/usr/share/pyshared/pebl/evaluator.py is in python-pebl 1.0.2-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | """Classes and functions for efficiently evaluating networks."""
from math import log
import random
import numpy as N
from pebl import data, cpd, prior, config, network
from pebl.util import *
N.random.seed()
#
# Exceptions
#
class CyclicNetworkError(Exception):
msg = "Network has cycle and is thus not a DAG."
#
# Localscore Cache
#
class LocalscoreCache(object):
""" A LRU cache for local scores.
Based on code from http://code.activestate.com/recipes/498245/
"""
_params = (
config.IntParameter(
'localscore_cache.maxsize',
"Max number of localscores to cache. Default=-1 means unlimited size.",
default=-1
)
)
def __init__(self, evaluator, cachesize=None):
self._cache = {}
self._queue = deque()
self._refcount = {}
self.cachesize = cachesize or config.get('localscore_cache.maxsize')
self.neteval = evaluator
self.hits = 0
self.misses = 0
def __call__(self, node, parents):
# make variables local
_len = len
_queue = self._queue
_refcount = self._refcount
_cache = self._cache
_maxsize = self.cachesize
index = tuple([node] + parents)
# get from cache or compute
try:
score = _cache[index]
self.hits += 1
except KeyError:
score = _cache[index] = self.neteval._cpd(node, parents).loglikelihood()
self.misses += 1
# if using LRU cache (maxsize != -1)
if _maxsize > 0:
# record that key was accessed
_queue.append(index)
_refcount[index] = _refcount.get(index, 0) + 1
# purge LRU entry
while _len(_cache) > _maxsize:
k = _queue.popleft()
_refcount[k] -= 1
if not _refcount[k]:
del _cache[k]
del _refcount[k]
# Periodically compact the queue by duplicate keys
if _len(_queue) > _maxsize * 4:
for i in xrange(_len(_queue)):
k = _queue.popleft()
if _refcount[k] == 1:
_queue.append(k)
else:
_refcount[k] -= 1
return score
#
# Network Evaluators
#
class NetworkEvaluator(object):
"""Base Class for all Network Evaluators.
Provides methods for scoring networks but does not eliminate any redundant
computation or cache retrievals.
"""
def __init__(self, data_, network_, prior_=None, localscore_cache=None):
self.network = network_
self.data = data_
self.prior = prior_ or prior.NullPrior()
self.datavars = range(self.data.variables.size)
self.score = None
self._localscore = localscore_cache or LocalscoreCache(self)
self.localscore_cache = self._localscore
#
# Private Interface
#
def _globalscore(self, localscores):
# log(P(M|D)) + log(P(M)) == likelihood + prior
return N.sum(localscores) + self.prior.loglikelihood(self.network)
def _cpd(self, node, parents):
#return cpd.MultinomialCPD(
#self.data.subset(
#[node] + parents,
#N.where(self.data.interventions[:,node] == False)[0]))
return cpd.MultinomialCPD(
self.data._subset_ni_fast([node] + parents))
def _score_network_core(self):
# in this implementation, we score all nodes (even if that means
# redundant computation)
parents = self.network.edges.parents
self.score = self._globalscore(
self._localscore(n, parents(n)) for n in self.datavars
)
return self.score
#
# Public Interface
#
def score_network(self, net=None):
"""Score a network.
If net is provided, scores that. Otherwise, score network previously
set.
"""
self.network = net or self.network
return self._score_network_core()
def alter_network(self, add=[], remove=[]):
"""Alter network by adding and removing sets of edges."""
self.network.edges.add_many(add)
self.network.edges.remove_many(remove)
return self.score_network()
def randomize_network(self):
"""Randomize the network edges."""
self.network = network.random_network(self.network.nodes)
return self.score_network()
def clear_network(self):
"""Clear all edges from the network."""
self.network.edges.clear()
return self.score_network()
class SmartNetworkEvaluator(NetworkEvaluator):
def __init__(self, data_, network_, prior_=None, localscore_cache=None):
"""Create a 'smart' network evaluator.
This network evaluator eliminates redundant computation by keeping
track of changes to network and only rescoring the changes. This
requires that all changes to the network are done through this
evaluator's methods.
The network can be altered by the following methods:
* alter_network
* score_network
* randomize_network
* clear_network
The last change applied can be 'undone' with restore_network
"""
super(SmartNetworkEvaluator, self).__init__(data_, network_, prior_,
localscore_cache)
# can't use this with missing data
#if self.data.missing.any():
# msg = "Cannot use the SmartNetworkEvaluator with missing data."
#raise Exception(msg)
# these represent that state that we intelligently manage
self.localscores = N.zeros((self.data.variables.size), dtype=float)
self.dirtynodes = set(self.datavars)
self.saved_state = None
#
# Private Interface
#
def _backup_state(self, added, removed):
self.saved_state = (
self.score, # saved score
#[(n,self.localscores[n]) for n in self.dirtynodes],
self.localscores.copy(), # saved localscores
added, # edges added
removed # edges removed
)
def _restore_state(self):
if self.saved_state:
self.score, self.localscores, added, removed = self.saved_state
#self.score, changedscores, added, removed = self.saved_state
#for n,score in changedscores:
#self.localscores[n] = score
self.network.edges.add_many(removed)
self.network.edges.remove_many(added)
self.saved_state = None
self.dirtynodes = set()
def _score_network_core(self):
# if no nodes are dirty, just return last score.
if len(self.dirtynodes) == 0:
return self.score
# update localscore for dirtynodes, then re-calculate globalscore
parents = self.network.edges.parents
for node in self.dirtynodes:
self.localscores[node] = self._localscore(node, parents(node))
self.dirtynodes = set()
self.score = self._globalscore(self.localscores)
return self.score
def _update_dirtynodes(self, add, remove):
# given the edges being added and removed, determine nodes to rescore
# with fully observed data, only the parensets of edge destinations have changed
self.dirtynodes.update(set(unzip(add+remove, 1)))
#
# Public Interface
#
def score_network(self, net=None):
"""Score a network.
If net is provided, scores that. Otherwise, score network previously
set.
"""
if net:
add = [edge for edge in net.edges if edge not in self.network.edges]
remove = [edge for edge in self.network.edges if edge not in net.edges]
else:
add = remove = []
return self.alter_network(add, remove)
def alter_network(self, add=[], remove=[]):
"""Alter the network while retaining the ability to *quickly* undo the changes."""
# make the required changes
# NOTE: remove existing edges *before* adding new ones.
# if edge e is in `add`, `remove` and `self.network`,
# it should exist in the new network. (the add and remove cancel out.
self.network.edges.remove_many(remove)
self.network.edges.add_many(add)
# check whether changes lead to valid DAG (raise error if they don't)
affected_nodes = set(unzip(add, 1))
if affected_nodes and not self.network.is_acyclic(affected_nodes):
self.network.edges.remove_many(add)
self.network.edges.add_many(remove)
raise CyclicNetworkError()
# accept changes:
# 1) determine dirtynodes
# 2) backup state
# 3) score network (but only rescore dirtynodes)
self._update_dirtynodes(add, remove)
self._backup_state(add, remove)
self.score = self._score_network_core()
return self.score
def randomize_network(self):
"""Randomize the network edges."""
newnet = network.random_network(self.network.nodes)
return self.score_network(newnet)
def clear_network(self):
"""Clear all edges from the network."""
return self.alter_network(remove=list(self.network.edges))
def restore_network(self):
"""Undo the last change to the network (and score).
Undo the last change performed by any of these methods:
* score_network
* alter_network
* randomize_network
* clear_network
"""
self._restore_state()
return self.score
class GibbsSamplerState(object):
"""Represents the state of the Gibbs sampler.
This state object can be used to resume the Gibbs sampler from a particaular point.
Note that the state does not include the network or data and it's upto the caller to ensure
that the Gibbs sampler is resumed with the same network and data.
The following values are saved:
- number of sampled scores (numscores)
- average score (avgscore)
- most recent value assignments for missing values (assignedvals)
"""
def __init__(self, avgscore, numscores, assignedvals):
self.avgscore = avgscore
self.numscores = numscores
self.assignedvals = assignedvals
@property
def scoresum(self):
"""Log sum of scores."""
return self.avgscore + N.log(self.numscores)
class MissingDataNetworkEvaluator(SmartNetworkEvaluator):
#
# Parameters
#
_params = (
config.IntParameter(
'gibbs.burnin',
"""Burn-in period for the gibbs sampler (specified as a multiple of
the number of missing values)""",
default=10
),
config.StringParameter(
'gibbs.max_iterations',
"""Stopping criteria for the gibbs sampler.
The number of Gibb's sampler iterations to run. Should be a valid
python expression using the variable n (number of missing values).
Examples:
* n**2 (for n-squared iterations)
* 100 (for 100 iterations)
""",
default="n**2"
)
)
def __init__(self, data_, network_, prior_=None, localscore_cache=None,
**options):
"""Create a network evaluator for use with missing values.
This evaluator uses a Gibb's sampler for sampling over the space of
possible completions for the missing values.
For more information about Gibb's sampling, consult:
1. http://en.wikipedia.org/wiki/Gibbs_sampling
2. D. Heckerman. A Tutorial on Learning with Bayesian Networks.
Microsoft Technical Report MSR-TR-95-06, 1995. p.21-22.
Any config param for 'gibbs' can be passed in via options.
Use just the option part of the parameter name.
"""
super(MissingDataNetworkEvaluator, self).__init__(data_, network_,
prior_)
self._localscore = None # no cache w/ missing data
config.setparams(self, options)
def _init_state(self):
parents = self.network.edges.parents
self.cpds = [self._cpd(n, parents(n)) for n in self.datavars]
self.localscores = N.array([cpd.loglikelihood() for cpd in self.cpds], dtype=float)
self.data_dirtynodes = set(self.datavars)
def _update_dirtynodes(self, add, remove):
# With hidden nodes:
# 1. dirtynode calculation is more expensive (need to look beyond
# markov blanket).
# 2. time spent rescoring observed nodes is insignificant compared
# to scoring hidden/missing nodes.
self.dirtynodes = set(self.datavars)
def _score_network_with_tempdata(self):
# update localscore for data_dirtynodes, then calculate globalscore.
for n in self.data_dirtynodes:
self.localscores[n] = self.cpds[n].loglikelihood()
self.data_dirtynodes = set()
self.score = self._globalscore(self.localscores)
return self.score
def _alter_data(self, row, col, value):
oldrow = self.data.observations[row].copy()
self.data.observations[row,col] = value
# update data_dirtynodes
affected_nodes = set(self.network.edges.children(col) + [col])
self.data_dirtynodes.update(affected_nodes)
# update cpds
for node in affected_nodes:
datacols = [node] + self.network.edges.parents(node)
if not self.data.interventions[row,node]:
self.cpds[node].replace_data(
oldrow[datacols],
self.data.observations[row][datacols])
def _alter_data_and_score(self, row, col, value):
self._alter_data(row, col, value)
return self._score_network_with_tempdata()
def _calculate_score(self, chosenscores, gibbs_state):
# discard the burnin period scores and average the rest
burnin_period = self.burnin * \
self.data.missing[self.data.missing==True].size
if gibbs_state:
# resuming from a previous gibbs run. so, no burnin required.
scoresum = logsum(N.concatenate((chosenscores, [gibbs_state.scoresum])))
numscores = len(chosenscores) + gibbs_state.numscores
elif len(chosenscores) > burnin_period:
# remove scores from burnin period.
nonburn_scores = chosenscores[burnin_period:]
scoresum = logsum(nonburn_scores)
numscores = len(nonburn_scores)
else:
# this occurs when gibbs iterations were less than burnin period.
scoresum = chosenscores[-1]
numscores = 1
score = scoresum - log(numscores)
return score, numscores
def _assign_missingvals(self, indices, gibbs_state):
if gibbs_state:
assignedvals = gibbs_state.assignedvals
else:
arities = [v.arity for v in self.data.variables]
assignedvals = [random.randint(0, arities[col]-1) for row,col in indices]
self.data.observations[unzip(indices)] = assignedvals
def score_network(self, net=None, gibbs_state=None):
"""Score a network.
If net is provided, scores that. Otherwise, score network previously
set.
The default stopping criteria is to run for n**2 iterations.
gibbs_state is the state of a previous run of the Gibb's sampler. With
this, one can do the following::
myeval = evaluator.MissingDataNetworkEvaluator(...)
myeval.score_network(...)
gibbs_state = myeval.gibbs_state
cPickle.dump(gibbs_state, 'gibbs_state.txt')
# look at results, do other analysis, etc
# If we decide that we need further Gibb's sampler iterations, we
# don't need to restart
gibbs_state = cPickle.load(open('gibbs_state.txt'))
myeval = evaluator.MissingDataNetworkEvaluator(...)
# continue with the previous run of the Gibb's sampler
myeval.score_network(
gibbs_state=gibbs_state,
stopping_criteria=lambda i,N: i>200*N**2
)
"""
self.gibbs_state = gibbs_state
return super(MissingDataNetworkEvaluator, self).score_network(net)
def _score_network_core(self):
# create some useful lists and local variables
missing_indices = unzip(N.where(self.data.missing==True))
num_missingvals = len(missing_indices)
n = num_missingvals
max_iterations = eval(self.max_iterations)
arities = [v.arity for v in self.data.variables]
chosenscores = []
self._assign_missingvals(missing_indices, self.gibbs_state)
self._init_state()
# Gibbs Sampling:
# For each missing value:
# 1) score net with each possible value (based on node's arity)
# 2) using a probability wheel, sample a value from the possible values
iters = 0
while iters < max_iterations:
for row,col in missing_indices:
scores = [self._alter_data_and_score(row, col, val) \
for val in xrange(arities[col])]
chosenval = logscale_probwheel(range(len(scores)), scores)
self._alter_data(row, col, chosenval)
chosenscores.append(scores[chosenval])
iters += num_missingvals
self.chosenscores = N.array(chosenscores)
self.score, numscores = self._calculate_score(self.chosenscores, self.gibbs_state)
# save state of gibbs sampler
self.gibbs_state = GibbsSamplerState(
avgscore=self.score,
numscores=numscores,
assignedvals=self.data.observations[unzip(missing_indices)].tolist()
)
return self.score
class MissingDataExactNetworkEvaluator(MissingDataNetworkEvaluator):
"""MissingDataNEtworkEvaluator that does an exact enumeration.
This network evaluator enumerates over all possible completions of the
missing values. Since this is a combinatorial space, this class is only
feasible with datasets with few missing values.
"""
def _score_network_core(self):
"""Score a network.
If net is provided, scores that. Otherwise, score network previously
set.
Note: See MissingDataNetworkEvaluator.score_network for more information
about arguments.
"""
# create some useful lists and local variables
missing_indices = unzip(N.where(self.data.missing==True))
num_missingvals = len(missing_indices)
possiblevals = [range(self.data.variables[col].arity) for row,col in missing_indices]
self._init_state()
# Enumerate through all possible values for the missing data (using
# the cartesian_product function) and score.
scores = []
for assignedvals in cartesian_product(possiblevals):
for (row,col),val in zip(missing_indices, assignedvals):
self._alter_data(row, col, val)
scores.append(self._score_network_with_tempdata())
# average score (in log space)
self.score = logsum(scores) - log(len(scores))
return self.score
class MissingDataMaximumEntropyNetworkEvaluator(MissingDataNetworkEvaluator):
"""MissingDataNetworkEvaluator that uses a different space of completions.
This evaluator only samples from missing value completions that result in a
maximum entropy discretization for the variables with missing values. This
is useful when the rest of the variables are maximum-entropy discretized
because then all variables have the same entropy.
"""
def _do_maximum_entropy_assignment(self, var):
"""Assign values to the missing values for this variable such that
it has a maximum entropy discretization.
"""
arity = self.data.variables[var].arity
numsamples = self.data.samples.size
missingvals = self.data.missing[:,var]
missingsamples = N.where(missingvals == True)[0]
observedsamples = N.where(missingvals == False)[0]
# maximum entropy discretization for *all* samples for this variable
numeach = numsamples/arity
assignments = flatten([val]*numeach for val in xrange(arity))
for i in xrange(numsamples - len(assignments)):
assignments.append(i)
# remove the values of the observed samples
for val in self.data.observations[observedsamples, var]:
assignments.remove(val)
N.random.shuffle(assignments)
self.data.observations[missingsamples,var] = assignments
def _assign_missingvals(self, missingvars, gibbs_state):
if gibbs_state:
assignedvals = gibbs_state.assignedvals
self.data.observations[N.where(self.data.missing==True)] = assignedvals
else:
for var in missingvars:
self._do_maximum_entropy_assignment(var)
def _swap_data(self, var, sample1, choices_for_sample2):
val1 = self.data.observations[sample1, var]
# try swapping till we get a different value (but don't keep trying
# forever)
for i in xrange(len(choices_for_sample2)/2):
sample2 = random.choice(choices_for_sample2)
val2 = self.data.observations[sample2, var]
if val1 != val2:
break
self._alter_data(sample1, var, val2)
self._alter_data(sample2, var, val1)
return (sample1, var, val1, sample2, var, val2)
def _undo_swap(self, row1, col1, val1, row2, col2, val2):
self._alter_data(row1, col1, val1)
self._alter_data(row2, col2, val2)
def _score_network_core(self):
# create some useful lists and counts
num_missingvals = self.data.missing[self.data.missing == True].shape[0]
n = num_missingvals
max_iterations = eval(self.max_iterations)
chosenscores = []
# determine missing vars and samples
missingvars = [v for v in self.datavars if self.data.missing[:,v].any()]
missingsamples = [N.where(self.data.missing[:,v] == True)[0] \
for v in self.datavars]
self._assign_missingvals(missingvars, self.gibbs_state)
self._init_state()
# iteratively swap data randomly amond samples of a var and score
iters = 0
while iters < max_iterations:
for var in missingvars:
for sample in missingsamples[var]:
score0 = self._score_network_with_tempdata()
swap = self._swap_data(var, sample, missingsamples[var])
score1 = self._score_network_with_tempdata()
chosenval = logscale_probwheel([0,1], [score0, score1])
if chosenval == 0:
self._undo_swap(*swap)
chosenscores.append(score0)
else:
chosenscores.append(score1)
iters += num_missingvals
self.chosenscores = N.array(chosenscores)
self.score, numscores = self._calculate_score(self.chosenscores, self.gibbs_state)
# save state of gibbs sampler
self.gibbs_state = GibbsSamplerState(
avgscore=self.score,
numscores=numscores,
assignedvals=self.data.observations[
N.where(self.data.missing==True)
].tolist()
)
return self.score
#
# Parameters
#
_pmissingdatahandler = config.StringParameter(
'evaluator.missingdata_evaluator',
"""
Evaluator to use for handling missing data. Choices include:
* gibbs: Gibb's sampling
* maxentropy_gibbs: Gibbs's sampling over all completions of the
missing values that result in maximum entropy discretization for the
variables.
* exact: exact enumeration of all possible missing values (only
useable when there are few missing values)
""",
config.oneof('gibbs', 'exact', 'maxentropy_gibbs'),
default='gibbs'
)
_missingdata_evaluators = {
'gibbs': MissingDataNetworkEvaluator,
'exact': MissingDataExactNetworkEvaluator,
'maxentropy_gibbs': MissingDataMaximumEntropyNetworkEvaluator
}
def fromconfig(data_=None, network_=None, prior_=None):
"""Create an evaluator based on configuration parameters.
This function will return the correct evaluator based on the relevant
configuration parameters.
"""
data_ = data_ or data.fromconfig()
network_ = network_ or network.fromdata(data_)
prior_ = prior_ or prior.fromconfig()
if data_.missing.any():
e = _missingdata_evaluators[config.get('evaluator.missingdata_evaluator')]
return e(data_, network_, prior_)
else:
return SmartNetworkEvaluator(data_, network_, prior_)
|