This file is indexed.

/usr/include/openturns/swig/NumericalMathFunction.i is in python-openturns-dev 1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// SWIG file NumericalMathFunction.i
// @author schueller
// @date   2012-01-02 11:44:01 +0100 (Mon, 02 Jan 2012)

%{
#include "NumericalMathFunction.hxx"
#include "PythonNumericalMathEvaluationImplementation.hxx"
%}

%include BaseFuncCollection.i

OTTypedInterfaceObjectHelper(NumericalMathFunction)
OTTypedCollectionInterfaceObjectHelper(NumericalMathFunction)

%include NumericalMathFunction.hxx
//%copyctor NumericalMathFunction;

namespace OT {  

%extend NumericalMathFunction {

NumericalMathFunction(PyObject * pyObj)
{
  void * ptr = 0;
  if (SWIG_IsOK(SWIG_ConvertPtr(pyObj, &ptr, SWIG_TypeQuery("OT::Object *"), 0)))
  {
    throw OT::InvalidArgumentException(HERE) << "Argument should be a pure python object";
  }
  return new OT::NumericalMathFunction( OT::convert<OT::_PyObject_,OT::NumericalMathFunction>(pyObj) );
}

NumericalMathFunction(const NumericalMathFunction & other)
{
  return new OT::NumericalMathFunction( other );
}

}

}

%pythoncode %{
# We have to make sure the submodule is loaded with absolute path
import openturns.typ

class OpenTURNSPythonFunction(object):
    """
    OpenTURNSPythonFunction is a class to subclass
    before it can be passed on to a NumericalMathFunction
    -----

    Constructor arguments:
    n: an integer, the input dimension
    p: an integer, the output dimension

    Functions to overload:
    _exec(X): single evaluation, X is a sequence of scalars
    _exec_sample(X): multiple evaluations, X is a 2-d sequence of scalars
    """
    def __init__(self, n=0, p=0) :
        try:
            self.__n = int(n)
        except:
            raise TypeError( 'n argument is not an integer.' )
        try:
            self.__p = int(p)
        except:
            raise TypeError( 'p argument is not an integer.' )
        self.__descIn  = map( lambda i: 'x' + str(i), range(n) )
        self.__descOut = map( lambda i: 'y' + str(i), range(p) )
        
    def setInputDescription(self, descIn):
        if (len(descIn) != self.__n):
            raise ValueError( 'Input description size does NOT match input dimension' )
        self.__descIn  = descIn

    def getInputDescription(self):
        return self.__descIn

    def setOutputDescription(self, descOut):
        if (len(descOut) != self.__p):
            raise ValueError( 'Output description size does NOT match output dimension' )
        self.__descOut  = descOut

    def getOutputDescription(self):
        return self.__descOut

    def getInputDimension(self) :
        return self.__n

    def getOutputDimension(self) :
        return self.__p

    def __str__(self):
        return 'OpenTURNSPythonFunction( %s #%d ) -> %s #%d' % (self.__descIn, self.__n, self.__descOut, self.__p)

    def __repr__(self):
        return self.__str__()

    def __call__(self, X) :
        Y = None
        try:
            pt = openturns.typ.NumericalPoint( X )
        except TypeError:
            try:
                ns = openturns.typ.NumericalSample( X )
            except TypeError:
                raise TypeError( 'Expect a 1-d or 2-d float sequence as argument' )
            else :
                Y = self._exec_sample( ns )
        else :
            Y = self._exec( pt )
        return Y

    def _exec(self, X) :
        if ( not hasattr( self, 'f' ) ):
            raise RuntimeError( 'You must define a method f(X) -> Y, where X and Y are 1-d float sequence objects' )
        import warnings
        warnings.warn( 'usage of method named "f" is now deprecated. Rename it to "_exec" instead', DeprecationWarning )
        return self.f( X )

    def f(self, X) :
        raise RuntimeError( 'You must define a method f(X) -> Y, where X and Y are 1-d float sequence objects' )

    def _exec_sample(self, X) :
        res = list()
        for point in X:
            res.append( self._exec( point ) )
        return res

        

class PythonFunction(NumericalMathFunction):
    """
    PythonFunction allows to build an OpenTURNS function
    from a python function and its dimension attributes
    -----

    Arguments:
    n: an integer, the input dimension
    p: an integer, the output dimension
    func: a pure python function, called on a single point
    func_sample: a pure python function, called on multiple points at once

    Note: you may either one of func or func_sample arguments
    """
    def __new__(self, n, p, func=None, func_sample=None):

        class OpenTURNSPythonFunctionAdvanced(OpenTURNSPythonFunction) :
            def __init__(self, n, p, func=None, func_sample=None) :
                if func == None and func_sample == None:
                    raise RuntimeError( 'no func nor func_sample given.' )
                super(OpenTURNSPythonFunctionAdvanced, self).__init__(n, p)
                import collections
                if func != None:
                    if not isinstance(func, collections.Callable):
                        raise RuntimeError( 'func argument is not callable.' )
                    self._exec = func
                    self.__class__.__name__ = func.__name__
                if func_sample != None:
                    if not isinstance(func_sample, collections.Callable):
                        raise RuntimeError( 'func_sample argument is not callable.' )
                    self._exec_sample = func_sample
                    # implement exec from exec_sample
                    if func == None:
                        self.__class__.__name__ = func_sample.__name__
                        self._exec = self.exec_point_on_exec_sample

            def exec_point_on_exec_sample(self, X):
                return self._exec_sample([X])[0]

        instance = OpenTURNSPythonFunctionAdvanced(n, p, func, func_sample)
        return NumericalMathFunction(instance)
%}