This file is indexed.

/usr/share/pyshared/pymc/CommonDeterministics.py is in python-pymc 2.2+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
"""
pymc.CommonDeterministics

A collection of Deterministic subclasses to handle common situations.
It's a good idea to use these rather than user-defined objects when
possible, as some fitting methods (particularly Gibbs step methods)
will know how to handle them but not user-defined objects with
equivalent functionality.
"""

__docformat__='reStructuredText'

from . import PyMCObjects as pm
from .Node import Variable
from .Container import Container
from .InstantiationDecorators import deterministic, check_special_methods
import numpy as np
from numpy import sum, shape,size, ravel, sign, zeros, ones, broadcast, newaxis
import inspect, types
from .utils import safe_len, stukel_logit, stukel_invlogit, logit, invlogit, value, find_element
from copy import copy
import sys
import operator
try:
    import builtins    # Python 3
except ImportError:
    import __builtin__ as builtins  # Python 2
try:
    from types import UnboundMethodType
except ImportError:
    # On Python 3, unbound methods are just functions.
    def UnboundMethodType(func, inst, cls):
        return func

from . import six
xrange = six.moves.xrange

__all__ = ['CompletedDirichlet', 'LinearCombination', 'Index', 'Lambda', 'lambda_deterministic', 'lam_dtrm',
            'logit', 'invlogit', 'stukel_logit', 'stukel_invlogit', 'Logit', 'InvLogit', 'StukelLogit', 'StukelInvLogit',
            'pfunc']#+['iter_','complex_','int_','long_','float_','oct_','hex_']

class Lambda(pm.Deterministic):
    """
    L = Lambda(name, lambda p1=p1, p2=p2: f(p1, p2)[,
        doc, dtype=None, trace=True, cache_depth=2, plot=None])

    Converts second argument, an anonymous function, into a
    Deterministic object with specified name.

    :Parameters:
      name : string
        The name of the deteriministic object to be created.
      lambda : function
        The function from which the deterministic object should
        be created. All arguments must be given default values!
      p1, p2, ... : any
        The parameters of lambda.
      other parameters :
        See docstring of Deterministic.

    :Note:
      Will work even if argument 'lambda' is a named function
      (defined using def)

    :SeeAlso:
      Deterministic, Logit, StukelLogit, StukelInvLogit, Logit, InvLogit,
      LinearCombination, Index
    """
    def __init__(self, name, lam_fun, doc='A Deterministic made from an anonymous function', *args, **kwds):
            (parent_names, junk0, junk1, parent_values) = inspect.getargspec(lam_fun)

            if junk0 is not None \
              or junk1 is not None \
              or parent_values is None:
                raise ValueError('%s: All arguments to lam_fun must have default values.' % name)

            if not len(parent_names) == len(parent_values):
                raise ValueError('%s: All arguments to lam_fun must have default values.' % name)

            parents = dict(zip(parent_names[-len(parent_values):], parent_values))

            pm.Deterministic.__init__(self, eval=lam_fun, name=name, parents=parents, doc=doc, *args, **kwds)

def lambda_deterministic(*args, **kwargs):
    """
    An alias for Lambda

    :SeeAlso:
      Lambda
    """
    return Lambda(*args, **kwargs)

def lam_dtrm(*args, **kwargs):
    """
    An alias for Lambda

    :SeeAlso:
      Lambda
    """
    return Lambda(*args, **kwargs)

class Logit(pm.Deterministic):
    """
    L = Logit(name, theta[, doc, dtype=None, trace=True,
        cache_depth=2, plot=None])

    A deterministic variable whose value is the logit of parent theta.

    :Parameters:
      name : string
        The name of the variable.
      theta : number, array or variable
        The parent to which the logit function should be applied.
        Must be between 0 and 1.
      other parameters :
        See docstring of Deterministic.

    :SeeAlso:
      Deterministic, Lambda, InvLogit, StukelLogit, StukelInvLogit
    """
    def __init__(self, name, theta, doc='A logit transformation', *args, **kwds):
        pm.Deterministic.__init__(self, eval=logit, name=name, parents={'theta': theta}, doc=doc, *args, **kwds)


class InvLogit(pm.Deterministic):
    """
    P = InvLogit(name, ltheta[, doc, dtype=None, trace=True,
        cache_depth=2, plot=None])

    A Deterministic whose value is the inverse logit of parent ltheta.

    :Parameters:
      name : string
        The name of the variable.
      ltheta : number, array or variable
        The parent to which the inverse logit function should be
        applied.
      other parameters :
        See docstring of Deterministic.

    :SeeAlso:
      Deterministic, Lambda, Logit, StukelLogit, StukelInvLogit
    """
    def __init__(self, name, ltheta, doc='An inverse logit transformation', *args, **kwds):
        pm.Deterministic.__init__(self, eval=invlogit, name=name, parents={'ltheta': ltheta}, doc=doc, *args, **kwds)


class StukelLogit(pm.Deterministic):
    """
    S = StukelLogit(name, theta, a1, a2, [, doc, dtype=None, trace=True,
        cache_depth=2, plot=None])

    A Deterministic whose value is Stukel's link function with
    parameters a1 and a2 applied to theta.

    To see the effects of a1 and a2, try plotting the function stukel_logit
    on theta=linspace(.1,.9,100)

    :Parameters:
      name : string
        The name of the variable.
      theta : number, array or variable.
        The parent to which the link function should be
        applied. Must be between 0 and 1.
      a1 : number
        One of the shape parameters.
      a2 : number
        The other shape parameter.
      other parameters :
        See docstring of Deterministic.

    :Reference:
      Therese A. Stukel, 'Generalized Logistic Models',
      JASA vol 83 no 402, pp.426-431 (June 1988)

    :SeeAlso:
      Deterministic, Lambda, Logit, InvLogit, StukelInvLogit
    """
    def __init__(self, name, theta, a1, a2, doc="Stukel's link function", *args, **kwds):
        pm.Deterministic.__init__(self, eval=stukel_logit,
                    name=name, parents={'theta': theta, 'a1': a1, 'a2': a2},
                    doc=doc, *args, **kwds)


class StukelInvLogit(pm.Deterministic):
    """
    P = StukelInvLogit(name, ltheta, a1, a2, [, doc, dtype=None,
        trace=True, cache_depth=2, plot=None])

    A Deterministic whose value is Stukel's inverse link function with
    parameters a1 and a2 applied to ltheta.

    To see the effects of a1 and a2, try plotting the function stukel_invlogit
    on ltheta=linspace(-5,5,100)

    :Parameters:
      name : string
        The name of the variable.
      ltheta : number, array or variable.
        The parent to which the inverse link function should
        be applied. Must be between 0 and 1.
      a1 : number
        One of the shape parameters.
      a2 : number
        The other shape parameter.
      other parameters :
        See docstring of Deterministic.

    :Reference:
      Therese A. Stukel, 'Generalized Logistic Models',
      JASA vol 83 no 402, pp.426-431 (June 1988)

    :SeeAlso:
      Deterministic, Lambda, Logit, InvLogit, StukelLogit
    """
    def __init__(self, name, ltheta, a1, a2, doc="Stukel's inverse link function", *args, **kwds):
        pm.Deterministic.__init__(self, eval=stukel_invlogit,
                    name=name, parents={'ltheta': ltheta, 'a1': a1, 'a2': a2},
                    doc=doc, *args, **kwds)


class CompletedDirichlet(pm.Deterministic):
    """
    CD = CompletedDirichlet(name, D[, doc, trace=True,
        cache_depth=2, plot=None])

    'Completes' the value of D by appending 1-sum(D.value) to the end.

    :Parameters:
      name : string
        The name of the variable.
      D : array or variable
        Value of object will be 1-sum(D) or 1-sum(D.value).
        Sum of D or D's value must be between 0 and 1.
      other parameters:
        See docstring of Deterministic

    :SeeAlso:
      Deterministic, Lambda, Index, LinearCombination
    """
    def __init__(self, name, D, doc=None, trace=True, cache_depth=2, plot=None, verbose=-1):

        def eval_fun(D):
            N = len(D)
            out = np.empty((1,N+1))
            out[0,:N] = D
            out[0,N] = 1.-np.sum(D)
            return out

        if doc is None:
            doc = 'The completed version of %s'%D.__name__

        pm.Deterministic.__init__(self, eval=eval_fun, name=name, parents={'D': D}, doc=doc,
         dtype=float, trace=trace, cache_depth=cache_depth, plot=plot, verbose=verbose)


class LinearCombination(pm.Deterministic):
    """
    L = LinearCombination(name, x, y[, doc, dtype=None,
        trace=True, cache_depth=2, plot=None])

    A Deterministic returning the sum of dot(x[i],y[i]).

    :Parameters:
      name : string
        The name of the variable
      x : list or variable
        Will be multiplied against y and summed.
      y : list or variable
        Will be multiplied against x and summed.
      other parameters :
        See docstring of Deterministic.

    :Attributes:
      x : list or variable
        Input argument
      y : list or variable
        Input argument
      N : integer
        length of x and y
      coefs : dictionary
        Keyed by variable. Indicates what each variable is multiplied by.
      sides : dictionary
        Keyed by variable. Indicates whether each variable is in x or y.
      offsets : dictionary
        Keyed by variable. Indicates everything that gets added to each
        stochastic and its coefficient.

    :SeeAlso:
      Deterministic, Lambda, Index
    """

    def __init__(self, name, x, y, doc = 'A linear combination of several variables', *args, **kwds):
        self.x = x
        self.y = y
        self.N = len(self.x)

        if not len(self.y)==len(self.x):
            raise ValueError('Arguments x and y must be same length.')

        def eval_fun(x, y):
            out = np.dot(x[0], y[0])
            for i in xrange(1,len(x)):
                out = out + np.dot(x[i], y[i])
            return np.asarray(out).squeeze()

        pm.Deterministic.__init__(self,
                                eval=eval_fun,
                                doc=doc,
                                name = name,
                                parents = {'x':x, 'y':y},
                                *args, **kwds)

        # Tabulate coefficients and offsets of each constituent Stochastic.
        self.coefs = {}
        self.sides = {}

        for s in self.parents.stochastics | self.parents.observed_stochastics:
            self.coefs[s] = []
            self.sides[s] = []

        for i in xrange(self.N):

            stochastic_elem = None

            if isinstance(x[i], pm.Stochastic):

                if x[i] is y[i]:
                    raise ValueError('Stochastic %s multiplied by itself in LinearCombination %s.' %(x[i], self))

                stochastic_elem = x[i]
                self.sides[stochastic_elem].append('L')
                this_coef = Lambda('%s_coef'%stochastic_elem, lambda c=y[i]: np.asarray(c))
                self.coefs[stochastic_elem].append(this_coef) 

            if isinstance(y[i], pm.Stochastic):

                stochastic_elem = y[i]
                self.sides[stochastic_elem].append('R')
                this_coef = Lambda('%s_coef'%stochastic_elem, lambda c=x[i]: np.asarray(c))
                self.coefs[stochastic_elem].append(this_coef)


        self.sides = Container(self.sides)
        self.coefs = Container(self.coefs)

# TODO: Index should be special-cased in the future.
# TODO: - It should be a subclass of LinearCombination.
# TODO:   Reason: The Gibbs samplers should be able to recognize it as a linear combination.
# TODO: - It should be considered an 'ultimate argument' by LazyFunction, so that it is checked for changes rather
# TODO:   than its parents.
# TODO:   Reason: If parents change at elements that aren't selected, here's no point having all the descendants
# TODO:   recompute.
class Index(pm.Deterministic):
    """
    I = Index(name, x, index[, doc, dtype=None, trace=True,
        cache_depth=2, plot=None])

    A deterministic returning x[index].

    Useful for hierarchical models/ clustering/ discriminant analysis.
    Emulates LinearCombination to make it easier to write Gibbs step
    methods that can deal with such cases.

    :Parameters:
      name : string
        The name of the variable
      x : list or variable
        Will be multiplied against y and summed.
      index : integer or variable
        Index to use when computing value.
      other parameters :
        See docstring of Deterministic.

    :Attributes:
      index : variable
        Valued as current index.
      x:
        Variable that gets sliced.

    :SeeAlso:
      Deterministic, Lambda, LinearCombination
    """
    def __init__(self, name, x, index, doc = "Selects one of a list of several variables", *args, **kwds):
        self.index = Lambda('index', lambda i=index: np.int(i))
        self.x = x

        def eval_fun(x, index):
            return x[index]

        pm.Deterministic.__init__(self,
                                eval=eval_fun,
                                doc=doc,
                                name = '%s[%s]'%(str(x), str(index)),
                                parents = {'x':x, 'index':self.index},
                                *args, **kwds)

# =================================================================
# = pfunc converts ordinary functions to Deterministic factories. =
# =================================================================
def pufunc(func):
    """
    Called by pfunc to convert NumPy ufuncs to deterministic factories.
    """
    def dtrm_generator(*args):
        if len(args) != func.nin:
            raise ValueError('invalid number of arguments')
        name = func.__name__ + '('+'_'.join([str(arg) for arg in list(args)])+')'
        doc_str = 'A deterministic returning %s(%s)'%(func.__name__, ', '.join([str(arg) for arg in args]))
        parents = {}
        for i in xrange(func.nin):
            parents['in%i'%i] = args[i]
        def wrapper(**kwargs):
            return func(*[kwargs['in%i'%i] for i in xrange(func.nin)])
        return pm.Deterministic(wrapper, doc_str, name, parents, trace=False, plot=False)
    dtrm_generator.__name__ = func.__name__ + '_deterministic_generator'
    dtrm_generator.__doc__ = """
Deterministic-generating wrapper for %s. Original docstring:
%s

%s
    """%(func.__name__, '_'*60, func.__doc__)
    return dtrm_generator


def pfunc(func):
    """
    pf = pfunc(func)

    Returns a function that can be called just like func; however its arguments may be
    PyMC objects or containers of PyMC objects, and its return value will be a deterministic.

    Example:

        >>> A = pymc.Normal('A',0,1,size=10)
        >>> pprod = pymc.pfunc(numpy.prod)
        >>> B = pprod(A, axis=0)
        >>> B
        <pymc.PyMCObjects.Deterministic 'prod(A_0)' at 0x3ce49b0>
        >>> B.value
        -0.0049333289649554912
        >>> numpy.prod(A.value)
        -0.0049333289649554912
    """
    if isinstance(func, np.ufunc):
        return pufunc(func)
    elif not inspect.isfunction(func):
        if func.__name__ == '__call__':
            raise ValueError('Cannot get argspec of call method. Is it builtin?')
        try:
            return pfunc(func.__call__)
        except:
            cls, inst, tb = sys.exc_info()
            inst = cls('Failed to create pfunc wrapper from object %s. Original error message:\n\n%s'%(func, inst.message))
            six.reraise(cls, inst, tb)
    fargs, fvarargs, fvarkw, fdefaults = inspect.getargspec(func)
    n_fargs = len(fargs)

    def dtrm_generator(*args, **kwds):
        name = func.__name__ + '('+'_'.join([str(arg) for arg in list(args) + kwds.values()])+')'
        doc_str = 'A deterministic returning %s(%s, %s)'%(func.__name__, ', '.join([str(arg) for arg in args]), ', '.join(['%s=%s'%(key, str(val)) for key, val in six.iteritems(kwds)]))

        parents = {}
        varargs = []
        for kwd, val in six.iteritems(kwds):
            parents[kwd] = val
        for i in xrange(len(args)):
            if i < n_fargs:
                parents[fargs[i]] = args[i]
            else:
                varargs.append(args[i])

        if len(varargs)==0:
            eval_fun = func
        else:
            parents['varargs']=varargs
            def wrapper(**wkwds_in):
                wkwds = copy(wkwds_in)
                wargs = []
                for arg in fargs:
                    wargs.append(wkwds.pop(arg))
                wargs.extend(wkwds.pop('varargs'))
                return func(*wargs, **wkwds)
            eval_fun = wrapper

        return pm.Deterministic(eval_fun, doc_str, name, parents, trace=False, plot=False)
    dtrm_generator.__name__ = func.__name__ + '_deterministic_generator'
    dtrm_generator.__doc__ = """
Deterministic-generating wrapper for %s. Original docstring:
%s

%s
    """%(func.__name__, '_'*60, func.__doc__)
    return dtrm_generator


# ==========================================================
# = Add special methods to variables to support FBC syntax =
# ==========================================================

def create_uni_method(op_name, klass, jacobians = None):
    """
    Creates a new univariate special method, such as A.__neg__() <=> -A,
    for target class. The method is called __op_name__.
    """
    # This function will become the actual method.
    op_modules = [operator, builtins]
    op_names = [ op_name, op_name + '_']

    op_function_base = find_element( op_names,op_modules, error_on_fail = True)
    #many such functions do not take keyword arguments, so we need to wrap them 
    def op_function(self):
        return op_function_base(self)
    
    def new_method(self):
        # This code creates a Deterministic object.
        if not check_special_methods():
            raise NotImplementedError('Special method %s called on %s, but special methods have been disabled. Set pymc.special_methods_available to True to enable them.'%(op_name, str(self)))
            
        jacobian_formats = {'self' : 'transformation_operation'}
        return pm.Deterministic(op_function,
                                'A Deterministic returning the value of %s(%s)'%(op_name, self.__name__),
                                '('+op_name+'_'+self.__name__+')',
                                parents = {'self':self},
                                trace=False,
                                plot=False, 
                                jacobians=jacobians,
                                jacobian_formats = jacobian_formats)
    # Make the function into a method for klass. 
    
    new_method.__name__ = '__'+op_name+'__'
    setattr(klass, new_method.__name__, UnboundMethodType(new_method, None, klass))

def create_casting_method(op, klass):
    """
    Creates a new univariate special method, such as A.__float__() <=> float(A.value),
    for target class. The method is called __op_name__.
    """
    # This function will become the actual method.
    def new_method(self, op=op):
        if not check_special_methods():
            raise NotImplementedError('Special method %s called on %s, but special methods have been disabled. Set pymc.special_methods_available to True to enable them.'%(op_name, str(self)))
        return op(self.value)
    # Make the function into a method for klass.
    new_method.__name__ = '__'+op.__name__+'__'
    setattr(klass, new_method.__name__, UnboundMethodType(new_method, None, klass))


        
                

def create_rl_bin_method(op_name, klass,  jacobians = {}):
    """
    Creates a new binary special method with left and right versions, such as
        A.__mul__(B) <=> A*B,
        A.__rmul__(B) <=> [B*A if B.__mul__(A) fails]
    for target class. The method is called __op_name__.
    """
    # Make left and right versions.
    for prefix in ['r','']:
        # This function will became the methods.
        op_modules = [operator, builtins]
        op_names = [ op_name, op_name + '_']

        op_function_base = find_element( op_names, op_modules, error_on_fail = True)
        #many such functions do not take keyword arguments, so we need to wrap them 
        def op_function(a, b):
            return op_function_base(a, b)
            
        def new_method(self, other, prefix=prefix):
            if not check_special_methods():
                raise NotImplementedError('Special method %s called on %s, but special methods have been disabled. Set pymc.special_methods_available to True to enable them.'%(op_name, str(self)))
            # This code will create one of two Deterministic objects.
            if prefix == 'r':
                parents = {'a':other, 'b':self}
                
            else:
                parents = {'a':self, 'b':other}
            jacobian_formats = {'a' : 'broadcast_operation',
                               'b' : 'broadcast_operation'}
            return pm.Deterministic(op_function,
                                    'A Deterministic returning the value of %s(%s,%s)'%(prefix+op_name,self.__name__, str(other)),
                                    '('+'_'.join([self.__name__,prefix+op_name,str(other)])+')',
                                    parents,
                                    trace=False,
                                    plot=False,
                                    jacobians = jacobians,
                                    jacobian_formats = jacobian_formats)
        # Convert the functions into methods for klass.
        new_method.__name__ = '__'+prefix+op_name+'__'
        setattr(klass, new_method.__name__, UnboundMethodType(new_method, None, klass))


def create_rl_lin_comb_method(op_name, klass, x_roles, y_roles):
    """
    Creates a new binary special method with left and right versions, such as
        A.__mul__(B) <=> A*B,
        A.__rmul__(B) <=> [B*A if B.__mul__(A) fails]
    for target class. The method is called __op_name__.
    """
    # This function will became the methods.
    def new_method(self, other, x_roles=x_roles, y_roles=y_roles):
        if not check_special_methods():
            raise NotImplementedError('Special method %s called on %s, but special methods have been disabled. Set pymc.special_methods_available to True to enable them.'%(op_name, str(self)))
        x = []
        y = []
        for xr in x_roles:
            if xr=='self':
                x.append(self)
            elif xr=='other':
                x.append(other)
            else:
                x.append(xr)
        for yr in y_roles:
            if yr=='self':
                y.append(self)
            elif yr=='other':
                y.append(other)
            else:
                y.append(yr)
        # This code will create one of two Deterministic objects.
        return LinearCombination('('+'_'.join([self.__name__,op_name,str(other)])+')', x, y, trace=False, plot=False)

    # Convert the functions into methods for klass.
    new_method.__name__ = '__'+op_name+'__'
    setattr(klass, new_method.__name__, UnboundMethodType(new_method, None, klass))

def create_bin_method(op_name, klass):
    """
    Creates a new binary special method with only a left version, such as
    A.__eq__(B) <=> A==B, for target class. The method is called __op_name__.
    """
    # This function will become the method.
    def new_method(self, other):
        if not check_special_methods():
            raise NotImplementedError('Special method %s called on %s, but special methods have been disabled. Set pymc.special_methods_available to True to enable them.'%(op_name, str(self)))
        # This code creates a Deterministic object.
        def eval_fun(self, other, op):
            return getattr(self, op)(other)
        return pm.Deterministic(eval_fun,
                                'A Deterministic returning the value of %s(%s,%s)'%(op_name,self.__name__, str(other)),
                                '('+'_'.join([self.__name__,op_name,str(other)])+')',
                                {'self':self, 'other':other, 'op':'__'+op_name+'__'},
                                trace=False,
                                plot=False)
    # Convert the function into a method for klass.
    new_method.__name__ = '__'+op_name+'__'
    setattr(klass, new_method.__name__, UnboundMethodType(new_method, None, klass))

def create_nonimplemented_method(op_name, klass):
    """
    Creates a new method that raises NotImplementedError.
    """
    def new_method(self, *args):
        raise NotImplementedError('Special method %s has not been implemented for PyMC variables.'%op_name)
    new_method.__name__ = '__'+op_name+'__'
    setattr(klass, new_method.__name__, UnboundMethodType(new_method, None, klass))

def op_to_jacobians(op, module):
    if type(module) is types.ModuleType:
        module = copy(module.__dict__)
    elif type(module) is dict:
        module = copy(module)
    else:
        raise AttributeError

    name = op + "_jacobians"
    try:
       jacobians = module[name]
    except:
        jacobians = {} 
    
    return jacobians

# Left/right binary operators

    
truediv_jacobians = {'a' : lambda a, b: ones(shape(a))/b,
                    'b' : lambda a, b: - a / b**2  }

div_jacobians = truediv_jacobians        
    
pow_jacobians = {'a' : lambda a, b: b * a**(b - 1.0),
                'b' : lambda a, b: np.log(a) * a**b}  


for op in ['truediv', 'floordiv', 'mod', 'divmod', 'pow', 'lshift', 'rshift', 'and', 'xor', 'or']:
    create_rl_bin_method(op, Variable, jacobians = op_to_jacobians(op, locals()))

try:
    create_rl_bin_method('div', Variable, jacobians = op_to_jacobians('div', locals()))
except NameError:
    pass    # Python 3 has only truediv and floordiv

# Binary operators eq not part of this set because it messes up having stochastics in lists 
for op in ['lt', 'le', 'ne', 'gt', 'ge']:
     create_bin_method(op ,Variable)
    
def equal(s1, s2): #makes up for deficiency of __eq__
    return pm.Deterministic(lambda x1, x2 : x1 == x2,
                            'A Deterministic returning the value of x1 == x2',
                            '('+'_'.join([s1.__name__,'=',str(s2)])+')',
                            {'x1':s1, 'x2':s2},
                            trace=False,
                            plot=False)


# Unary operators
neg_jacobians = {'self' : lambda self: -ones(shape(self))}

pos_jacobians = {'self' : lambda self: np.ones(shape(self))}

abs_jacobians = {'self' : lambda self: np.sign(self)}

for op in ['neg','abs','invert']: # no need for pos and __index__ seems to cause a lot of problems
    create_uni_method(op, Variable, jacobians = op_to_jacobians(op, locals()))

# Casting operators
for op in [iter,complex,int,float,oct,hex]:
    create_casting_method(op, Variable)

try:
    create_casting_method(long, Variable)
except NameError:
    pass    # No long in Python 3

# Addition, subtraction, multiplication
# TODO: Uncomment once LinearCombination issues are ironed out.
# create_rl_lin_comb_method('add', Variable, ['self', 'other'], [1,1])
# create_rl_lin_comb_method('radd', Variable, ['self', 'other'], [1,1])
# create_rl_lin_comb_method('sub', Variable, ['self', 'other'], [1,-1])
# create_rl_lin_comb_method('rsub', Variable, ['self', 'other'], [-1,1])
# create_rl_lin_comb_method('mul', Variable, ['self'],['other'])
# create_rl_lin_comb_method('rmul', Variable, ['self'],['other'])

#TODO: Comment once LinearCombination issues are ironed out.

add_jacobians = {'a' : lambda a, b:  ones(broadcast(a,b).shape),
                 'b' : lambda a, b:  ones(broadcast(a,b).shape)}

mul_jacobians = {'a' : lambda a, b: ones(shape(a)) * b,
                 'b' : lambda a, b: ones(shape(b)) * a}

sub_jacobians = {'a' : lambda a, b:  ones(broadcast(a,b).shape),
                 'b' : lambda a, b: -ones(broadcast(a,b).shape)}

for op in ['add', 'mul', 'sub']:
    create_rl_bin_method(op, Variable, jacobians = op_to_jacobians(op, locals()))
    
for op in ['iadd','isub','imul','idiv','itruediv','ifloordiv','imod','ipow','ilshift','irshift','iand','ixor','ior','unicode']:
    create_nonimplemented_method(op, Variable)


def getitem_jacobian(self, index):
    return index


# Create __getitem__ method.
def __getitem__(self, index):
    if not check_special_methods():
        raise NotImplementedError('Special method __index__ called on %s, but special methods have been disabled. Set pymc.special_methods_available to True to enable them.'%str(self))
    # If index is number or number-valued variable, make an Index object
    name = '%s[%s]'%(self.__name__, str(index))
    if np.isscalar(value(index)) and len(np.shape(self.value)) < 2:
        if np.isreal(value(index)):
            return Index(name, self, index, trace=False, plot=False)
    # Otherwise make a standard Deterministic.
    def eval_fun(self, index):
        return self[index]
    
    jacobians = {'self' : getitem_jacobian}
    jacobian_formats = {'self' : 'index_operation'}
    return pm.Deterministic(eval_fun,
                            'A Deterministic returning the value of %s[%s]'%(self.__name__, str(index)),
                            name,
                            {'self':self, 'index':index},
                            trace=False,
                            plot=False,
                            jacobians = jacobians,
                            jacobian_formats = jacobian_formats)
Variable.__getitem__ = UnboundMethodType(__getitem__, None, Variable)

# Create __call__ method for Variable.
def __call__(self, *args, **kwargs):
    if not check_special_methods():
        raise NotImplementedError('Special method __call__ called on %s, but special methods have been disabled. Set pymc.special_methods_available to True to enable them.'%str(self))
    def eval_fun(self, args=args, kwargs=kwargs):
        return self(*args, **kwargs)
    return pm.Deterministic(eval_fun,
                            'A Deterministic returning the value of %s(*%s, **%s)'%(self.__name__, str(args), str(kwargs)),
                            self.__name__+'(*%s, **%s)'%(str(args), str(kwargs)),
                            {'self':self, 'args': args, 'kwargs': kwargs},
                            trace=False,
                            plot=False)
Variable.__call__ = UnboundMethodType(__call__, None, Variable)

# def __getitem__(self, index):
#     def eval_fun(self, index=index):
#         return self.__getitem__[index]
#     return pm.Deterministic(eval_fun,
#                             'A Deterministic returning the value of %s[%s]'%(self.__name__, str(index)),
#                             self.__name__+'[%s]'%str(index),
#                             {'self':self, 'index': index},
#                             trace=False,
#                             plot=False)
# Variable.__getitem__ = UnboundMethodType(__getitem__, None, Variable)


# These are not working
# nonworking_ops = ['iter','complex','int','long','float','oct','hex','coerce','contains','len']
# These should NOT be implemented because they are in-place updates.