/usr/share/pyshared/MMTK/Trajectory.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 | # This module implements trajetories and trajectory generators.
#
# Written by Konrad Hinsen
#
"""
Trajectory files and their contents
"""
__docformat__ = 'restructuredtext'
from MMTK import Collections, Units, Universe, Utility, \
ParticleProperties, Visualization
from Scientific.Geometry import Vector
from Scientific import N
import copy, os, sys
# Report error if the netCDF module is not available.
try:
from Scientific.IO import NetCDF
except ImportError:
raise Utility.MMTKError("Trajectories are not available " +
"because the netCDF module is missing.")
#
# Trajectory class
#
class Trajectory(object):
#
# Trajectory cache
#
# This cache is maintained for better efficiency in parallel
# processing. The cache contains all trajectories currently open
# for reading. When a trajectory object is unpickled, a trajectory
# from the cache is reused if possible. This means that
"""
Trajectory file
The data in a trajectory file can be accessed by step or by
variable. If t is a Trajectory object, then:
* len(t) is the number of steps
* t[i] is the data for step i, in the form of a dictionary that
maps variable names to data
* t[i:j] and t[i:j:n] return a :class:`~MMTK.Trajectory.SubTrajectory`
object that refers to a subset of the total number of steps
(no data is copied)
* t.variable returns the value of the named variable at all
time steps. If the variable is a simple scalar, it is read
completely and returned as an array. If the variable contains
data for each atom, a :class:`~MMTK.Trajectory.TrajectoryVariable`
object is returned from which data at specific steps can be obtained
by further indexing operations.
The routines that generate trajectories decide what variables
are used and what they contain. The most frequently used variable
is "configuration", which stores the positions of all atoms.
Other common variables are "time", "velocities", "temperature",
"pressure", and various energy terms whose name end with "_energy".
"""
def __init__(self, object, filename, mode = 'r', comment = None,
double_precision = False, cycle = 0, block_size = 1):
"""
:param object: the object whose data is stored in the trajectory file.
This can be 'None' when opening a file for reading;
in that case, a universe object is constructed from the
description stored in the trajectory file. This universe
object can be accessed via the attribute 'universe'
of the trajectory object.
:type object: :class:`~MMTK.ChemicalObjects.ChemicalObject`
:param filename: the name of the trajectory file
:type filename: str
:param mode: one of "r" (read-only), "w" (create new file for writing),
or "a" (append to existing file or create if the file does
not exist)
:type mode: str
:param comment: optional comment that is stored in the file;
allowed only with mode="r"
:type comment: str
:param double_precision: if True, data in the file is stored using
double precision; default is single precision.
Note that all I/O via trajectory objects is
double precision; conversion from and to
single precision file variables is handled
automatically.
:type double_precision: bool
:param cycle: if non-zero, a trajectory is created for a fixed number
of steps equal to the value of cycle, and these steps
are used cyclically. This is meant for restart
trajectories.
:type cycle: int
:param block_size: an optimization parameter that influences the file
structure and the I/O performance for very large
files. A block size of 1 is optimal for sequential
access to configurations etc., whereas a block size
equal to the number of steps is optimal for reading
coordinates or scalar variables along the time axis.
The default value is 1. Note that older MMTK releases
always used a block size of 1 and cannot handle
trajectories with different block sizes.
:type block_size: int
"""
filename = os.path.expanduser(filename)
self.filename = filename
self.mode = mode
if object is None and mode == 'r':
file = NetCDF.NetCDFFile(filename, 'r')
description = file.variables['description'][:].tostring()
try:
self.block_size = file.dimensions['minor_step_number']
except KeyError:
self.block_size = 1
conf = None
cell = None
if self.block_size == 1:
try:
conf_var = file.variables['configuration']
conf = conf_var[0, :, :]
except KeyError: pass
try:
cell = file.variables['box_size'][0, :]
except KeyError: pass
else:
try:
conf_var = file.variables['configuration']
conf = conf_var[0, :, :, 0]
except KeyError: pass
try:
cell = file.variables['box_size'][0, :, 0]
except KeyError: pass
file.close()
import Skeleton
local = {}
skeleton = eval(description, vars(Skeleton), local)
universe = skeleton.make({}, conf)
universe.setCellParameters(cell)
object = universe
initialize = 1
else:
universe = object.universe()
if universe is None:
raise ValueError("objects not in the same universe")
description = None
initialize = 0
universe.configuration()
if object is universe:
index_map = None
inverse_map = None
else:
if mode == 'r':
raise ValueError("can't read trajectory for a non-universe")
index_map = N.array([a.index for a in object.atomList()])
inverse_map = universe.numberOfPoints()*[None]
for i in range(len(index_map)):
inverse_map[index_map[i]] = i
toplevel = set()
for o in Collections.Collection(object):
toplevel.add(o.topLevelChemicalObject())
object = Collections.Collection(list(toplevel))
if description is None:
description = universe.description(object, inverse_map)
import MMTK_trajectory
self.trajectory = MMTK_trajectory.Trajectory(universe, description,
index_map, filename,
mode + 's',
double_precision, cycle,
block_size)
self.universe = universe
self.index_map = index_map
try:
self.block_size = \
self.trajectory.file.dimensions['minor_step_number']
except KeyError:
self.block_size = 1
if comment is not None:
if mode == 'r':
raise IOError('cannot add comment in read-only mode')
self.trajectory.file.comment = comment
if initialize and conf is not None:
self.universe.setFromTrajectory(self)
self.particle_trajectory_reader = ParticleTrajectoryReader(self)
def __getstate__(self):
if self.mode != 'r':
raise ValueError("Cannot copy or pickle write-mode trajectories")
return self.filename
def __setstate__(self, state):
self.__init__(None, state)
def flush(self):
"""
Make sure that all data that has been written to the trajectory
is also written to the file.
"""
self.trajectory.flush()
def close(self):
"""
Close the trajectory file. Must be called after writing to
ensure that all buffered data is written to the file. No data
access is possible after closing a file.
"""
self.trajectory.close()
def __len__(self):
return self.trajectory.nsteps
def __getitem__(self, item):
if not isinstance(item, int):
return SubTrajectory(self, N.arange(len(self)))[item]
if item < 0:
item += len(self)
if item >= len(self):
raise IndexError
data = {}
for name, var in self.trajectory.file.variables.items():
if 'step_number' not in var.dimensions:
continue
if 'atom_number' in var.dimensions:
if 'xyz' in var.dimensions:
array = ParticleProperties.ParticleVector(self.universe,
self.trajectory.readParticleVector(name, item))
else:
array = ParticleProperties.ParticleScalar(self.universe,
self.trajectory.readParticleScalar(name, item))
else:
bs = self.block_size
if bs == 1:
array = var[item]
else:
if len(var.shape) == 2:
array = var[item/bs, item%bs]
else:
array = var[item/bs, ..., item%bs]
data[name] = 0.+array
if data.has_key('configuration'):
box = data.get('box_size', None)
if box is not None:
box = box.astype(N.Float)
conf = data['configuration']
data['configuration'] = \
ParticleProperties.Configuration(conf.universe, conf.array, box)
return data
def __getslice__(self, first, last):
return self[(slice(first, last),)]
def __getattr__(self, name):
try:
var = self.trajectory.file.variables[name]
except KeyError:
raise AttributeError("no variable named " + name)
if 'atom_number' in var.dimensions:
return TrajectoryVariable(self.universe, self, name)
elif 'box_size_length' in var.dimensions:
if 'minor_step_number' in var.dimensions:
bs = N.transpose(var[:], [0, 2, 1])
bs = N.reshape(bs, (bs.shape[0]*bs.shape[1], bs.shape[2]))
return bs[:len(self)]
else:
return var[:]
else:
return N.ravel(N.array(var))[:len(self)]
def defaultStep(self):
try:
step = int(self.trajectory.file.last_step[0])
except AttributeError:
step = 0
return step
def readParticleTrajectory(self, atom, first=0, last=None, skip=1,
variable = "configuration"):
"""
Read trajectory information for a single atom but for multiple
time steps.
:param atom: the atom whose trajectory is requested
:type atom: :class:`~MMTK.ChemicalObjects.Atom`
:param first: the number of the first step to be read
:type first: int
:param last: the number of the first step not to be read.
A value of None indicates that the
whole trajectory should be read.
:type last: int
:param skip: the number of steps to skip between two steps read
:type skip: int
:param variable: the name of the trajectory variable to be read.
If the variable is "configuration", the resulting
trajectory is made continuous by eliminating all
jumps caused by periodic boundary conditions.
The pseudo-variable "box_coordinates" can be read
to obtain the values of the variable "configuration"
scaled to box coordinates. For non-periodic universes
there is no difference between box coordinates
and real coordinates.
:type variable: str
:returns: the trajectory for a single atom
:rtype: :class:`~MMTK.Trajectory.ParticleTrajectory`
"""
return ParticleTrajectory(self, atom, first, last, skip, variable)
def readRigidBodyTrajectory(self, object, first=0, last=None, skip=1,
reference = None):
"""
Read the positions for an object at multiple time steps
and extract the rigid-body motion (center-of-mass position plus
orientation as a quaternion) by an optimal-transformation fit.
:param object: the object whose rigid-body trajectory is requested
:type object: :class:`~MMTK.Collections.GroupOfAtoms`
:param first: the number of the first step to be read
:type first: int
:param last: the number of the first step not to be read.
A value of None indicates that the
whole trajectory should be read.
:type last: int
:param skip: the number of steps to skip between two steps read
:type skip: int
:param reference: the reference configuration for the fit
:type reference: :class:`~MMTK.ParticleProperties.Configuration`
:returns: the trajectory for a single rigid body
:rtype: :class:`~MMTK.Trajectory.RigidBodyTrajectory`
"""
return RigidBodyTrajectory(self, object, first, last, skip, reference)
def variables(self):
"""
:returns: a list of the names of all variables that are stored
in the trajectory
:rtype: list of str
"""
vars = copy.copy(self.trajectory.file.variables.keys())
vars.remove('step')
try:
vars.remove('description')
except ValueError: pass
return vars
def view(self, first=0, last=None, skip=1, object = None):
"""
Show an animation of the trajectory using an external visualization
program.
:param first: the number of the first step in the animation
:type first: int
:param last: the number of the first step not to include in the
animation. A value of None indicates that the
whole trajectory should be used.
:type last: int
:param skip: the number of steps to skip between two steps read
:type skip: int
:param object: the object to be animated, which must be in the
universe stored in the trajectory. None
stands for the whole universe.
:type object: :class:`~MMTK.Collections.GroupOfAtoms`
"""
Visualization.viewTrajectory(self, first, last, skip, object)
def _boxTransformation(self, pt_in, pt_out, to_box=0):
from MMTK_trajectory import boxTransformation
try:
box_size = self.trajectory.recently_read_box_size
except AttributeError:
return
boxTransformation(self.universe._spec,
pt_in, pt_out, box_size, to_box)
class SubTrajectory(object):
"""
Reference to a subset of a trajectory
A SubTrajectory object is created by slicing a Trajectory object
or another SubTrajectory object. It provides all the operations
defined on Trajectory objects.
"""
def __init__(self, trajectory, indices):
self.trajectory = trajectory
self.indices = indices
self.universe = trajectory.universe
def __len__(self):
return len(self.indices)
def __getitem__(self, item):
if isinstance(item, int):
return self.trajectory[int(self.indices[item])]
else:
return SubTrajectory(self.trajectory, self.indices[item])
def __getslice__(self, first, last):
return self[(slice(first, last),)]
def __getattr__(self, name):
return SubVariable(getattr(self.trajectory, name), self.indices)
def readParticleTrajectory(self, atom, first=0, last=None, skip=1,
variable = "configuration"):
if last is None:
last = len(self.indices)
indices = self.indices[first:last:skip]
first = indices[0]
last = indices[-1]+1
if len(self.indices) > 1:
skip = self.indices[1]-self.indices[0]
else:
skip = 1
return self.trajectory.readParticleTrajectory(atom, first, last,
skip, variable)
def readRigidBodyTrajectory(self, object, first=0, last=None, skip=1,
reference = None):
if last is None:
last = len(self.indices)
indices = self.indices[first:last:skip]
first = indices[0]
last = indices[-1]+1
if len(self.indices) > 1:
skip = self.indices[1]-self.indices[0]
else:
skip = 1
return RigidBodyTrajectory(self.trajectory, object,
first, last, skip, reference)
def variables(self):
return self.trajectory.variables()
def view(self, first=0, last=None, step=1, subset = None):
Visualization.viewTrajectory(self, first, last, step, subset)
def close(self):
del self.trajectory
def _boxTransformation(self, pt_in, pt_out, to_box=0):
Trajectory._boxTransformation(self.trajectory, pt_in, pt_out, to_box)
#
# Trajectory variables
#
class TrajectoryVariable(object):
"""
Variable in a trajectory
A TrajectoryVariable object is created by extracting a variable from
a Trajectory object if that variable contains data for each atom and
is thus potentially large. No data is read from the trajectory file
when a TrajectoryVariable object is created; the read operation
takes place when the TrajectoryVariable is indexed with a specific
step number.
If t is a TrajectoryVariable object, then:
* len(t) is the number of steps
* t[i] is the data for step i, in the form of a ParticleScalar,
a ParticleVector, or a Configuration object, depending on the
variable
* t[i:j] and t[i:j:n] return a SubVariable object that refers
to a subset of the total number of steps
"""
def __init__(self, universe, trajectory, name):
self.universe = universe
self.trajectory = trajectory
self.name = name
self.var = self.trajectory.trajectory.file.variables[self.name]
if self.name == 'configuration':
try:
self.box_size = \
self.trajectory.trajectory.file.variables['box_size']
except KeyError:
self.box_size = None
def __len__(self):
return len(self.trajectory)
def __getitem__(self, item):
if not isinstance(item, int):
return SubVariable(self, N.arange(len(self)))[item]
item = int(item) # gets rid of numpy.intXX objects
if item < 0:
item = item + len(self.trajectory)
if item >= len(self.trajectory):
raise IndexError
if self.name == 'configuration':
if self.box_size is None:
box = None
elif len(self.box_size.shape) == 3:
bs = self.trajectory.block_size
box = self.box_size[item/bs, :, item%bs].astype(N.Float)
else:
box = self.box_size[item].astype(N.Float)
array = ParticleProperties.Configuration(self.universe,
self.trajectory.trajectory.readParticleVector(self.name, item),
box)
elif 'xyz' in self.var.dimensions:
array = ParticleProperties.ParticleVector(self.universe,
self.trajectory.trajectory.readParticleVector(self.name, item))
else:
array = ParticleProperties.ParticleScalar(self.universe,
self.trajectory.trajectory.readParticleScalar(self.name, item))
return array
def __getslice__(self, first, last):
return self[(slice(first, last),)]
def average(self):
sum = self[0]
for value in self[1:]:
sum = sum + value
return sum/len(self)
class SubVariable(TrajectoryVariable):
"""
Reference to a subset of a :class:`~MMTK.Trajectory.TrajectoryVariable`
A SubVariable object is created by slicing a TrajectoryVariable
object or another SubVariable object. It provides all the operations
defined on TrajectoryVariable objects.
"""
def __init__(self, variable, indices):
self.variable = variable
self.indices = indices
def __len__(self):
return len(self.indices)
def __getitem__(self, item):
if isinstance(item, int):
return self.variable[self.indices[item]]
else:
return SubVariable(self.variable, self.indices[item])
def __getslice__(self, first, last):
return self[(slice(first, last),)]
#
# Trajectory consisting of multiple files
#
class TrajectorySet(object):
"""
Trajectory file set
A TrajectorySet permits to treat a sequence of trajectory files
like a single trajectory for reading data. It behaves exactly like a
:class:`~MMTK.Trajectory.Trajectory` object. The trajectory files must all contain data
for the same system. The variables stored in the individual files
need not be the same, but only variables common to all files
can be accessed.
Note: depending on how the sequence of trajectories was constructed,
the first configuration of each trajectory might be the same as the
last one in the preceding trajectory. To avoid counting it twice,
specify (filename, 1, None, 1) for all but the first trajectory in
the set.
"""
def __init__(self, object, filenames):
"""
:param object: the object whose data is stored in the trajectory files.
This can be (and usually is) None;
in that case, a universe object is constructed from the
description stored in the first trajectory file.
This universe object can be accessed via the attribute
universe of the trajectory set object.
:param filenames: a list of trajectory file names or
(filename, first_step, last_step, increment)
tuples.
"""
first = filenames[0]
if isinstance(first, tuple):
first = Trajectory(object, first[0])[first[1]:first[2]:first[3]]
else:
first = Trajectory(object, first)
self.universe = first.universe
self.trajectories = [first]
self.nsteps = [0, len(first)]
self.cell_parameters = []
for file in filenames[1:]:
if isinstance(file, tuple):
t = Trajectory(self.universe, file[0])[file[1]:file[2]:file[3]]
else:
t = Trajectory(self.universe, file)
self.trajectories.append(t)
self.nsteps.append(self.nsteps[-1]+len(t))
try:
self.cell_parameters.append(t[0]['box_size'])
except KeyError:
pass
vars = {}
for t in self.trajectories:
for v in t.variables():
vars[v] = vars.get(v, 0) + 1
self.vars = []
for v, count in vars.items():
if count == len(self.trajectories):
self.vars.append(v)
def close(self):
for t in self.trajectories:
t.close()
def __len__(self):
return self.nsteps[-1]
def __getitem__(self, item):
if not isinstance(item, int):
return SubTrajectory(self, N.arange(len(self)))[item]
if item >= len(self):
raise IndexError
tindex = N.add.reduce(N.greater_equal(item, self.nsteps))-1
return self.trajectories[tindex][item-self.nsteps[tindex]]
def __getslice__(self, first, last):
return self[(slice(first, last),)]
def __getattr__(self, name):
if name not in self.vars+['step']:
raise AttributeError("no variable named " + name)
var = self.trajectories[0].trajectory.file.variables[name]
if 'atom_number' in var.dimensions:
return TrajectorySetVariable(self.universe, self, name)
else:
data = []
for t in self.trajectories:
var = t.trajectory.file.variables[name]
data.append(N.ravel(N.array(var))[:len(t)])
return N.concatenate(data)
def readParticleTrajectory(self, atom, first=0, last=None, skip=1,
variable = "configuration"):
total = None
self.steps_read = []
for i in range(len(self.trajectories)):
if self.nsteps[i+1] <= first:
self.steps_read.append(0)
continue
if last is not None and self.nsteps[i] >= last:
break
n = max(0, (self.nsteps[i]-first+skip-1)/skip)
start = first+skip*n-self.nsteps[i]
n = (self.nsteps[i+1]-first+skip-1)/skip
stop = first+skip*n
if last is not None:
stop = min(stop, last)
stop = stop-self.nsteps[i]
if start >= 0 and start < self.nsteps[i+1]-self.nsteps[i]:
t = self.trajectories[i]
pt = t.readParticleTrajectory(atom, start, stop, skip,
variable)
self.steps_read.append((stop-start)/skip)
if total is None:
total = pt
else:
if variable == "configuration" \
and self.cell_parameters[0] is not None:
jump = pt.array[0]-total.array[-1]
mult = -(jump/self.cell_parameters[i-1]).astype('i')
if len(N.nonzero(mult)) > 0:
t._boxTransformation(pt.array, pt.array, 1)
N.add(pt.array, mult[N.NewAxis, : ],
pt.array)
t._boxTransformation(pt.array, pt.array, 0)
jump = pt.array[0] - total.array[-1]
mask = N.less(jump,
-0.5*self.cell_parameters[i-1])- \
N.greater(jump,
0.5*self.cell_parameters[i-1])
if len(N.nonzero(mask)) > 0:
t._boxTransformation(pt.array, pt.array, 1)
N.add(pt.array, mask[N.NewAxis, :],
pt.array)
t._boxTransformation(pt.array, pt.array, 0)
elif variable == "box_coordinates" \
and self.cell_parameters[0] is not None:
jump = pt.array[0]-total.array[-1]
mult = -jump.astype('i')
if len(N.nonzero(mult)) > 0:
N.add(pt.array, mult[N.NewAxis, : ],
pt.array)
jump = pt.array[0] - total.array[-1]
mask = N.less(jump, -0.5)- \
N.greater(jump, 0.5)
if len(N.nonzero(mask)) > 0:
N.add(pt.array, mask[N.NewAxis, :],
pt.array)
total.array = N.concatenate((total.array, pt.array))
else:
self.steps_read.append(0)
return total
def readRigidBodyTrajectory(self, object, first=0, last=None, skip=1,
reference = None):
return RigidBodyTrajectory(self, object, first, last, skip, reference)
def _boxTransformation(self, pt_in, pt_out, to_box=0):
n = 0
for i in range(len(self.steps_read)):
t = self.trajectories[i]
steps = self.steps_read[i]
if steps > 0:
t._boxTransformation(pt_in[n:n+steps], pt_out[n:n+steps],
to_box)
n = n + steps
def variables(self):
return self.vars
def view(self, first=0, last=None, step=1, object = None):
Visualization.viewTrajectory(self, first, last, step, object)
class TrajectorySetVariable(TrajectoryVariable):
"""
Variable in a trajectory set
A TrajectorySetVariable object is created by extracting a variable from
a TrajectorySet object if that variable contains data for each atom and
is thus potentially large. It behaves exactly like a TrajectoryVariable
object.
"""
def __init__(self, universe, trajectory_set, name):
self.universe = universe
self.trajectory_set = trajectory_set
self.name = name
def __len__(self):
return len(self.trajectory_set)
def __getitem__(self, item):
if not isinstance(item, int):
return SubVariable(self, N.arange(len(self)))[item]
if item >= len(self.trajectory_set):
raise IndexError
tindex = N.add.reduce(N.greater_equal(item,
self.trajectory_set.nsteps))-1
step = item-self.trajectory_set.nsteps[tindex]
t = self.trajectory_set.trajectories[tindex]
return getattr(t, self.name)[step]
#
# Cache for atom trajectories
#
class ParticleTrajectoryReader(object):
def __init__(self, trajectory):
self.trajectory = trajectory
self.natoms = self.trajectory.universe.numberOfAtoms()
self._trajectory = trajectory.trajectory
self.cache = {}
self.cache_lifetime = 2
def __call__(self, atom, variable, first, last, skip, correct, box):
if isinstance(atom, int):
index = atom
else:
index = atom.index
if atom.universe() is not self.trajectory.universe:
raise ValueError("objects not in the same universe")
key = (index, variable, first, last, skip, correct, box)
data, count = self.cache.get(key, (None, 0))
if data is not None:
self.cache[key] = (data, self.cache_lifetime)
return data
delete = []
for k, value in self.cache.items():
data, count = value
count -= 1
if count == 0:
delete.append(k)
else:
self.cache[k] = (data, count)
for k in delete:
del self.cache[k]
cache_size = min(10, max(1, 100000/max(1, len(self.trajectory))))
natoms = min(cache_size, self.natoms-index)
data = self._trajectory.readParticleTrajectories(index, natoms,
variable,
first, last, skip,
correct, box)
for i in range(natoms):
key = (index+i, variable, first, last, skip, correct, box)
self.cache[key] = (data[i], self.cache_lifetime)
return data[0]
#
# Single-atom trajectory
#
class ParticleTrajectory(object):
"""
Trajectory data for a single particle
A ParticleTrajectory object is created by calling the method
:func:`~MMTK.Trajectory.Trajectory.readParticleTrajectory`
on a :class:`~MMTK.Trajectory.Trajectory` object.
If pt is a ParticleTrajectory object, then
* len(pt) is the number of steps stored in it
* pt[i] is the value at step i (a vector)
"""
def __init__(self, trajectory, atom, first=0, last=None, skip=1,
variable = "configuration"):
if last is None:
last = len(trajectory)
if variable == "box_coordinates":
variable = "configuration"
box = 1
else:
box = 0
reader = trajectory.particle_trajectory_reader
self.array = reader(atom, variable, first, last, skip,
variable == "configuration", box)
def __len__(self):
return self.array.shape[0]
def __getitem__(self, index):
return Vector(self.array[index])
def translateBy(self, vector):
"""
Adds a vector to the values at all steps. This does B{not}
change the data in the trajectory file.
:param vector: the vector to be added
:type vector: Scientific.Geometry.Vector
"""
N.add(self.array, vector.array[N.NewAxis, :], self.array)
#
# Rigid-body trajectory
#
class RigidBodyTrajectory(object):
"""
Rigid-body trajectory data
A RigidBodyTrajectory object is created by calling the method
:func:`~MMTK.Trajectory.Trajectory.readRigidBodyTrajectory`
on a :class:`~MMTK.Trajectory.Trajectory` object.
If rbt is a RigidBodyTrajectory object, then
* len(rbt) is the number of steps stored in it
* rbt[i] is the value at step i (a vector for the center of mass
and a quaternion for the orientation)
"""
def __init__(self, trajectory, object, first=0, last=None, skip=1,
reference = None):
self.trajectory = trajectory
universe = trajectory.universe
if last is None: last = len(trajectory)
first_conf = trajectory.configuration[first]
offset = universe.contiguousObjectOffset([object], first_conf, True)
if reference is None:
reference = first_conf
reference = universe.contiguousObjectConfiguration([object], reference)
steps = (last-first+skip-1)/skip
mass = object.mass()
ref_cms = object.centerOfMass(reference)
atoms = object.atomList()
possq = N.zeros((steps,), N.Float)
cross = N.zeros((steps, 3, 3), N.Float)
rcms = N.zeros((steps, 3), N.Float)
# cms of the CONTIGUOUS object made of CONTINUOUS atom trajectories
for a in atoms:
r = trajectory.readParticleTrajectory(a, first, last, skip,
"box_coordinates").array
w = a._mass/mass
N.add(rcms, w*r, rcms)
if offset is not None:
N.add(rcms, w*offset[a].array, rcms)
# relative coords of the CONTIGUOUS reference
r_ref = N.zeros((len(atoms), 3), N.Float)
for a in range(len(atoms)):
r_ref[a] = atoms[a].position(reference).array - ref_cms.array
# main loop: storing data needed to fill M matrix
for a in range(len(atoms)):
r = trajectory.readParticleTrajectory(atoms[a],
first, last, skip,
"box_coordinates").array
r = r - rcms # (a-b)**2 != a**2 - b**2
if offset is not None:
N.add(r, offset[atoms[a]].array,r)
trajectory._boxTransformation(r, r)
w = atoms[a]._mass/mass
N.add(possq, w*N.add.reduce(r*r, -1), possq)
N.add(possq, w*N.add.reduce(r_ref[a]*r_ref[a],-1),
possq)
N.add(cross, w*r[:,:,N.NewAxis]*r_ref[N.NewAxis,
a,:],cross)
self.trajectory._boxTransformation(rcms, rcms)
# filling matrix M (formula no 40)
k = N.zeros((steps, 4, 4), N.Float)
k[:, 0, 0] = -cross[:, 0, 0]-cross[:, 1, 1]-cross[:, 2, 2]
k[:, 0, 1] = cross[:, 1, 2]-cross[:, 2, 1]
k[:, 0, 2] = cross[:, 2, 0]-cross[:, 0, 2]
k[:, 0, 3] = cross[:, 0, 1]-cross[:, 1, 0]
k[:, 1, 1] = -cross[:, 0, 0]+cross[:, 1, 1]+cross[:, 2, 2]
k[:, 1, 2] = -cross[:, 0, 1]-cross[:, 1, 0]
k[:, 1, 3] = -cross[:, 0, 2]-cross[:, 2, 0]
k[:, 2, 2] = cross[:, 0, 0]-cross[:, 1, 1]+cross[:, 2, 2]
k[:, 2, 3] = -cross[:, 1, 2]-cross[:, 2, 1]
k[:, 3, 3] = cross[:, 0, 0]+cross[:, 1, 1]-cross[:, 2, 2]
del cross
for i in range(1, 4):
for j in range(i):
k[:, i, j] = k[:, j, i]
N.multiply(k, 2., k)
for i in range(4):
N.add(k[:,i,i], possq, k[:,i,i])
del possq
quaternions = N.zeros((steps, 4), N.Float)
fit = N.zeros((steps,), N.Float)
from Scientific.LA import eigenvectors
for i in range(steps):
e, v = eigenvectors(k[i])
j = N.argmin(e)
if e[j] < 0.:
fit[i] = 0.
else:
fit[i] = N.sqrt(e[j])
if v[j,0] < 0.: quaternions[i] = -v[j] # eliminate jumps
else: quaternions[i] = v[j]
self.fit = fit
self.cms = rcms
self.quaternions = quaternions
def __len__(self):
return self.cms.shape[0]
def __getitem__(self, index):
from Scientific.Geometry.Quaternion import Quaternion
return Vector(self.cms[index]), Quaternion(self.quaternions[index])
#
# Type check for trajectory objects
#
def isTrajectory(object):
"""
:param object: any Python object
:returns: True if object is a trajectory
"""
import MMTK_trajectory
return isinstance(object, (Trajectory, MMTK_trajectory.trajectory_type))
#
# Base class for all objects that generate trajectories
#
class TrajectoryGenerator(object):
"""
Trajectory generator base class
This base class implements the common aspects of everything that
generates trajectories: integrators, minimizers, etc.
"""
def __init__(self, universe, options):
self.universe = universe
self.options = options
def setCallOptions(self, options):
self.call_options = options
def getActions(self):
try:
self.actions = self.getOption('actions')
except ValueError:
self.actions = []
try:
if self.getOption('background'):
import MMTK_state_accessor
self.state_accessor = MMTK_state_accessor.StateAccessor()
self.actions.append(self.state_accessor)
except ValueError:
pass
try:
steps = self.getOption('steps')
except ValueError:
steps = None
return map(lambda a, t=self, s=steps: a.getSpecificationList(t, s),
self.actions)
def cleanupActions(self):
for a in self.actions:
a.cleanup()
def getOption(self, option):
try:
value = self.call_options[option]
except KeyError:
try:
value = self.options[option]
except KeyError:
try:
value = self.default_options[option]
except KeyError:
raise ValueError('undefined option: ' + option)
return value
def optionString(self, options):
s = ''
for o in options:
s = s + o + '=' + `self.getOption(o)` + ', '
return s[:-2]
def run(self, function, args):
if self.getOption('background'):
import ThreadManager
return ThreadManager.TrajectoryGeneratorThread(self.universe,
function, args, self.state_accessor)
else:
apply(function, args)
#
# Trajectory action base class
#
class TrajectoryAction(object):
"""
Trajectory action base class
Subclasses of this base class implement the actions that can be
inserted into trajectory generation at regular intervals.
"""
def __init__(self, first, last, skip):
self.first = first
self.last = last
self.skip = skip
spec_type = 'function'
def _getSpecificationList(self, trajectory_generator, steps):
first = self.first
last = self.last
if first < 0:
first = first + steps
if last is None:
import MMTK_trajectory
last = MMTK_trajectory.maxint
elif last < 0:
last = last + steps+1
return (self.spec_type, first, last, self.skip)
def getSpecificationList(self, trajectory_generator, steps):
return self._getSpecificationList(trajectory_generator, steps) \
+ (self.Cfunction, self.parameters)
def cleanup(self):
pass
class TrajectoryOutput(TrajectoryAction):
"""
Trajectory output action
A TrajectoryOutput object can be used in the action list of any
trajectory-generating operation. It writes any of the available
data to a trajectory file. It is possible to use several
TrajectoryOutput objects at the same time in order to produce
multiple trajectories from a single run.
"""
def __init__(self, trajectory, data = None,
first=0, last=None, skip=1):
"""
:param trajectory: a trajectory object or a string, which is
interpreted as the name of a file that is opened
as a trajectory in append mode
:param data: a list of data categories. All variables provided by the
trajectory generator that fall in any of the listed
categories are written to the trajectory file. See the
descriptions of the trajectory generators for a list
of variables and categories. By default (data = None)
the categories "configuration", "energy",
"thermodynamic", and "time" are written.
:param first: the number of the first step at which the action is run
:type first: int
:param last: the number of the step at which the action is suspended.
A value of None indicates that the action should
be applied indefinitely.
:type last: int
:param skip: the number of steps to skip between two action runs
:type skip: int
"""
TrajectoryAction.__init__(self, first, last, skip)
self.destination = trajectory
self.categories = data
self.must_be_closed = None
spec_type = 'trajectory'
def getSpecificationList(self, trajectory_generator, steps):
if type(self.destination) == type(''):
destination = self._setupDestination(self.destination,
trajectory_generator.universe)
else:
destination = self.destination
if self.categories is None:
categories = self._defaultCategories(trajectory_generator)
else:
if self.categories == 'all' or self.categories == ['all']:
categories = trajectory_generator.available_data
else:
categories = self.categories
for item in categories:
if item not in trajectory_generator.available_data:
raise ValueError('data item %s is not available' % item)
return self._getSpecificationList(trajectory_generator, steps) \
+ (destination, categories)
def _setupDestination(self, destination, universe):
self.must_be_closed = Trajectory(universe, destination, 'a')
return self.must_be_closed
def cleanup(self):
if self.must_be_closed is not None:
self.must_be_closed.close()
def _defaultCategories(self, trajectory_generator):
available = trajectory_generator.available_data
return tuple(filter(lambda x, a=available: x in a, self.default_data))
default_data = ['configuration', 'energy', 'thermodynamic', 'time']
class RestartTrajectoryOutput(TrajectoryOutput):
"""
Restart trajectory output action
A RestartTrajectoryOutput object is used in the action list of any
trajectory-generating operation. It writes those variables to a
trajectory that the trajectory generator declares as necessary
for restarting.
"""
def __init__(self, trajectory, skip=100, length=3):
"""
:param trajectory: a trajectory object or a string, which is interpreted
as the name of a file that is opened as a trajectory
in append mode with a cycle length of length and
double-precision variables
:param skip: the number of steps between two write operations to the
restart trajectory
:type skip: int
:param length: the number of steps stored in the restart trajectory;
used only if trajectory is a string
"""
TrajectoryAction.__init__(self, 0, None, skip)
self.destination = trajectory
self.categories = None
self.length = length
def _setupDestination(self, destination, universe):
self.must_be_closed = Trajectory(universe, destination, 'a',
'Restart trajectory', 1, self.length)
return self.must_be_closed
def _defaultCategories(self, trajectory_generator):
if trajectory_generator.restart_data is None:
raise ValueError("Trajectory generator does not permit restart")
return trajectory_generator.restart_data
class LogOutput(TrajectoryOutput):
"""
Protocol file output action
A LogOutput object can be used in the action list of any
trajectory-generating operation. It writes any of the available
data to a text file.
"""
def __init__(self, file, data = None, first=0, last=None, skip=1):
"""
:param file: a file object or a string, which is interpreted as the
name of a file that is opened in write mode
:param data: a list of data categories. All variables provided by the
trajectory generator that fall in any of the listed
categories are written to the trajectory file. See the
descriptions of the trajectory generators for a list
of variables and categories. By default (data = None)
the categories "configuration", "energy",
"thermodynamic", and "time" are written.
:param first: the number of the first step at which the action is run
:type first: int
:param last: the number of the step at which the action is suspended.
A value of None indicates that the action should
be applied indefinitely.
:type last: int
:param skip: the number of steps to skip between two action runs
:type skip: int
"""
TrajectoryOutput.__init__(self, file, data, first, last, skip)
def _setupDestination(self, destination, universe):
self.must_be_closed = open(destination, 'w')
return self.must_be_closed
spec_type = 'print'
default_data = ['energy', 'time']
class StandardLogOutput(LogOutput):
"""
Standard protocol output action
A StandardLogOutput object can be used in the action list of any
trajectory-generating operation. It is a specialization of
LogOutput to the most common case and writes data in the categories
"time" and "energy" to the standard output stream.
:param skip: the number of steps to skip between two action runs
:type skip: int
"""
def __init__(self, skip=50):
LogOutput.__init__(self, sys.stdout, None, 0, None, skip)
#
# Snapshot generator
#
class SnapshotGenerator(TrajectoryGenerator):
"""
Trajectory generator for single steps
A SnapshotGenerator is used for manual assembly of trajectory
files. At each call it writes one step to the trajectory,
using the current state of the universe (configuration, velocities, etc.)
and data provided explicitly with the call.
Each call to the SnapshotGenerator object produces one step.
All the keyword options can be specified either when
creating the generator or when calling it.
"""
def __init__(self, universe, **options):
"""
:param universe: the universe on which the generator acts
:keyword data: a dictionary that supplies values for variables
that are not part of the universe state
(e.g. potential energy)
:keyword actions: a list of actions to be executed periodically
(default is none)
"""
TrajectoryGenerator.__init__(self, universe, options)
self.available_data = []
try:
e, g = self.universe.energyAndGradients()
except: pass
else:
self.available_data.append('energy')
self.available_data.append('gradients')
try:
self.universe.configuration()
self.available_data.append('configuration')
except: pass
if self.universe.cellVolume() is not None:
self.available_data.append('thermodynamic')
if self.universe.velocities() is not None:
self.available_data.append('velocities')
self.available_data.append('energy')
self.available_data.append('thermodynamic')
default_options = {'steps': 0, 'actions': []}
def __call__(self, **options):
self.setCallOptions(options)
from MMTK_trajectory import snapshot
data = copy.copy(options.get('data', {}))
energy_terms = 0
for name in data.keys():
if name == 'time' and 'time' not in self.available_data:
self.available_data.append('time')
if name[-7:] == '_energy':
energy_terms = energy_terms + 1
if 'energy' not in self.available_data:
self.available_data.append('energy')
if (name == 'temperature' or name == 'pressure') \
and 'thermodynamic' not in self.available_data:
self.available_data.append('thermodynamic')
if name == 'gradients' and 'gradients' not in self.available_data:
self.available_data.append('gradients')
actions = self.getActions()
for action in actions:
categories = action[-1]
for c in categories:
if c == 'energy' and not data.has_key('kinetic_energy'):
v = self.universe.velocities()
if v is not None:
m = self.universe.masses()
e = (v*v*m*0.5).sumOverParticles()
data['kinetic_energy'] = e
df = self.universe.degreesOfFreedom()
data['temperature'] = 2.*e/df/Units.k_B/Units.K
if c == 'configuration':
if data.has_key('configuration'):
data['configuration'] = data['configuration'].array
else:
data['configuration'] = \
self.universe.configuration().array
if c == 'velocities':
if data.has_key('velocities'):
data['velocities'] = data['velocities'].array
else:
data['velocities'] = self.universe.velocities().array
if c == 'gradients':
if data.has_key('gradients'):
data['gradients'] = data['gradients'].array
p = self.universe.cellParameters()
if p is not None:
data['box_size'] = p
volume = self.universe.cellVolume()
if volume is not None:
data['volume'] = volume
try:
m = self.universe.masses()
data['masses'] = m.array
except: pass
snapshot(self.universe, data, actions, energy_terms)
#
# Trajectory reader (not yet functional...)
#
if False:
class TrajectoryReader(TrajectoryGenerator):
def __init__(self, trajectory, options):
TrajectoryGenerator.__init__(self, trajectory.universe, options)
self.input = trajectory
self.available_data = trajectory.variables()
default_options = {'trajectory': None, 'log': None, 'options': []}
def __call__(self, **options):
self.setCallOptions(options)
from MMTK_trajectory import readTrajectory
readTrajectory(self.universe, self.input.trajectory,
[self.getOption('trajectory'),
self.getOption('log')] +
self.getOption('options'))
#
# Print information about trajectory file
#
def trajectoryInfo(filename):
"""
:param filename: the name of a trajectory file
:type filename: str
:returns: a string with summarial information about the trajectory
"""
from Scientific.IO import NetCDF
file = NetCDF.NetCDFFile(filename, 'r')
nsteps = file.variables['step'].shape[0]
if 'minor_step_number' in file.dimensions.keys():
nsteps = nsteps*file.variables['step'].shape[1]
s = 'Information about trajectory file ' + filename + ':\n'
try:
s += file.comment + '\n'
except AttributeError:
pass
s += `file.dimensions['atom_number']` + ' atoms\n'
s += `nsteps` + ' steps\n'
s += file.history
file.close()
return s
|