This file is indexed.

/usr/share/pyshared/pebl/network.py is in python-pebl 1.0.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
"""Classes for representing networks and functions to create/modify them."""

import re
import tempfile
import os
from copy import copy, deepcopy
from itertools import chain
from bisect import insort
from collections import deque

import pydot
import numpy as N

from pebl.util import *

try:
    from pebl import _network
except:
    _network = None

class EdgeSet(object):
    """
    Maintains a set of edges.

    Performance characteristics:
        - Edge insertion: O(1)
        - Edge retrieval: O(n)
    
    Uses adjacency lists but exposes an adjacency matrix interface via the
    adjacency_matrix property.

    """

    def __init__(self, num_nodes=0):
        self._outgoing = [[] for i in xrange(num_nodes)]
        self._incoming = [[] for i in xrange(num_nodes)] 

    def clear(self):
        """Clear the list of edges."""
        self.__init__(len(self._outgoing)) 

    def add(self, edge):
        """Add an edge to the list."""
        self.add_many([edge])
        
    def add_many(self, edges):
        """Add multiple edges."""

        for src,dest in edges:
            if dest not in self._outgoing[src]: 
                insort(self._outgoing[src], dest)
                insort(self._incoming[dest], src)
            
    def remove(self, edge):
        """Remove edges from edgelist.
        
        If an edge to be removed does not exist, fail silently (no exceptions).

        """
        self.remove_many([edge])

    def remove_many(self, edges):
        """Remove multiple edges."""

        for src,dest in edges:
            try: 
                self._incoming[dest].remove(src)
                self._outgoing[src].remove(dest)
            except KeyError, ValueError: 
                pass

    def incoming(self, node):
        """Return list of nodes (as node indices) that have an edge to given node.
        
        The returned list is sorted.
        Method is also aliased as parents().
        
        """
        return self._incoming[node]

    def outgoing(self, node):
        """Return list of nodes (as node indices) that have an edge from given node.
        
        The returned list is sorted.
        Method is also aliased as children().

        """
        return self._outgoing[node]

    parents = incoming
    children = outgoing

    def __iter__(self):
        """Iterate through the edges in this edgelist.

        Sample usage:
        for edge in edgelist: 
            print edge

        """
        
        for src, dests in enumerate(self._outgoing):
            for dest in dests:
                yield (src, dest)

    def __eq__(self, other):
        for out1,out2 in zip(self._outgoing, other._outgoing):
            if out1 != out2:
                return False
        return True

    def __hash__(self):
        return hash(tuple(tuple(s) for s in self._outgoing))
        
    def __copy__(self):
        other = EdgeSet.__new__(EdgeSet)
        other._outgoing = [[i for i in lst] for lst in self._outgoing]
        other._incoming = [[i for i in lst] for lst in self._incoming]
        return other

    def as_tuple(self):
        return tuple(tuple(s) for s in self._outgoing)

    @extended_property
    def adjacency_matrix():
        """Set or get edges as an adjacency matrix.

        The adjacency matrix is a boolean numpy.ndarray instance.

        """

        def fget(self):
            size = len(self._outgoing)
            adjmat = N.zeros((size, size), dtype=bool)
            selfedges = list(self)
            if selfedges:
                adjmat[unzip(selfedges)] = True
            return adjmat

        def fset(self, adjmat):
            self.clear()
            for edge in zip(*N.nonzero(adjmat)):
                self.add(edge)

        return locals()

    @extended_property
    def adjacency_lists():
        """Set or get edges as two adjacency lists.

        Property returns/accepts two adjacency lists for outgoing and incoming
        edges respectively. Each adjacency list if a list of sets.

        """

        def fget(self):
            return self._outgoing, self._incoming

        def fset(self, adjlists):
            if len(adjlists) is not 2:
                raise Exception("Specify both outgoing and incoming lists.")
           
            # adjlists could be any iterable. convert to list of lists
            _outgoing, _incoming = adjlists
            self._outgoing = [list(lst) for lst in _outgoing]
            self._incoming = [list(lst) for lst in _incoming]

        return locals()

    def __contains__(self, edge):
        """Check whether an edge exists in the edgelist.

        Sample usage:
        if (4,5) in edges: 
            print "edge exists!"

        """
        src, dest = edge

        try:
            return dest in self._outgoing[src]
        except IndexError:
            return False

    def __len__(self):
        return sum(len(out) for out in self._outgoing)


class Network(object):
    """A network is a set of nodes and directed edges between nodes"""
    

    #
    # Public methods
    #
    def __init__(self, nodes, edges=None):
        """Creates a Network.

        nodes is a list of pebl.data.Variable instances.
        edges can be:

            * an EdgeSet instance
            * a list of edge tuples
            * an adjacency matrix (as boolean numpy.ndarray instance)
            * string representation (see Network.as_string() for format)

        """
        
        self.nodes = nodes
        self.nodeids = range(len(nodes))

        # add edges
        if isinstance(edges, EdgeSet):
            self.edges = edges
        elif isinstance(edges, N.ndarray):
            self.edges = EdgeSet(len(edges))
            self.edges.adjacency_matrix = edges    
        else:
            self.edges = EdgeSet(len(self.nodes))
            if isinstance(edges, list):
                self.edges.add_many(edges)
            elif isinstance(edges, str) and edges:
                edges = edges.split(';')
                edges = [tuple([int(n) for n in e.split(',')]) for e in edges]
                self.edges.add_many(edges)

    def is_acyclic(self, roots=None):
        """Uses a depth-first search (dfs) to detect cycles."""

        roots = list(roots) if roots else self.nodeids
        if _network:
            return _network.is_acyclic(self.edges._outgoing, roots, [])
        else:
            return self.is_acyclic_python(roots)

    def is_acyclic_python(self, roots=None):
        """Uses a depth-first search (dfs) to detect cycles."""

        def _isacyclic(tovisit, visited):
            if tovisit.intersection(visited):
                # already visited a node we need to visit. thus, cycle!
                return False

            for n in tovisit:
                # check children for cycles
                if not _isacyclic(set(children(n)), visited.union([n])):
                    return False

            # got here without returning false, so no cycles below rootnodes
            return True

        #---------------

        children = self.edges.children
        roots = set(roots) if roots else set(range(len(self.nodes)))
        return _isacyclic(roots, set())


    # TODO: test
    def copy(self):
        """Returns a copy of this network."""
        newedges = EdgeSet(len(self.nodes))
        newedges.adjacency_lists = deepcopy(self.edges.adjacency_lists)

        return Network(self.nodes, newedges)    
       
    def layout(self, width=400, height=400, dotpath="dot"): 
        """Determines network layout using Graphviz's dot algorithm.

        width and height are in pixels.
        dotpath is the path to the dot application.

        The resulting node positions are saved in network.node_positions.

        """

        tempdir = tempfile.mkdtemp(prefix="pebl")
        dot1 = os.path.join(tempdir, "1.dot")
        dot2 = os.path.join(tempdir, "2.dot")
        self.as_dotfile(dot1)

        try:
            os.system("%s -Tdot -Gratio=fill -Gdpi=60 -Gfill=10,10 %s > %s" % (dotpath, dot1, dot2))
        except:
            raise Exception("Cannot find the dot program at %s." % dotpath)

        dotgraph = pydot.graph_from_dot_file(dot2)
        nodes = (n for n in dotgraph.get_node_list() if n.get_pos())
        self.node_positions = [[int(float(i)) for i in n.get_pos()[1:-1].split(',')] for n in nodes] 


    def as_string(self):
        """Returns the sparse string representation of network.

        If network has edges (2,3) and (1,2), the sparse string representation
        is "2,3;1,2".

        """

        return ";".join([",".join([str(n) for n in edge]) for edge in list(self.edges)])
       
    
    def as_dotstring(self):
        """Returns network as a dot-formatted string"""

        def node(n, position):
            s = "\t\"%s\"" % n.name
            if position:
                x,y = position
                s += " [pos=\"%d,%d\"]" % (x,y)
            return s + ";"


        nodes = self.nodes
        positions = self.node_positions if hasattr(self, 'node_positions') \
                                        else [None for n in nodes]

        return "\n".join(
            ["digraph G {"] + 
            [node(n, pos) for n,pos in zip(nodes, positions)] + 
            ["\t\"%s\" -> \"%s\";" % (nodes[src].name, nodes[dest].name) 
                for src,dest in self.edges] +
            ["}"]
        )
 

    def as_dotfile(self, filename):
        """Saves network as a dot file."""

        f = file(filename, 'w')
        f.write(self.as_dotstring())
        f.close()


    def as_pydot(self):
        """Returns a pydot instance for the network."""

        return pydot.graph_from_dot_data(self.as_dotstring())


    def as_image(self, filename, decorator=lambda x: x, prog='dot'):
        """Creates an image (PNG format) for the newtork.

        decorator is a function that accepts a pydot graph, modifies it and
        returns it.  decorators can be used to set visual appearance of
        networks (color, style, etc).

        prog is the Graphviz program to use (default: dot).

        """
        
        g = self.as_pydot()
        g = decorator(g)
        g.write_png(filename, prog=prog)


#        
# Factory functions
#
def fromdata(data_):
    """Creates a network from the variables in the dataset."""
    return Network(data_.variables)

def random_network(nodes, required_edges=[], prohibited_edges=[]):
    """Creates a random network with the given set of nodes.

    Can specify required_edges and prohibited_edges to control the resulting
    random network.  
    
    """

    def _randomize(net, density=None):
        n_nodes = len(net.nodes)
        density = density or 1.0/n_nodes
        max_attempts = 50

        for attempt in xrange(max_attempts):
            # create an random adjacency matrix with given density
            adjmat = N.random.rand(n_nodes, n_nodes)
            adjmat[adjmat >= (1.0-density)] = 1
            adjmat[adjmat < 1] = 0
            
            # add required edges
            for src,dest in required_edges:
                adjmat[src][dest] = 1

            # remove prohibited edges
            for src,dest in prohibited_edges:
                adjmat[src][dest] = 0

            # remove self-loop edges (those along the diagonal)
            adjmat = N.invert(N.identity(n_nodes).astype(bool))*adjmat
            
            # set the adjaceny matrix and check for acyclicity
            net.edges.adjacency_matrix = adjmat.astype(bool)

            if net.is_acyclic():
                return net

        # got here without finding a single acyclic network.
        # so try with a less dense network
        return _randomize(density/2)

    # -----------------------

    net = Network(nodes)
    _randomize(net)
    return net