RNG.CreateGenerator(0, RNG.NormalDistribution(0., 1.))

    def uniform(x1, x2, shape=None):
        if shape is None:
            x = _uniform_generator.ranf()
        else:
            n = N.multiply.reduce(shape)
            x = _uniform_generator.sample(n)
            x.shape = shape
        return x1+(x2-x1)*x

    def gaussian(mean, std, shape=None):
        if shape is None:
            x = _gaussian_generator.ranf()
        else:
            n = N.multiply.reduce(shape)
            x = _gaussian_generator.sample(n)
            x.shape = shape
        return mean+std*x

del numeric

#
# Random point in a rectangular box centered around the origin
#
def randomPointInBox(a, b = None, c = None):
    """
    :param a: the edge length of a box along the x axis
    :type a: float
    :param b: the edge length of a box along the y axis (default: a)
    :type b: float
    :param c: the edge length of a box along the z axis (default: a)
    :type c: float
    :returns: a vector drawn from a uniform distribution within a
              rectangular box with edge lengths a, b, c.
    :rtype: Scientific.Geometry.Vector
    """
    if b is None: b = a
    if c is None: c = a
    x = uniform(-0.5*a, 0.5*a)
    y = uniform(-0.5*b, 0.5*b)
    z = uniform(-0.5*c, 0.5*c)
    return Vector(x, y, z)

#
# Random point in a sphere around the origin.
#
def randomPointInSphere(r):
    """
    :param r: the radius of a sphere
    :type r: float
    :returns: a vector drawn from a uniform distribution within
              a sphere of radius r.
    :rtype: Scientific.Geometry.Vector
    """
    rsq = r*r
    while 1:
        x = N.array([uniform(-r, r), uniform(-r, r), uniform(-r, r)])
        if N.dot(x, x) < rsq: break
    return Vector(x)

#
# Random direction (unit vector).
#
def randomDirection():
    """
    :returns: a vector drawn from a uniform distribution on the surface
              of a unit sphere.
    :rtype: Scientific.Geometry.Vector
    """
    r = randomPointInSphere(1.)
    return r.normal()

def randomDirections(n):
    """
    :param n: the number of direction vectors
    :returns: a list of n vectors drawn from a uniform distribution on
              the surface of a unit sphere. If n is negative, returns
              a deterministic list of not more than -n vectors of unit
              length (useful for testing purposes).
    :rtype: list
    """
    if n < 0:
        vs = [Vector(1., 0., 0.), Vector(0., -1., 0.), Vector(0., 0., 1.),
              Vector(-1., 1., 0.).normal(), Vector(-1., 0., 1.).normal(),
              Vector(0., 1., -1.).normal(), Vector(1., -1., 1.).normal()]
        return vs[:-n]
    else:
        return [randomDirection() for i in range(n)]

#
# Random rotation.
#
def randomRotation(max_angle = N.pi):
    """
    :param max_angle: the upper limit for the rotation angle
    :type max_angle: float
    :returns: a random rotation with a uniform axis distribution
              and angles drawn from a uniform distribution between
              -max_angle and max_angle.
    :rtype: Scientific.Geometry.Transformations.Rotation
    """
    return Rotation(randomDirection(), uniform(-max_angle, max_angle))

#
# Random velocity (gaussian)
#
def randomVelocity(temperature, mass):
    """
    :param temperature: the temperature defining a Maxwell distribution
    :type temperature: float
    :param mass: the mass of a particle
    :type mass: float
    :returns: a random velocity vector for a particle of a given mass
              at a given temperature
    :rtype: Scientific.Geometry.Vector
    """
    sigma = N.sqrt((temperature*Units.k_B)/(mass*Units.amu))
    return Vector(gaussian(0., sigma, (3,)))

#
# Random ParticleVector (gaussian)
#
def randomParticleVector(universe, width):
    """
    :param universe: a universe
    :type universe: :class:`~MMTK.Universe.Universe`
    :param width: the width (standard deviation) of a Gaussian distribution
    :type width: float
    :returns: a set of vectors drawn from a Gaussian distribution
              with a given width centered  around zero.
    :rtype: :class:`~MMTK.ParticleProperties.ParticleVector`
    """
    data = gaussian(0., 0.577350269189*width, (universe.numberOfPoints(), 3))
    return ParticleProperties.ParticleVector(universe, data)