This file is indexed.

/usr/share/pyshared/nifti/image.py is in python-nifti 0.20100607.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
#ex: set sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyNIfTI package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""This module provides two classes for accessing NIfTI files.

* :class:`~nifti.image.NiftiImage` (traditional load-as-much-as-you-can
  approach)
* :class:`~nifti.image.MemMappedNiftiImage` (memory-mapped access to
  uncompressed NIfTI files)
"""

__docformat__ = 'restructuredtext'


import cPickle
from warnings import warn

import numpy as N

# the NIfTI pieces
import nifti
import nifti.clib as ncl
from nifti.format import NiftiFormat
from nifti.utils import splitFilename, nifti2numpy_dtype_map
import nifti.imgfx as imgfx


class NiftiImage(NiftiFormat):
    """Wrapper class for convenient access to NIfTI images.

    An image can either be loaded from a file or created from a NumPy ndarray.
    Either way is automatically determined by the type of the 'source'
    argument. If `source` is a string, it is assumed to be a filename an
    ndarray is treated as such.

    All NIfTI header information is conveniently exposed via Python data types.
    This functionality is provided by the :class:`~nifti.format.NiftiFormat`
    base class. Please refer to its documentation for the full list of its
    methods and properties.

    .. seealso::
      :class:`~nifti.format.NiftiFormat`,
      :class:`~nifti.image.MemMappedNiftiImage`
    """

    #
    # object constructors, destructors and generic Python interface
    #

    def __init__(self, source, header=None, load=False, **kwargs):
        """
        :Parameters:
          source: str | ndarray
            If source is a string, it is assumed to be a filename and an
            attempt will be made to open the corresponding NIfTI file.
            In case of an ndarray the array data will be used for the to be
            created nifti image and a matching nifti header is generated.
            If an object of a different type is supplied as 'source' a
            ValueError exception will be thrown.
          header: dict
            Additional header data might be supplied. However,
            dimensionality and datatype are determined from the ndarray and
            not taken from a header dictionary.
          load: Boolean
            If set to True the image data will be loaded into memory. This
            is only useful if loading a NIfTI image from file.
            This flag is almost useless, as the data will be loaded
            automatically whenever it is accessed.
          **kwargs:
            Additional stuff is passed to :class:`~nifti.format.NiftiFormat`.
        """
        # setup all nifti header related stuff
        NiftiFormat.__init__(self, source, header, **kwargs)

        # where the data will go to
        self._data = None

        # load data
        if type(source) == N.ndarray:
            # assign data from source array
            self._data = source[:]
        elif type(source) in (str, unicode):
            # only load image data from file if requested
            if load:
                self.load()
        else:
            raise ValueError, \
                  "Unsupported source type. Only NumPy arrays and filename " \
                  + "string are supported."


    def __del__(self):
        self.unload()

        # it is required to call base class destructors!
        NiftiFormat.__del__(self)


    def __reduce__(self):
        # little helper to make NiftiImage objects compatible with pickling
        return (NiftiImage, (self.data, self.header))


    def save(self, filename=None, filetype = 'NIFTI', update_minmax=True):
        """Save the image to a file.

        If the image was created using array data (i.e., not loaded from a file)
        a filename has to be specified.

        If not yet done already, the image data will be loaded into memory
        before saving the file.

        :Parameters:
          filename: str | None
            The name of the target file (typically including its extension).
            Filenames might be provided as unicode strings. However, as the
            underlying library does not support unicode, they must be
            ascii-encodable, i.e. must not contain pure unicode characters.
            Usually setting the filename also determines the filetype
            (NIfTI/ANALYZE).  Please see
            :meth:`~nifti.image.NiftiImage.setFilename` for some more
            details. If None, an image loaded from a file will cause the
            original image to be overwritten.
          filetype: str
            Provide intented filetype. Please see the documentation of the
            `setFilename()` method for some more details.
          update_minmax: bool
            Whether the image header's min and max values should be updated
            according to the current image data.

        .. warning::

          There will be no exception if writing fails for any reason, as the
          underlying function nifti_write_hdr_img() from libniftiio does not
          provide any feedback. Suggestions for improvements are appreciated.
        """
        if not filename is None:
            # make sure filename is not unicode
            try:
                filename = str(filename)
            except UnicodeEncodeError:
                raise UnicodeError, \
                      "The filename must not contain unicode characters, since " \
                      "the NIfTI library cannot handle them."


        # If image data is not yet loaded, do it now.
        # It is important to do it already here, because nifti_image_load
        # depends on the correct filename set in the nifti_image struct
        # and this will be modified in this function!
        self.load()

        # set a default description if there is none
        if not self.description:
            self.description = \
                    'Written by PyNIfTI version %s' % nifti.__version__

        # update header information
        if update_minmax:
            self.updateCalMinMax()

        # saving for the first time?
        if not self.filename or filename:
            if not filename:
                raise ValueError, \
                      "When saving an image for the first time a filename " \
                      + "has to be specified."

            self.setFilename(filename, filetype)

        # if still no data is present data source has been an array
        # -> allocate memory in nifti struct and assign data to it
        if not self.raw_nimg.data:
            if not ncl.allocateImageMemory(self.raw_nimg):
                raise RuntimeError, "Could not allocate memory for image data."
        else:
            raise RuntimeError, "This should never happen! Please report me!"

        # This assumes that the nimg struct knows about the correct datatype and
        # dimensions of the array
        a = ncl.wrapImageDataWithArray(self.raw_nimg)
        a[:] = self._data[:]

        #
        # embed meta data
        #
        if len(self.meta.keys()):
            self.extensions += ('pypickle',
                                cPickle.dumps(self.meta, protocol=0))

        # now save it
        ncl.nifti_image_write_hdr_img(self.raw_nimg, 1, 'wb')
        # yoh comment: unfortunately return value of nifti_image_write_hdr_img
        # can't be used to track the successful completion of save
        # raise IOError, 'An error occured while attempting to save the image
        # file.'

        # take data pointer away from nifticlibs so we can let Python manage
        # the memory
        ncl.detachDataFromImage(self.raw_nimg)

        # and finally clean 'pypickle' extension again, since its data is in
        # 'meta'
        self._removePickleExtension()


    def copy(self):
        """Return a copy of the image.
        """
        return NiftiImage(self.data.copy(), self.header)


    #
    # little helpers
    #
    def _haveImageData(self):
        """Returns if the image data is accessible -- either loaded into
        memory or memory mapped.

        See: `load()`, `unload()`

        .. warning::
          This is an internal method. Neither its availability nor its API is
          guarenteed.
        """
        return (not self._data == None)


    def load(self):
        """Load the image data into memory, if it is not already accessible.

        It is save to call this method several times successively.
        """
        # do nothing if there already is data
        # which included memory mapped arrays not just data in memory
        if self._haveImageData():
            return

        if ncl.nifti_image_load( self.raw_nimg ) < 0:
            raise RuntimeError, "Unable to load image data."

        self._data = ncl.wrapImageDataWithArray(self.raw_nimg)

        # take data pointer away from nifticlibs so we can let Python manage
        # the memory
        ncl.detachDataFromImage(self.raw_nimg)


    def unload(self):
        """Unload image data and free allocated memory.

        This methods does nothing in case of memory mapped files.
        """
        # simply assign none. The data array will free itself when the
        # reference count goes to zero.
        self._data = None


    def updateCalMinMax(self):
        """Update the image data maximum and minimum value in the nifti header.
        """
        self.raw_nimg.cal_max = float(self.data.max())
        self.raw_nimg.cal_min = float(self.data.min())


    def updateHeader(self, hdrdict):
        """Deprecated method only here for backward compatibility.

        Please refer to NiftiFormat.updateFromDict()
        """
        warn("updateHeader function is deprecated and will be removed with " \
             "PyNIfTI 1.0.  Please use updateFromDict instead.",
             DeprecationWarning)
        NiftiFormat.updateFromDict(self, hdrdict)



    #
    # converters
    #
    def getScaledData(self):
        """Returns a scaled copy of the data array.

        Scaling is done by multiplying with the slope and adding the intercept
        that is stored in the NIfTI header. In compliance with the NIfTI
        standard scaling is only performed in case of a non-zero slope value.
        The original data array is returned otherwise.

        :Returns:
          ndarray
        """
        data = self.asarray(copy = True)

        # NIfTI standard says: scaling only if non-zero slope
        if self.slope:
            data *= self.slope
            data += self.intercept

        return data


# XXX The whole thing needs more thought.
#
#    def iterVolumes(self):
#        """Volume generator.
#
#        For images with four or less dimensions this methods provides
#        a generator for volumes. When called on images with less than
#        four dimensions a single item is returned that is guaranteed
#        to be three-dimensional (by adding missing axes if necessary).
#
#        Examples:
#
#          >>> nim = NiftiImage(N.random.rand(4,2,3,2))
#          >>> vols = [v for v in nim.iterVolumes()]
#          >>> len(vols)
#          4
#
#          >>> nim = NiftiImage(N.random.rand(3,2))
#          >>> vols = [v for v in nim.iterVolumes()]
#          >>> len(vols)
#          1
#          >>> vols[0].data.shape
#          (1, 3, 2)
#        """
#        if len(self.data.shape) > 4:
#            raise ValueError, \
#                  "Cannot handle image with more than 4 dimensions"
#
#        # only one volume or less (single slice)
#        if len(self.data.shape) < 4:
#            yield NiftiImage(N.array(self.data, ndmin=3),
#                             self.header)
#            return
#
#        # 4d images
#        for v in self.data:
#            yield NiftiImage(v, self.header)


    #
    # getters and setters
    #
    def setDataArray(self, data):
        """
        """
        # XXX should probably add more checks

        self._updateNimgFromArray(data)
        self._data = data


    def getDataArray(self):
        """Return the NIfTI image data wrapped into a NumPy array.

        .. seealso::
          :attr:`~nifti.image.NiftiImage.data`
        """
        return self.asarray(False)


    def asarray(self, copy = True):
        """Convert the image data into a ndarray.

        :Parameters:
          copy: Boolean
            If set to False the array only wraps the image data, while True
            will return a copy of the data array.
        """
        # make sure data is accessible
        self.load()

        if copy:
            return self._data.copy()
        else:
            return self._data


    def setFilename(self, filename, filetype = 'NIFTI'):
        """Set the filename for the NIfTI image.

        Setting the filename also determines the filetype. If the filename
        ends with '.nii' the type will be set to NIfTI single file. A '.hdr'
        extension can be used for NIfTI file pairs. If the desired filetype
        is ANALYZE the extension should be '.img'. However, one can use the
        '.hdr' extension and force the filetype to ANALYZE by setting the
        filetype argument to ANALYZE. Setting filetype if the filename
        extension is '.nii' has no effect, the file will always be in NIFTI
        format.

        If the filename carries an additional '.gz' the resulting file(s) will
        be compressed.

        Uncompressed NIfTI single files are the default filetype that will be
        used if the filename has no valid extension. The '.nii' extension is
        appended automatically. The 'filetype' argument can be used to force a
        certain filetype when no extension can be used to determine it. 
        'filetype' can be one of the nifticlibs filtetypes or any of 'NIFTI',
        'NIFTI_GZ', 'NIFTI_PAIR', 'NIFTI_PAIR_GZ', 'ANALYZE', 'ANALYZE_GZ'.

        Setting the filename will cause the image data to be loaded into memory
        if not yet done already. This has to be done, because without the
        filename of the original image file there would be no access to the
        image data anymore. As a side-effect a simple operation like setting a
        filename may take a significant amount of time (e.g. for a large 4d
        dataset).

        By passing an empty string or none as filename one can reset the
        filename and detach the NiftiImage object from any file on disk.

        Examples:

          ================  ==================================
          Filename          Output of save()
          ----------------  ----------------------------------
          exmpl.nii         exmpl.nii (NIfTI)
          exmpl.hdr         exmpl.hdr, exmpl.img (NIfTI)
          exmpl.img         exmpl.hdr, exmpl.img (ANALYZE)
          exmpl             exmpl.nii (NIfTI)
          exmpl.hdr.gz      exmpl.hdr.gz, exmpl.img.gz (NIfTI)
          ----------------  ----------------------------------
          exmpl.gz          exmpl.gz.nii (uncompressed NIfTI)
          ================  ==================================

        Setting the filename is also possible by assigning to the 'filename'
        property.

        .. seealso::
          :meth:`~nifti.format.NiftiFormat.getFilename`,
          :attr:`~nifti.image.NiftiImage.filename`
        """
        # If image data is not yet loaded, do it now.
        # It is important to do it already here, because nifti_image_load
        # depends on the correct filename set in the nifti_image struct
        # and this will be modified in this function!
        self.load()

        # if no filename is given simply reset it to nothing
        if not filename:
            self.raw_nimg.fname = ''
            self.raw_nimg.iname = ''
            return

        # separate basename and extension
        base, ext = splitFilename(filename)

        # if no extension default to nifti single files
        if ext == '': 
            if filetype == 'NIFTI' \
               or filetype == ncl.NIFTI_FTYPE_NIFTI1_1:
                ext = 'nii'
            elif filetype == 'NIFTI_PAIR' \
                 or filetype == ncl.NIFTI_FTYPE_NIFTI1_2:
                ext = 'hdr'
            elif filetype == 'ANALYZE' \
                 or filetype == ncl.NIFTI_FTYPE_ANALYZE:
                ext = 'img'
            elif filetype == 'NIFTI_GZ':
                ext = 'nii.gz'
            elif filetype == 'NIFTI_PAIR_GZ':
                ext = 'hdr.gz'
            elif filetype == 'ANALYZE_GZ':
                ext = 'img.gz'
            else:
                raise RuntimeError, "Unhandled filetype."

        # Determine the filetype and set header and image filename
        # appropriately.

        # nifti single files are easy
        if ext == 'nii.gz' or ext == 'nii':
            self.raw_nimg.fname = base + '.' + ext
            self.raw_nimg.iname = base + '.' + ext
            self.raw_nimg.nifti_type = ncl.NIFTI_FTYPE_NIFTI1_1
        # uncompressed nifti file pairs
        elif ext in [ 'hdr', 'img' ]:
            self.raw_nimg.fname = base + '.hdr'
            self.raw_nimg.iname = base + '.img'
            if ext == 'hdr' and not filetype.startswith('ANALYZE'):
                self.raw_nimg.nifti_type = ncl.NIFTI_FTYPE_NIFTI1_2
            else:
                self.raw_nimg.nifti_type = ncl.NIFTI_FTYPE_ANALYZE
        # compressed file pairs
        elif ext in [ 'hdr.gz', 'img.gz' ]:
            self.raw_nimg.fname = base + '.hdr.gz'
            self.raw_nimg.iname = base + '.img.gz'
            if ext == 'hdr.gz' and not filetype.startswith('ANALYZE'):
                self.raw_nimg.nifti_type = ncl.NIFTI_FTYPE_NIFTI1_2
            else:
                self.raw_nimg.nifti_type = ncl.NIFTI_FTYPE_ANALYZE
        else:
            raise RuntimeError, "Unhandled filetype."


    # need to redefine, since we need to redefine to 'filename' property
    def getFilename(self):
        """Please see :meth:`nifti.format.NiftiFormat.getFilename`
        for the documentation."""
        return NiftiFormat.getFilename(self)



    #
    # class properties
    #

    # read only
    data = property(fget=getDataArray, fset=setDataArray)

    # read and write
    filename = property(fget=getFilename, fset=setFilename)
    bbox = property(fget=imgfx.getBoundingBox, fset=imgfx.crop)



class MemMappedNiftiImage(NiftiImage):
    """Memory mapped access to uncompressed NIfTI files.

    This access mode might be the prefered one whenever only a small part of
    the image data has to be accessed or the memory is not sufficient to load
    the whole dataset.

    Please note, that memory-mapping is not required when exclusively header
    information shall be accessed. The :class:`~nifti.format.NiftiFormat` class
    and by default also the :class:`~nifti.image.NiftiImage` class will not
    load any image data into memory.

    .. note::

      The class is mostly useful for read-only access to the NIfTI image data.
      It currently neither supports saving changed header fields nor storing
      meta data.
    """

    #
    # object constructors, destructors and generic Python interface
    #

    def __init__(self, source):
        """Create a NiftiImage object.

        This method decides whether to load a nifti image from file or create
        one from ndarray data, depending on the datatype of `source`.

        :Parameters:
          source: str | ndarray
            If source is a string, it is assumed to be a filename and an
            attempt will be made to open the corresponding NIfTI file.
            In case of an ndarray the array data will be used for the to be
            created nifti image and a matching nifti header is generated.
            If an object of a different type is supplied as 'source' a
            ValueError exception will be thrown.
        """
        NiftiImage.__init__(self, source)

        # not working on compressed files
        if ncl.nifti_is_gzfile(self.raw_nimg.iname):
            raise RuntimeError, \
                  "Memory mapped access is only supported for " \
                  "uncompressed files."
 
        # determine byte-order
        if ncl.nifti_short_order() == 1:
            byteorder_flag = '<'
        else:
            byteorder_flag = '>'

        # create memmap array
        self._data = N.memmap(
            self.raw_nimg.iname,
            shape=self.extent[::-1],
            offset=self.raw_nimg.iname_offset,
            dtype=byteorder_flag + \
            nifti2numpy_dtype_map[self.raw_nimg.datatype],
            mode='r+')


    def __del__(self):
        self._data.flush()

        # it is required to call base class destructors!
        NiftiFormat.__del__(self)


    #
    # little helpers
    #
    def load(self):
        """Does nothing for memory mapped images.
        """
        return


    def unload(self):
        """Does nothing for memory mapped images.
        """
        return


    def save(self):
        """Save the image.

        This methods does nothing except for syncing the file on the disk.

        Please note that the NIfTI header might not be completely up-to-date.
        For example, the min and max values might be outdated, but this
        class does not automatically update them, because it would require to
        load and search through the whole array.
        """
        self._data.flush()


    #
    # getters and setters
    #
    def setFilename(self, filename, filetype = 'NIFTI'):
        """Does not work for memory mapped images and therefore raises an
        exception.
        """
        raise RuntimeError, \
              "Filename modifications are not supported for memory mapped " \
              "images."


    # need to redefine, since we need to redefine to 'filename' property
    def getFilename(self):
        """Please see :meth:`nifti.format.NiftiFormat.getFilename`
        for the documentation."""
        return NiftiFormat.getFilename(self)


    # need to redefine, since we need to redefine to 'filename' property
    def getDataArray(self):
        """Please see :meth:`nifti.format.NiftiImage.getDataArray`
        for the documentation."""
        return NiftiImage.getDataArray(self)
    #
    # class properties
    #

    # read only
    data = property(fget=getDataArray)
    filename = property(fget=getFilename)



#
# Assign extra methods
#

NiftiImage.crop = imgfx.crop