/usr/share/pyshared/pymc/Model.py is in python-pymc 2.2+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 | """
Base classes Model and Sampler are defined here.
"""
# Changeset history
# 22/03/2007 -DH- Added methods to query the StepMethod's state and pass it to database.
# 20/03/2007 -DH- Separated Model from Sampler. Removed _prepare(). Commented __setattr__ because it breaks properties.
__docformat__='reStructuredText'
__all__ = ['Model', 'Sampler']
""" Summary"""
from numpy import zeros, floor
from numpy.random import randint
from pymc import database
from .PyMCObjects import Stochastic, Deterministic, Node, Variable, Potential
from .Container import Container, ObjectContainer
import sys,os
from copy import copy
from threading import Thread
from .Node import ContainerBase
from time import sleep
import pdb
from . import utils
import warnings, traceback
import itertools
from .six import print_, reraise
GuiInterrupt = 'Computation halt'
Paused = 'Computation paused'
class EndofSampling(Exception):
pass
class Model(ObjectContainer):
"""
The base class for all objects that fit probability models. Model is initialized with:
>>> A = Model(input, verbose=0)
:Parameters:
- input : module, list, tuple, dictionary, set, object or nothing.
Model definition, in terms of Stochastics, Deterministics, Potentials and Containers.
If nothing, all nodes are collected from the base namespace.
Attributes:
- deterministics
- stochastics (with observed=False)
- data (stochastic variables with observed=True)
- variables
- potentials
- containers
- nodes
- all_objects
- status: Not useful for the Model base class, but may be used by subclasses.
The following attributes only exist after the appropriate method is called:
- moral_neighbors: The edges of the moralized graph. A dictionary, keyed by stochastic variable,
whose values are sets of stochastic variables. Edges exist between the key variable and all variables
in the value. Created by method _moralize.
- extended_children: The extended children of self's stochastic variables. See the docstring of
extend_children. This is a dictionary keyed by stochastic variable.
- generations: A list of sets of stochastic variables. The members of each element only have parents in
previous elements. Created by method find_generations.
Methods:
- sample_model_likelihood(iter): Generate and return iter samples of p(data and potentials|model).
Can be used to generate Bayes' factors.
:SeeAlso: Sampler, MAP, NormalApproximation, weight, Container, graph.
"""
def __init__(self, input=None, name=None, verbose=-1):
"""Initialize a Model instance.
:Parameters:
- input : module, list, tuple, dictionary, set, object or nothing.
Model definition, in terms of Stochastics, Deterministics, Potentials and Containers.
If nothing, all nodes are collected from the base namespace.
"""
# Get stochastics, deterministics, etc.
if input is None:
import warnings
warnings.warn('The MCMC() syntax is deprecated. Please pass in nodes explicitly via M = MCMC(input).')
import __main__
__main__.__dict__.update(self.__class__.__dict__)
input = __main__
ObjectContainer.__init__(self, input)
if name is not None:
self.__name__ = name
self.verbose = verbose
def _get_generations(self):
if not hasattr(self, '_generations'):
self._generations = utils.find_generations(self)
return self._generations
generations = property(_get_generations)
def draw_from_prior(self):
"""
Sets all variables to random values drawn from joint 'prior', meaning contributions
of data and potentials to the joint distribution are not considered.
"""
for generation in self.generations:
for s in generation:
s.random()
def seed(self):
"""
Seed new initial values for the stochastics.
"""
for generation in self.generations:
for s in generation:
try:
if s.rseed is not None:
value = s.random(**s.parents.value)
except:
pass
def get_node(self, node_name):
"""Retrieve node with passed name"""
for node in self.nodes:
if node.__name__ == node_name:
return node
class Sampler(Model):
"""
The base class for all objects that fit probability models using Monte Carlo methods.
Sampler is initialized with:
>>> A = Sampler(input, db, output_path=None, verbose=0)
:Parameters:
- input : module, list, tuple, dictionary, set, object or nothing.
Model definition, in terms of Stochastics, Deterministics, Potentials and Containers.
If nothing, all nodes are collected from the base namespace.
- db : string
The name of the database backend that will store the values
of the stochastics and deterministics sampled during the MCMC loop.
Inherits all methods and attributes from Model. Subclasses must either define the _loop method:
- _loop(self, *args, **kwargs): Can be called after a sampling run is interrupted
(by pausing, halting or a KeyboardInterrupt) to continue the sampling run.
_loop must be able to handle KeyboardInterrupts gracefully, and should monitor
the sampler's status periodically. Available status values are:
- 'ready': Ready to sample.
- 'paused': A pause has been requested, or the sampler is paused. _loop should return control
as soon as it is safe to do so.
- 'halt': A halt has been requested, or the sampler is stopped. _loop should call halt as soon
as it is safe to do so.
- 'running': Sampling is in progress.
Or define a draw() method, which draws a single sample from the posterior. Subclasses may also want
to override the default sample() method.
:SeeAlso: Model, MCMC.
"""
def __init__(self, input=None, db='ram', name='Sampler', reinit_model=True, calc_deviance=False, verbose=0, **kwds):
"""Initialize a Sampler instance.
:Parameters:
- input : module, list, tuple, dictionary, set, object or nothing.
Model definition, in terms of Stochastics, Deterministics, Potentials and Containers.
If nothing, all nodes are collected from the base namespace.
- db : string
The name of the database backend that will store the values
of the stochastics and deterministics sampled during the MCMC loop.
- reinit_model : bool
Flag for reinitialization of Model superclass.
- calc_deviance : bool
Flag for calculating model deviance.
- **kwds :
Keywords arguments to be passed to the database instantiation method.
"""
# Initialize superclass
if reinit_model:
Model.__init__(self, input, name, verbose)
# Initialize deviance, if asked
if calc_deviance:
self._funs_to_tally = {'deviance': self._sum_deviance}
else:
self._funs_to_tally = {}
# Specify database backend and save its keywords
self._db_args = kwds
self._assign_database_backend(db)
# Flag for model state
self.status = 'ready'
self._current_iter = None
self._iter = None
self._state = ['status', '_current_iter', '_iter']
if hasattr(db, '_traces'):
# Put traces on objects
for v in self._variables_to_tally:
v.trace = self.db._traces[v.__name__]
def _sum_deviance(self):
# Sum deviance from all stochastics
return -2*sum([v.get_logp() for v in self.observed_stochastics])
def sample(self, iter, length=None, verbose=0):
"""
Draws iter samples from the posterior.
"""
self._cur_trace_index=0
self.max_trace_length = iter
self._iter = iter
self.verbose = verbose or 0
self.seed()
# Assign Trace instances to tallyable objects.
self.db.connect_model(self)
# Initialize database -> initialize traces.
if length is None:
length = iter
self.db._initialize(self._funs_to_tally, length)
# Put traces on objects
for v in self._variables_to_tally:
v.trace = self.db._traces[v.__name__]
# Loop
self._current_iter = 0
self._loop()
self._finalize()
def _finalize(self):
"""Reset the status and tell the database to finalize the traces."""
if self.status in ['running', 'halt']:
if self.verbose > 0:
print_('\nSampling finished normally.')
self.status = 'ready'
self.save_state()
self.db._finalize()
def _loop(self):
"""
_loop(self, *args, **kwargs)
Can be called after a sampling run is interrupted (by pausing, halting or a
KeyboardInterrupt) to continue the sampling run.
_loop must be able to handle KeyboardInterrupts gracefully, and should monitor
the sampler's status periodically. Available status values are:
- 'ready': Ready to sample.
- 'paused': A pause has been requested, or the sampler is paused. _loop should return control
as soon as it is safe to do so.
- 'halt': A halt has been requested, or the sampler is stopped. _loop should call halt as soon
as it is safe to do so.
- 'running': Sampling is in progress.
"""
self.status='running'
try:
while self._current_iter < self._iter and not self.status == 'halt':
if self.status == 'paused':
break
i = self._current_iter
self.draw()
self.tally()
if not i % 10000 and self.verbose > 0:
print_('Iteration ', i, ' of ', self._iter)
sys.stdout.flush()
self._current_iter += 1
except KeyboardInterrupt:
self.status='halt'
if self.status == 'halt':
self._halt()
def draw(self):
"""
Either draw() or _loop() must be overridden in subclasses of Sampler.
"""
pass
def stats(self, variables=None, alpha=0.05, start=0, batches=100, chain=None, quantiles=(2.5, 25, 50, 75, 97.5)):
"""
Statistical output for variables.
:Parameters:
variables : iterable
List or array of variables for which statistics are to be
generated. If it is not specified, all the tallied variables
are summarized.
alpha : float
The alpha level for generating posterior intervals. Defaults to
0.05.
start : int
The starting index from which to summarize (each) chain. Defaults
to zero.
batches : int
Batch size for calculating standard deviation for non-independent
samples. Defaults to 100.
chain : int
The index for which chain to summarize. Defaults to None (all
chains).
"""
# If no names provided, run them all
if variables is None:
variables = self._variables_to_tally
else:
variables = [self.__dict__[i] for i in variables if self.__dict__[i] in self._variables_to_tally]
stat_dict = {}
# Loop over nodes
for variable in variables:
# Plot object
stat_dict[variable.__name__] = self.trace(variable.__name__).stats(alpha=alpha, start=start,
batches=batches, chain=chain, quantiles=quantiles)
return stat_dict
def write_csv(self, filename, variables=None, alpha=0.05, start=0, batches=100,
chain=None, quantiles=(2.5, 25, 50, 75, 97.5)):
"""
Save summary statistics to a csv table.
:Parameters:
filename : string
Filename to save output.
variables : iterable
List or array of variables for which statistics are to be
generated. If it is not specified, all the tallied variables
are summarized.
alpha : float
The alpha level for generating posterior intervals. Defaults to
0.05.
start : int
The starting index from which to summarize (each) chain. Defaults
to zero.
batches : int
Batch size for calculating standard deviation for non-independent
samples. Defaults to 100.
chain : int
The index for which chain to summarize. Defaults to None (all
chains).
"""
# Append 'csv' suffix if there is no suffix on the filename
if filename.find('.') == -1:
filename += '.csv'
outfile = open(filename, 'w')
# Write header to file
header = 'Parameter, Mean, SD, MC Error, Lower 95% HPD, Upper 95% HPD, '
header += ', '.join(['q%s' % i for i in quantiles])
outfile.write(header + '\n')
stats = self.stats(alpha=alpha, start=start, batches=batches, chain=chain, quantiles=quantiles)
buffer = str()
for param in stats:
values = stats[param]
try:
# Multivariate node
shape = values['mean'].shape
indices = list(itertools.product(*[range(i) for i in shape]))
for i in indices:
buffer += self._csv_str(param, values, quantiles, i)
except AttributeError:
# Scalar node
buffer += self._csv_str(param, values, quantiles)
outfile.write(buffer)
outfile.close()
def _csv_str(self, param, stats, quantiles, index=None):
"""Support function for write_csv"""
buffer = param
if not index:
buffer += ', '
else:
buffer += '_' + '_'.join([str(i) for i in index]) + ', '
for stat in ('mean','standard deviation','mc error'):
buffer += str(stats[stat][index]) + ', '
# Index to interval label
iindex = [key.split()[-1] for key in stats.keys()].index('interval')
interval = stats.keys()[iindex]
buffer += ', '.join(stats[interval][index].astype(str))
# Process quantiles
qvalues = stats['quantiles']
for q in quantiles:
buffer += ', ' + str(qvalues[q][index])
return buffer + '\n'
def summary(self, variables=None, alpha=0.05, start=0, batches=100,
chain=None, roundto=3):
"""
Generate a pretty-printed summary of the model's variables.
:Parameters:
alpha : float
The alpha level for generating posterior intervals. Defaults to
0.05.
start : int
The starting index from which to summarize (each) chain. Defaults
to zero.
batches : int
Batch size for calculating standard deviation for non-independent
samples. Defaults to 100.
chain : int
The index for which chain to summarize. Defaults to None (all
chains).
roundto : int
The number of digits to round posterior statistics.
quantiles : tuple or list
The desired quantiles to be calculated. Defaults to (2.5, 25, 50, 75, 97.5).
"""
# If no names provided, run them all
if variables is None:
variables = self._variables_to_tally
else:
variables = [self.__dict__[i] for i in variables if self.__dict__[i] in self._variables_to_tally]
# Loop over nodes
for variable in variables:
variable.summary(alpha=alpha, start=start, batches=batches, chain=chain,
roundto=roundto)
# Property --- status : the sampler state.
def status():
doc = \
"""Status of sampler. May be one of running, paused, halt or ready.
- `running` : The model is currently sampling.
- `paused` : The model has been interrupted during sampling. It is
ready to be restarted by `continuesample`.
- `halt` : The model has been interrupted. It cannot be restarted.
If sample is called again, a new chain will be initiated.
- `ready` : The model is ready to sample.
"""
def fget(self):
return self.__status
def fset(self, value):
if value in ['running', 'paused', 'halt', 'ready']:
self.__status=value
else:
raise AttributeError(value)
return locals()
status = property(**status())
def _assign_database_backend(self, db):
"""Assign Trace instance to stochastics and deterministics and Database instance
to self.
:Parameters:
- `db` : string, Database instance
The name of the database module (see below), or a Database instance.
Available databases:
- `no_trace` : Traces are not stored at all.
- `ram` : Traces stored in memory.
- `txt` : Traces stored in memory and saved in txt files at end of
sampling.
- `sqlite` : Traces stored in sqlite database.
- `hdf5` : Traces stored in an HDF5 file.
"""
# Objects that are not to be tallied are assigned a no_trace.Trace
# Tallyable objects are listed in the _nodes_to_tally set.
no_trace = getattr(database, 'no_trace')
self._variables_to_tally = set()
for object in self.stochastics | self.deterministics:
if object.keep_trace:
self._variables_to_tally.add(object)
try:
if object.mask is None:
# Standard stochastic
self._funs_to_tally[object.__name__] = object.get_value
else:
# Has missing values, so only fetch stochastic elements using mask
self._funs_to_tally[object.__name__] = object.get_stoch_value
except AttributeError:
# Not a stochastic object, so no mask
self._funs_to_tally[object.__name__] = object.get_value
else:
object.trace = no_trace.Trace(object.__name__)
check_valid_object_name(self._variables_to_tally)
# If not already done, load the trace backend from the database
# module, and assign a database instance to Model.
if type(db) is str:
if db in dir(database):
module = getattr(database, db)
# Assign a default name for the database output file.
if self._db_args.get('dbname') is None:
self._db_args['dbname'] = self.__name__ + '.' + db
self.db = module.Database(**self._db_args)
elif db in database.__modules__:
raise ImportError(\
'Database backend `%s` is not properly installed. Please see the documentation for instructions.' % db)
else:
raise AttributeError(\
'Database backend `%s` is not defined in pymc.database.'%db)
elif isinstance(db, database.base.Database):
self.db = db
self.restore_sampler_state()
else: # What is this for? DH.
self.db = db.Database(**self._db_args)
def pause(self):
"""Pause the sampler. Sampling can be resumed by calling `icontinue`.
"""
self.status = 'paused'
# The _loop method will react to 'paused' status and stop looping.
if hasattr(self, '_sampling_thread') and self._sampling_thread.isAlive():
print_('Waiting for current iteration to finish...')
while self._sampling_thread.isAlive():
sleep(.1)
def halt(self):
"""Halt a sampling running in another thread."""
self.status = 'halt'
# The _halt method is called by _loop.
if hasattr(self, '_sampling_thread') and self._sampling_thread.isAlive():
print_('Waiting for current iteration to finish...')
while self._sampling_thread.isAlive():
sleep(.1)
def _halt(self):
print_('Halting at iteration ', self._current_iter, ' of ', self._iter)
self.db.truncate(self._cur_trace_index)
self._finalize()
#
# Tally
#
def tally(self):
"""
tally()
Records the value of all tracing variables.
"""
if self.verbose > 2:
print_(self.__name__ + ' tallying.')
if self._cur_trace_index < self.max_trace_length:
self.db.tally()
self._cur_trace_index += 1
if self.verbose > 2:
print_(self.__name__ + ' done tallying.')
def commit(self):
"""
Tell backend database to commit.
"""
self.db.commit()
def isample(self, *args, **kwds):
"""
Samples in interactive mode. Main thread of control stays in this function.
"""
self._exc_info = None
out = kwds.pop('out', sys.stdout)
kwds['progress_bar'] = False
def samp_targ(*args, **kwds):
try:
self.sample(*args, **kwds)
except:
self._exc_info = sys.exc_info()
self._sampling_thread = Thread(target=samp_targ, args=args, kwargs=kwds)
self.status = 'running'
self._sampling_thread.start()
self.iprompt(out=out)
def icontinue(self):
"""
Restarts thread in interactive mode
"""
if self.status != 'paused':
print_("No sampling to continue. Please initiate sampling with isample.")
return
def sample_and_finalize():
self._loop()
self._finalize()
self._sampling_thread = Thread(target=sample_and_finalize)
self.status = 'running'
self._sampling_thread.start()
self.iprompt()
def iprompt(self, out=sys.stdout):
"""Start a prompt listening to user input."""
cmds = """
Commands:
i -- index: print current iteration index
p -- pause: interrupt sampling and return to the main console.
Sampling can be resumed later with icontinue().
h -- halt: stop sampling and truncate trace. Sampling cannot be
resumed for this chain.
b -- bg: return to the main console. The sampling will still
run in a background thread. There is a possibility of
malfunction if you interfere with the Sampler's
state or the database during sampling. Use this at your
own risk.
"""
print_("""==============
PyMC console
==============
PyMC is now sampling. Use the following commands to query or pause the sampler.
""", file=out)
print_(cmds, file=out)
prompt = True
try:
while self.status in ['running', 'paused']:
# sys.stdout.write('pymc> ')
if prompt:
out.write('pymc > ')
out.flush()
if self._exc_info is not None:
a,b,c = self._exc_info
reraise(a, b, c)
cmd = utils.getInput().strip()
if cmd == 'i':
print_('Current iteration: %i of %i' % (self._current_iter, self._iter), file=out)
prompt = True
elif cmd == 'p':
self.status = 'paused'
break
elif cmd == 'h':
self.status = 'halt'
break
elif cmd == 'b':
return
elif cmd == '\n':
prompt = True
pass
elif cmd == '':
prompt = False
else:
print_('Unknown command: ', cmd, file=out)
print_(cmds, file=out)
prompt = True
except KeyboardInterrupt:
if not self.status == 'ready':
self.status = 'halt'
if self.status == 'ready':
print_("Sampling terminated successfully.", file=out)
else:
print_('Waiting for current iteration to finish...', file=out)
while self._sampling_thread.isAlive():
sleep(.1)
print_('Exiting interactive prompt...', file=out)
if self.status == 'paused':
print_('Call icontinue method to continue, or call halt method to truncate traces and stop.', file=out)
def get_state(self):
"""
Return the sampler's current state in order to
restart sampling at a later time.
"""
state = dict(sampler={}, stochastics={})
# The state of the sampler itself.
for s in self._state:
state['sampler'][s] = getattr(self, s)
# The state of each stochastic parameter
for s in self.stochastics:
state['stochastics'][s.__name__] = s.value
return state
def save_state(self):
"""
Tell the database to save the current state of the sampler.
"""
try:
self.db.savestate(self.get_state())
except:
print_('Warning, unable to save state.')
print_('Error message:')
traceback.print_exc()
def restore_sampler_state(self):
"""
Restore the state of the sampler and to
the state stored in the database.
"""
state = self.db.getstate() or {}
# Restore sampler's state
sampler_state = state.get('sampler', {})
self.__dict__.update(sampler_state)
# Restore stochastic parameters state
stoch_state = state.get('stochastics', {})
for sm in self.stochastics:
try:
sm.value = stoch_state[sm.__name__]
except:
warnings.warn('Failed to restore state of stochastic %s from %s backend'%(sm.__name__, self.db.__name__))
#print_('Error message:')
#traceback.print_exc()
def remember(self, chain=-1, trace_index = None):
"""
remember(chain=-1, trace_index = randint(trace length to date))
Sets the value of all tracing variables to a value recorded in
their traces.
"""
if trace_index is None:
trace_index = randint(self._cur_trace_index)
for variable in self._variables_to_tally:
if isinstance(variable, Stochastic):
try:
variable.value = self.trace(variable.__name__, chain=chain)[trace_index]
except:
cls, inst, tb = sys.exc_info()
warnings.warn('Unable to remember value of variable %s. Original error: \n\n%s: %s'%(variable,cls.__name__,inst.message))
def trace(self, name, chain=-1):
"""Return the trace of a tallyable object stored in the database.
:Parameters:
name : string
The name of the tallyable object.
chain : int
The trace index. Setting `chain=i` will return the trace created by
the ith call to `sample`.
"""
if type(name) is str:
return self.db.trace(name, chain)
elif isinstance(name, Variable):
return self.db.trace(name.__name__, chain)
else:
raise ValueError('Name argument must be string or Variable, got %s.'%name)
def _get_deviance(self):
return self._sum_deviance()
deviance = property(_get_deviance)
def check_valid_object_name(sequence):
"""Check that the names of the objects are all different."""
names = []
for o in sequence:
if o.__name__ in names:
raise ValueError('A tallyable PyMC object called %s already exists. This will cause problems for some database backends.'%o.__name__)
else:
names.append(o.__name__)
|