This file is indexed.

/usr/share/pyshared/pymc/Container.py is in python-pymc 2.2+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
"""The point of Container.py is to provide a function Container which converts
any old thing A to thing B which looks and acts just like A, but it has a
'value' attribute. B.value looks and acts just like A but every variable
'inside' B has been replaced by its value. Examples:

    class MyObject(object):
        def __init__(self):
            self.x = Uninformative('x',0)
            self.y = 3

    A = MyObject()
    B = Container(A)
    B.x
    B.value.x


    A = [Uninformative('x',0), 3]
    B = Container(A)
    B
    B.value

Should work even with nested inputs:

    class MyObject(object):
        def __init__(self):
            self.x = [Uninformative('x',0), 5]
            self.y = 3

    A = MyObject()
    B = Container(A)


In addition, container objects file away the objects they contain into the
following sets: stochastics, deterministics, variables, nodes, containers, data, step methods.
These flattened representations are useful for things like cache checking.
"""

from .Node import Node, ContainerBase, Variable, StochasticBase, DeterministicBase, PotentialBase, ContainerRegistry
from copy import copy
from numpy import ndarray, array, zeros, shape, arange, where, dtype, Inf
from pymc.Container_values import LCValue, DCValue, ACValue, OCValue
from types import ModuleType
import pdb

from pymc import six
xrange = six.moves.xrange

__all__ = ['Container', 'DictContainer', 'TupleContainer', 'ListContainer', 'SetContainer', 'ObjectContainer', 'ArrayContainer']

def filter_dict(obj):
    filtered_dict = {}
    for item in six.iteritems(obj.__dict__):
        if isinstance(item[1], Node) or isinstance(item[1], ContainerBase):
            filtered_dict[item[0]] = item[1]
    return filtered_dict

def Container(*args):
    """
    C = Container(iterable)
    C = Container(module)
    C = Container(object)
    C = Container(obj_1, obj_2, obj_3, ...)

    Wraps an iterable object (currently a list, set, tuple, dictionary
    or ndarray), or a module or other object, or just a sequence of objects,
    in a subclass of ContainerBase and returns it.

    Iterable subclasses of ContainerBase strive to emulate the iterables they
    wrap, with one important difference: They have a value attribute.
    A container's value attribute behaves like the container itself, but
    it replaces every PyMC variable it contains with that variable's value.

    Example:

        @stochastic
        def A(value=0., mu=3, tau=2):
            return normal_like(value, mu, tau)

        C = Container([A, 15.2])

        will yield the following:
        C[0] = A
        C.value[0] = A.value
        C[1] = C.value[1] = 15.2


    The primary reason containers exist is to allow nodes to have large
    sets of parents without the need to refer to each of the parents by name.
    Example:

        x = []

        @stochastic
        def x_0(value=0, mu=0, tau=2):
            return normal_like(value, mu, tau)

        x.append(x_0)
        last_x = x_0

        for i in range(1,N):
            @stochastic
            def x_now(value=0, mu = last_x, tau=2):
                return normal_like(value, mu, tau)

            x_now.__name__ = 'x[%i]' % i
            last_x = x_now

            x.append(x_now)

        @stochastic
        def y(value=0, mu = x, tau = 100):

            mean_sum = 0
            for i in range(len(mu)):
                mean_sum = mean_sum + mu[i]

            return normal_like(value, mean_sum, tau)

    x.value will be passed into y's log-probability function as argument mu,
    so mu[i] will return x.value[i] = x[i].value. Stochastic y
    will cache the values of each element of x, and will evaluate whether it
    needs to recompute based on all of them.

    :SeeAlso:
      ListContainer, TupleContainer, SetContainer, ArrayContainer, DictContainer,
      ObjectContainer
    """

    if len(args)==1:
        iterable = args[0]
    else:
        iterable = args

    if isinstance(iterable, ContainerBase):
        return iterable

    for container_class, containing_classes in ContainerRegistry:
        if any([isinstance(iterable, containing_class) for containing_class in containing_classes]):
            return container_class(iterable)

    # Wrap mutable objects
    # if hasattr(iterable, '__dict__'):
    #     return ObjectContainer(iterable.__dict__)

    # Otherwise raise an error.
    raise ValueError('No container classes available for class ' + iterable.__class__.__name__ + ', see Container.py for examples on how to write one.')

class _A(object):
    pass
dict_proxy_type = type(_A.__dict__)
del _A

def file_items(container, iterable):
    """
    Files away objects into the appropriate attributes of the container.
    """

    # container._value = copy(iterable)

    container.nodes = set()
    container.variables = set()
    container.deterministics = set()
    container.stochastics = set()
    container.potentials = set()
    container.observed_stochastics = set()

    # containers needs to be a list to hold unhashable items.
    container.containers = []

    i=-1

    for item in iterable:

        # If this is a dictionary, switch from key to item.
        if isinstance(iterable, (dict, dict_proxy_type)):
            key = item
            item = iterable[key]
        # Item counter
        else:
    	    i += 1

        # If the item isn't iterable, file it away.
        if isinstance(item, Variable):
            container.variables.add(item)
            if isinstance(item, StochasticBase):
                if item.observed or not getattr(item, 'mask', None) is None:
                    container.observed_stochastics.add(item)                    
                if not item.observed:
                    container.stochastics.add(item)
            elif isinstance(item, DeterministicBase):
                container.deterministics.add(item)
        elif isinstance(item, PotentialBase):
            container.potentials.add(item)

        elif isinstance(item, ContainerBase):
            container.assimilate(item)
            container.containers.append(item)

        # Wrap internal containers
        elif hasattr(item, '__iter__'):

            # If this is a non-object-valued ndarray, don't container-ize it.
            if isinstance(item, ndarray):
                if item.dtype!=dtype('object'):
                    continue

            # If the item is iterable, wrap it in a container. Replace the item
            # with the wrapped version.
            try:
                new_container = Container(item)
            except:
                continue

            # Update all of container's variables, potentials, etc. with the new wrapped
            # iterable's. This process recursively unpacks nested iterables.
            container.assimilate(new_container)

            if isinstance(container, dict):
                container.replace(key, new_container)
            elif isinstance(container, tuple):
                return container[:i] + (new_container,) + container[i+1:]
            else:
                container.replace(item, new_container, i)

    container.nodes = container.potentials | container.variables

    # 'Freeze' markov blanket, moral neighbors, coparents of all constituent stochastics
    # for future use
    for attr in ['moral_neighbors', 'markov_blanket', 'coparents']:
        setattr(container, attr, {})
    for s in container.stochastics:
        for attr in ['moral_neighbors', 'markov_blanket', 'coparents']:
            getattr(container, attr)[s] = getattr(s, attr)

value_doc = 'A copy of self, with all variables replaced by their values.'

def sort_list(container, _value):
    val_ind = []
    val_obj = []
    nonval_ind = []
    nonval_obj = []
    for i in xrange(len(_value)):
        obj = _value[i]
        if isinstance(obj, Variable) or isinstance(obj, ContainerBase):
            val_ind.append(i)
            val_obj.append(obj)
        else:
            nonval_ind.append(i)
            nonval_obj.append(obj)
    # In case val_obj is only a single array, avert confusion.
    # Leave this even though it's confusing!
    val_obj.append(None)
    nonval_obj.append(None)
    container.n_val = len(val_ind)
    container.n_nonval = len(nonval_ind)
    container.val_ind = array(val_ind, dtype='int32')
    container.val_obj = val_obj
    container.nonval_ind = array(nonval_ind, dtype='int32')
    container.nonval_obj = array(nonval_obj, dtype=object)
    container.LCValue = LCValue(container)

class SetContainer(ContainerBase, frozenset):
    """
    SetContainers are containers that wrap sets.

    :Parameters:
      iterable : set.

    :Attributes:
      value : set
        A copy of self, with all variables replaced with their values.
      nodes : set
        All the stochastics, deterministics and potentials self contains.
      deterministics : set
        All the deterministics self contains.
      stochastics : set
        All the stochastics self contains with observed=False.
      potentials : set
        All the potentials self contains.
      observed_stochastics : set
        All the stochastics self contains with observed=True.
      containers : list
        All the containers self contains.

    :Note:
      - nodes, deterministics, etc. include all the objects in nested
        containers.
      - value replaces objects in nested containers.

    :SeeAlso:
      Container, ListContainer, DictContainer, ArrayContainer, TupleContainer,
      ObjectContainer
    """
    register=True
    change_methods = []
    containing_classes = [set, frozenset]
    def __init__(self, iterable):
        self.new_iterable = set(iterable)
        file_items(self, self.new_iterable)
        ContainerBase.__init__(self, self.new_iterable)
        self._value = list(self)
        sort_list(self, self._value)

    def replace(self, item, new_container, i):
        self.new_iterable.discard(item)
        self.new_iterable.add(new_container)

    def get_value(self):
        self.LCValue.run()
        return set(self._value)

    value = property(fget = get_value, doc=value_doc)

class TupleContainer(ContainerBase, tuple):
    """
    TupleContainers are containers that wrap tuples.

    :Parameters:
      iterable : tuple.

    :Attributes:
      value : tuple
        A copy of self, with all variables replaced with their values.
      nodes : set
        All the stochastics, deterministics and potentials self contains.
      deterministics : set
        All the deterministics self contains.
      stochastics : set
        All the stochastics self contains with observed=False.
      potentials : set
        All the potentials self contains.
      observed_stochastics : set
        All the stochastics self contains with observed=True.
      containers : list
        All the containers self contains.

    :Note:
      - nodes, deterministics, etc. include all the objects in nested
        containers.
      - value replaces objects in nested containers.

    :SeeAlso:
      Container, ListContainer, DictContainer, ArrayContainer, SetContainer,
      ObjectContainer
    """
    register=True
    change_methods = []
    containing_classes = [tuple]

    def __init__(self, iterable):
        new_tup = file_items(self, iterable)
        if len(self.containers)>0:
            raise NotImplementedError("""We have not figured out how to satisfactorily implement nested TupleContainers.
The reason is there is no way to change an element of a tuple after it has been created.
Even the Python-C API makes this impossible by checking that a tuple is new
before allowing you to change one of its elements.""")
        ContainerBase.__init__(self, iterable)
        file_items(self, iterable)
        self._value = list(self)
        sort_list(self, self._value)

    def replace(self, item, new_container, i):
        list.__setitem__(self, i, new_container)

    def get_value(self):
        self.LCValue.run()
        return tuple(self._value)

    value = property(fget = get_value, doc=value_doc)

class ListContainer(ContainerBase, list):
    """
    ListContainers are containers that wrap lists.

    :Parameters:
      iterable : list.

    :Attributes:
      value : list
        A copy of self, with all variables replaced with their values.
      nodes : set
        All the stochastics, deterministics and potentials self contains.
      deterministics : set
        All the deterministics self contains.
      stochastics : set
        All the stochastics self contains with observed=False.
      potentials : set
        All the potentials self contains.
      observed_stochastics : set
        All the stochastics self contains with observed=True.
      containers : list
        All the containers self contains.

    :Note:
      - nodes, deterministics, etc. include all the objects in nested
        containers.
      - value replaces objects in nested containers.

    :SeeAlso:
      Container, TupleContainer, DictContainer, ArrayContainer, SetContainer,
      ObjectContainer
    """
    change_methods = ['__setitem__', '__delitem__', '__setslice__', '__delslice__', '__iadd__', '__imul__', 'append', 'extend', 'insert', 'pop', 'remove', 'reverse', 'sort']
    containing_classes = [list]
    register=True
    def __init__(self, iterable):
        list.__init__(self, iterable)
        ContainerBase.__init__(self, iterable)
        file_items(self, iterable)
        self._value = list(self)
        sort_list(self, self._value)

    def replace(self, item, new_container, i):
        list.__setitem__(self, i, new_container)

    def get_value(self):
        self.LCValue.run()
        return self._value

    value = property(fget = get_value, doc=value_doc)

class DictContainer(ContainerBase, dict):
    """
    DictContainers are containers that wrap dictionaries.
    Modules are converted into DictContainers, and variables' and potentials'
    Parents objects are DictContainers also.

    :Parameters:
      iterable : dictionary or object with a __dict__.

    :Attributes:
      value : dictionary
        A copy of self, with all variables replaced with their values.
      nodes : set
        All the stochastics, deterministics and potentials self contains.
      deterministics : set
        All the deterministics self contains.
      stochastics : set
        All the stochastics self contains with observed=False.
      potentials : set
        All the potentials self contains.
      observed_stochastics : set
        All the stochastics self contains with observed=True.
      containers : list
        All the containers self contains.

    :Note:
      - nodes, deterministics, etc. include all the objects in nested
        containers.
      - value replaces objects in nested containers.

    :SeeAlso:
      Container, ListContainer, TupleContainer, ArrayContainer, SetContainer,
      ObjectContainer
    """
    change_methods = ['__setitem__', '__delitem__', 'clear', 'pop', 'popitem', 'update']
    containing_classes = [dict]
    register=True
    def __init__(self, iterable):
        dict.__init__(self, iterable)
        ContainerBase.__init__(self, iterable)
        self._value = copy(iterable)
        file_items(self, iterable)

        self.val_keys = []
        self.val_obj = []
        self.nonval_keys = []
        self.nonval_obj = []
        self._value = {}
        for key, obj in six.iteritems(self):
            if isinstance(obj, Variable) or isinstance(obj, ContainerBase):
                self.val_keys.append(key)
                self.val_obj.append(obj)
            else:
                self.nonval_keys.append(key)
                self.nonval_obj.append(obj)
        # In case val_obj is only a single array, avert confusion.
        # Leave this even though it's confusing!
        self.val_obj.append(None)
        self.nonval_obj.append(None)

        self.n_val = len(self.val_keys)
        self.val_keys = array(self.val_keys, dtype=object)
        # self.val_obj = array(self.val_obj, dtype=object)
        self.n_nonval = len(self.nonval_keys)
        self.nonval_keys = array(self.nonval_keys, dtype=object)
        self.nonval_obj = array(self.nonval_obj, dtype=object)
        self.DCValue = DCValue(self)

    def replace(self, key, new_container):
        dict.__setitem__(self, key, new_container)

    def get_value(self):
        # DCValue(self)
        self.DCValue.run()
        return self._value

    value = property(fget = get_value, doc=value_doc)

def conservative_update(obj, dict):
    for k in dict:
        if not hasattr(obj, k):
            try:
                setattr(obj, k, dict[k])
            except:
                pass

class ObjectContainer(ContainerBase):
    """
    ObjectContainers wrap non-iterable objects.

    Contents of the input iterable, or attributes of the input object,
    are exposed as attributes of the object.

    :Parameters:
      iterable : dictionary or object with a __dict__.

    :Attributes:
      value : object
        A copy of self, with all variables replaced with their values.
      nodes : set
        All the stochastics, deterministics and potentials self contains.
      deterministics : set
        All the deterministics self contains.
      stochastics : set
        All the stochastics self contains with observed=False.
      potentials : set
        All the potentials self contains.
      observed_stochastics : set
        All the stochastics self contains with observed=True.
      containers : list
        All the containers self contains.

    :Note:
      - nodes, deterministics, etc. include all the objects in nested
        containers.
      - value replaces objects in nested containers.

    :SeeAlso:
      Container, ListContainer, DictContainer, ArrayContainer, SetContainer,
      TupleContainer
    """
    register=False
    def __init__(self, input):

        if isinstance(input, dict):
            input_to_file = input
            conservative_update(self, input_to_file)
            # self.__dict__.update(input_to_file)

        elif hasattr(input,'__iter__'):
            input_to_file = input

        else: # Modules, objects, etc.
            input_to_file = input.__dict__
            conservative_update(self, input_to_file)
            # self.__dict__.update(input_to_file)
        
        dictpop = copy(self.__dict__)
        if 'self' in dictpop:
            dictpop.pop('self')
        
        self._dict_container = DictContainer(dictpop)
        file_items(self, input_to_file)

        self._value = copy(self)
        ContainerBase.__init__(self, input)
        self.OCValue = OCValue(self)


    def replace(self, item, new_container, key):
        dict.__setitem__(self.__dict__, key, new_container)

    def _get_value(self):
        self.OCValue.run()
        return self._value
    value = property(fget = _get_value, doc=value_doc)


class ArrayContainer(ContainerBase, ndarray):
    """
    ArrayContainers wrap Numerical Python ndarrays. These are full
    ndarray subclasses, and should support all of ndarrays'
    functionality.

    :Parameters:
      iterable : array.

    :Attributes:
      value : array.
        A copy of self, with all variables replaced with their values.
      nodes : set
        All the stochastics, deterministics and potentials self contains.
      deterministics : set
        All the deterministics self contains.
      stochastics : set
        All the stochastics self contains with observed=False.
      potentials : set
        All the potentials self contains.
      observed_stochastics : set
        All the stochastics self contains with observed=True.
      containers : list
        All the containers self contains.

    :Note:
      - nodes, deterministics, etc. include all the objects in nested
        containers.
      - value replaces objects in nested containers.

    :SeeAlso:
      Container, ListContainer, DictContainer, ObjectContainer, SetContainer,
      TupleContainer
    """

    register=True
    change_methods = []
    containing_classes = [ndarray]
    def __new__(subtype, array_in):
        if not array_in.dtype == dtype('object'):
            raise ValueError('Cannot create container from array whose dtype is not object.')

        C = array(array_in, copy=True).view(subtype)
        C_ravel = C.ravel()
        ContainerBase.__init__(C, array_in)

        # Sort out contents and wrap internal containers.
        file_items(C, C_ravel)
        C._value = C.copy()
        C._ravelledvalue = C._value.ravel()

        # An array range to keep around.
        C.iterrange = arange(len(C_ravel))

        val_ind = []
        val_obj = []
        nonval_ind = []
        nonval_obj = []
        for i in xrange(len(C_ravel)):
            obj = C_ravel[i]
            if isinstance(obj, Variable) or isinstance(obj, ContainerBase):
                val_ind.append(i)
                val_obj.append(obj)
            else:
                nonval_ind.append(i)
                nonval_obj.append(obj)
        val_obj.append(None)
        C.val_ind = array(val_ind, dtype='int32')
        C.val_obj = val_obj
        C.n_val = len(val_ind)
        nonval_obj.append(None)
        C.nonval_ind = array(nonval_ind, dtype='int32')
        C.nonval_obj = array(nonval_obj, dtype=object)
        C.n_nonval = len(nonval_ind)


        C.flags['W'] = False
        C.ACValue = ACValue(C)

        return C

    def replace(self, item, new_container, i):
        ndarray.__setitem__(self.ravel(), i, new_container)

    # This method converts self to self.value.
    def get_value(self):
        self.ACValue.run()
        return self._value

    value = property(fget = get_value, doc=value_doc)