/usr/share/pyshared/pymc/Node.py is in python-pymc 2.2+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 | """
Base classes are defined here.
"""
__docformat__='reStructuredText'
__author__ = 'Anand Patil, anand.prabhakar.patil@gmail.com'
import os, sys, pdb
import numpy as np
import types
from . import six
print_ = six.print_
try:
from types import UnboundMethodType
except ImportError:
# On Python 3, unbound methods are just functions.
def UnboundMethodType(func, inst, cls):
return func
def logp_of_set(s):
exc = None
logp = 0.
for obj in s:
try:
logp += obj.logp
except ZeroProbability:
raise
except:
if exc is None:
exc = sys.exc_info()
if exc is None:
return logp
else:
six.reraise(*exc)
def logp_gradient_of_set(variable_set, calculation_set = None):
"""
Calculates the gradient of the joint log posterior with respect to all the variables in variable_set.
Calculation of the log posterior is restricted to the variables in calculation_set.
Returns a dictionary of the gradients.
"""
logp_gradients = {}
for variable in variable_set:
logp_gradients[variable] = logp_gradient(variable, calculation_set)
return logp_gradients
def logp_gradient(variable, calculation_set = None):
"""
Calculates the gradient of the joint log posterior with respect to variable.
Calculation of the log posterior is restricted to the variables in calculation_set.
"""
return variable.logp_partial_gradient(variable, calculation_set) + sum([child.logp_partial_gradient(variable, calculation_set) for child in variable.children] )
class ZeroProbability(ValueError):
"Log-probability is undefined or negative infinity"
pass
class Node(object):
"""
The base class for Stochastic, Deterministic and Potential.
:Parameters:
doc : string
The docstring for this node.
name : string
The name of this node.
parents : dictionary
A dictionary containing the parents of this node.
cache_depth : integer
An integer indicating how many of this node's
value computations should be 'memorized'.
verbose (optional) : integer
Level of output verbosity: 0=none, 1=low, 2=medium, 3=high
.. seealso::
:class:`Stochastic`
The class defining *random* variables, or unknown parameters.
:class:`Deterministic`
The class defining deterministic values, ie the result of a function.
:class:`Potential`
An arbitrary log-probability term to multiply into the joint
distribution.
:class:`Variable`
The base class for :class:`Stochastics` and :class:`Deterministics`.
"""
def __init__(self, doc, name, parents, cache_depth, verbose=-1):
# Name and docstrings
self.__doc__ = doc
if not isinstance(name, str):
raise ValueError('The name argument must be a string, but received %s.'%name)
self.__name__ = name
# Level of feedback verbosity
self.verbose = verbose
# Number of memorized values
self._cache_depth = cache_depth
# Initialize
self.parents = parents
def _get_parents(self):
# Get parents of this object
return self._parents
def _set_parents(self, new_parents):
# Define parents of this object
# THERE DOES NOT APPEAR TO BE A detach_children() METHOD IN CLASS
# Remove from current parents
# if hasattr(self,'_parents'):
# self._parents.detach_children()
# Specify new parents
self._parents = self.ParentDict(regular_dict = new_parents, owner = self)
# Add self as child of parents
self._parents.attach_parents()
# Get new lazy function
self.gen_lazy_function()
parents = property(_get_parents, _set_parents, doc="Self's parents: the variables referred to in self's declaration.")
def __str__(self):
return self.__repr__()
def __repr__(self):
return object.__repr__(self).replace(' object ', " '%s' "%self.__name__)
def gen_lazy_function(self):
pass
class Variable(Node):
"""
The base class for Stochastics and Deterministics.
:Parameters:
doc : string
The docstring for this node.
name : string
The name of this node.
parents : dictionary
A dictionary containing the parents of this node.
cache_depth : integer
An integer indicating how many of this node's
value computations should be 'memorized'.
trace : boolean
Indicates whether a trace should be kept for this variable
if its model is fit using a Monte Carlo method.
plot : boolean
Indicates whether summary plots should be prepared for this
variable if summary plots of its model are requested.
dtype : numpy dtype
If the value of this variable's numpy dtype can be known in
advance, it is advantageous to specify it here.
verbose (optional) : integer
Level of output verbosity: 0=none, 1=low, 2=medium, 3=high
:SeeAlso:
Stochastic, Deterministic, Potential, Node
"""
__array_priority__ = 10
def __init__(self, doc, name, parents, cache_depth, trace=False, dtype=None, plot=None, verbose=-1):
self.dtype=dtype
self.keep_trace=trace
self._plot=plot
self.children = set()
self.extended_children = set()
Node.__init__(self, doc, name, parents, cache_depth, verbose=verbose)
if self.dtype is None:
if hasattr(self.value, 'dtype'):
self.dtype = self.value.dtype
else:
self.dtype = np.dtype(type(self.value))
def __str__(self):
return self.__name__
def _get_plot(self):
# Get plotting flag
return self._plot
def _set_plot(self, true_or_false):
# Set plotting flag
self._plot = true_or_false
plot = property(_get_plot, _set_plot, doc='A flag indicating whether self should be plotted.')
def stats(self, alpha=0.05, start=0, batches=100, chain=None, quantiles=(2.5, 25, 50, 75, 97.5)):
"""
Generate posterior statistics for node.
:Parameters:
alpha : float
The alpha level for generating posterior intervals. Defaults to
0.05.
start : int
The starting index from which to summarize (each) chain. Defaults
to zero.
batches : int
Batch size for calculating standard deviation for non-independent
samples. Defaults to 100.
chain : int
The index for which chain to summarize. Defaults to None (all
chains).
quantiles : tuple or list
The desired quantiles to be calculated. Defaults to (2.5, 25, 50, 75, 97.5).
"""
return self.trace.stats(alpha=alpha, start=start, batches=batches,
chain=chain, quantiles=quantiles)
def summary(self, alpha=0.05, start=0, batches=100, chain=None, roundto=3):
"""
Generate a pretty-printed summary of the node.
:Parameters:
alpha : float
The alpha level for generating posterior intervals. Defaults to
0.05.
start : int
The starting index from which to summarize (each) chain. Defaults
to zero.
batches : int
Batch size for calculating standard deviation for non-independent
samples. Defaults to 100.
chain : int
The index for which chain to summarize. Defaults to None (all
chains).
roundto : int
The number of digits to round posterior statistics.
"""
# Calculate statistics for Node
statdict = self.stats(alpha=alpha, start=start, batches=batches, chain=chain)
size = np.size(statdict['mean'])
print_('\n%s:' % self.__name__)
print_(' ')
# Initialize buffer
buffer = []
# Title
# buffer += ['Summary statistics']
# buffer += ['%s' % '='*len(buffer[-1])]
# buffer += ['']*2
# Index to interval label
iindex = [key.split()[-1] for key in statdict.keys()].index('interval')
interval = statdict.keys()[iindex]
# Print basic stats
buffer += ['Mean SD MC Error %s' % interval]
buffer += ['-'*len(buffer[-1])]
indices = range(size)
if len(indices)==1:
indices = [None]
for index in indices:
# Extract statistics and convert to string
m = str(round(statdict['mean'][index], roundto))
sd = str(round(statdict['standard deviation'][index], roundto))
mce = str(round(statdict['mc error'][index], roundto))
hpd = str(statdict[interval][index].squeeze().round(roundto))
# Build up string buffer of values
valstr = m
valstr += ' '*(17-len(m)) + sd
valstr += ' '*(17-len(sd)) + mce
valstr += ' '*(len(buffer[-1]) - len(valstr) - len(hpd)) + hpd
buffer += [valstr]
buffer += ['']*2
# Print quantiles
buffer += ['Posterior quantiles:','']
buffer += ['2.5 25 50 75 97.5']
buffer += [' |---------------|===============|===============|---------------|']
for index in indices:
quantile_str = ''
for i,q in enumerate((2.5, 25, 50, 75, 97.5)):
qstr = str(round(statdict['quantiles'][q][index], roundto))
quantile_str += qstr + ' '*(17-i-len(qstr))
buffer += [quantile_str.strip()]
buffer += ['']
print_('\t' + '\n\t'.join(buffer))
ContainerRegistry = []
class ContainerMeta(type):
def __init__(cls, name, bases, dict):
type.__init__(cls, name, bases, dict)
def change_method(self, *args, **kwargs):
raise NotImplementedError(name + ' instances cannot be changed.')
if cls.register:
ContainerRegistry.append((cls, cls.containing_classes))
for meth in cls.change_methods:
setattr(cls, meth, UnboundMethodType(change_method, None, cls))
cls.register=False
class ContainerBase(object):
"""
Abstract base class.
:SeeAlso:
ListContainer, SetContainer, DictContainer, TupleContainer, ArrayContainer
"""
register = False
change_methods = []
containing_classes = []
def __init__(self, input):
# ContainerBase class initialization
# Look for name attributes
if hasattr(input, '__file__'):
_filename = os.path.split(input.__file__)[-1]
self.__name__ = os.path.splitext(_filename)[0]
elif hasattr(input, '__name__'):
self.__name__ = input.__name__
else:
try:
self.__name__ = input['__name__']
except:
self.__name__ = 'container'
def assimilate(self, new_container):
self.containers.append(new_container)
self.variables.update(new_container.variables)
self.stochastics.update(new_container.stochastics)
self.potentials.update(new_container.potentials)
self.deterministics.update(new_container.deterministics)
self.observed_stochastics.update(new_container.observed_stochastics)
def _get_logp(self):
# Return total log-probabilities from all elements
return logp_of_set(self.stochastics | self.potentials | self.observed_stochastics)
# Define log-probability property
logp = property(_get_logp, doc='The summed log-probability of all stochastic variables (data\nor otherwise) and factor potentials in self.')
ContainerBase = six.with_metaclass(ContainerMeta, ContainerBase)
StochasticRegistry = []
class StochasticMeta(type):
def __init__(cls, name, bases, dict):
type.__init__(cls, name, bases, dict)
StochasticRegistry.append(cls)
class StochasticBase(six.with_metaclass(StochasticMeta, Variable)):
"""
Abstract base class.
:SeeAlso:
Stochastic, Variable
"""
DeterministicRegistry = []
class DeterministicMeta(type):
def __init__(cls, name, bases, dict):
type.__init__(cls, name, bases, dict)
DeterministicRegistry.append(cls)
class DeterministicBase(six.with_metaclass(DeterministicMeta, Variable)):
"""
Abstract base class.
:SeeAlso:
Deterministic, Variable
"""
PotentialRegistry = []
class PotentialMeta(type):
def __init__(cls, name, bases, dict):
type.__init__(cls, name, bases, dict)
PotentialRegistry.append(cls)
class PotentialBase(six.with_metaclass(PotentialMeta, Node)):
"""
Abstract base class.
:SeeAlso:
Potential, Variable
"""
|