/usr/share/pyshared/pymc/diagnostics.py is in python-pymc 2.2+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 | # Convergence diagnostics and model validation
import numpy as np
import pymc
from pymc.utils import autocorr, autocov
from copy import copy
import pdb
from pymc import six
from pymc.six import print_
xrange = six.moves.xrange
__all__ = ['geweke', 'gelman_rubin', 'raftery_lewis', 'validate', 'discrepancy', 'iat']
def open01(x, limit=1.e-6):
"""Constrain numbers to (0,1) interval"""
try:
return np.array([min(max(y, limit), 1.-limit) for y in x])
except TypeError:
return min(max(x, limit), 1.-limit)
class diagnostic(object):
"""
This decorator allows for PyMC arguments of various types to be passed to
the diagnostic functions. It identifies the type of object and locates its
trace(s), then passes the data to the wrapped diagnostic function.
"""
def __init__(self, all_chains=False):
""" Initialize wrapper """
self.all_chains = all_chains
def __call__(self, f):
def wrapped_f(pymc_obj, *args, **kwargs):
# Figure out what type of object it is
try:
values = {}
# First try Model type
for variable in pymc_obj._variables_to_tally:
if self.all_chains:
k = pymc_obj.db.chains
data = [variable.trace(chain=i) for i in range(k)]
else:
data = variable.trace()
name = variable.__name__
if kwargs.get('verbose'):
print_("\nDiagnostic for %s ..." % name)
values[name] = f(data, *args, **kwargs)
return values
except AttributeError:
pass
try:
# Then try Node type
if self.all_chains:
k = pymc_obj.trace.db.chains
data = [pymc_obj.trace(chain=i) for i in range(k)]
else:
data = pymc_obj.trace()
name = pymc_obj.__name__
return f(data, *args, **kwargs)
except (AttributeError,ValueError):
pass
# If others fail, assume that raw data is passed
return f(pymc_obj, *args, **kwargs)
wrapped_f.__doc__ = f.__doc__
wrapped_f.__name__ = f.__name__
return wrapped_f
def validate(sampler, replicates=20, iterations=10000, burn=5000, thin=1, deterministic=False, db='ram', plot=True, verbose=0):
"""
Model validation method, following Cook et al. (Journal of Computational and
Graphical Statistics, 2006, DOI: 10.1198/106186006X136976).
Generates posterior samples based on 'true' parameter values and data simulated
from the priors. The quantiles of the parameter values are calculated, based on
the samples. If the model is valid, the quantiles should be uniformly distributed
over [0,1].
Since this relies on the generation of simulated data, all data stochastics
must have a valid random() method for validation to proceed.
Parameters
----------
sampler : Sampler
An MCMC sampler object.
replicates (optional) : int
The number of validation replicates (i.e. number of quantiles to be simulated).
Defaults to 100.
iterations (optional) : int
The number of MCMC iterations to be run per replicate. Defaults to 2000.
burn (optional) : int
The number of burn-in iterations to be run per replicate. Defaults to 1000.
thin (optional) : int
The thinning factor to be applied to posterior sample. Defaults to 1 (no thinning)
deterministic (optional) : bool
Flag for inclusion of deterministic nodes in validation procedure. Defaults
to False.
db (optional) : string
The database backend to use for the validation runs. Defaults to 'ram'.
plot (optional) : bool
Flag for validation plots. Defaults to True.
Returns
-------
stats : dict
Return a dictionary containing tuples with the chi-square statistic and
associated p-value for each data stochastic.
Notes
-----
This function requires SciPy.
"""
import scipy as sp
# Set verbosity for models to zero
sampler.verbose = 0
# Specify parameters to be evaluated
parameters = sampler.stochastics
if deterministic:
# Add deterministics to the mix, if requested
parameters = parameters | sampler.deterministics
# Assign database backend
original_backend = sampler.db.__name__
sampler._assign_database_backend(db)
# Empty lists for quantiles
quantiles = {}
if verbose:
print_("\nExecuting Cook et al. (2006) validation procedure ...\n")
# Loop over replicates
for i in range(replicates):
# Sample from priors
for p in sampler.stochastics:
if not p.extended_parents:
p.random()
# Sample "true" data values
for o in sampler.observed_stochastics:
# Generate simuated data for data stochastic
o.set_value(o.random(), force=True)
if verbose:
print_("Data for %s is %s" % (o.__name__, o.value))
param_values = {}
# Record data-generating parameter values
for s in parameters:
param_values[s] = s.value
try:
# Fit models given parameter values
sampler.sample(iterations, burn=burn, thin=thin)
for s in param_values:
if not i:
# Initialize dict
quantiles[s.__name__] = []
trace = s.trace()
q = sum(trace<param_values[s], 0)/float(len(trace))
quantiles[s.__name__].append(open01(q))
# Replace data values
for o in sampler.observed_stochastics:
o.revert()
finally:
# Replace data values
for o in sampler.observed_stochastics:
o.revert()
# Replace backend
sampler._assign_database_backend(original_backend)
if not i % 10 and i and verbose:
print_("\tCompleted validation replicate", i)
# Replace backend
sampler._assign_database_backend(original_backend)
stats = {}
# Calculate chi-square statistics
for param in quantiles:
q = quantiles[param]
# Calculate chi-square statistics
X2 = sum(sp.special.ndtri(q)**2)
# Calculate p-value
p = sp.special.chdtrc(replicates, X2)
stats[param] = (X2, p)
if plot:
# Convert p-values to z-scores
p = copy(stats)
for i in p:
p[i] = p[i][1]
pymc.Matplot.zplot(p, verbose=verbose)
return stats
@diagnostic()
def geweke(x, first=.1, last=.5, intervals=20):
"""Return z-scores for convergence diagnostics.
Compare the mean of the first % of series with the mean of the last % of
series. x is divided into a number of segments for which this difference is
computed. If the series is converged, this score should oscillate between
-1 and 1.
Parameters
----------
x : array-like
The trace of some stochastic parameter.
first : float
The fraction of series at the beginning of the trace.
last : float
The fraction of series at the end to be compared with the section
at the beginning.
intervals : int
The number of segments.
Returns
-------
scores : list [[]]
Return a list of [i, score], where i is the starting index for each
interval and score the Geweke score on the interval.
Notes
-----
The Geweke score on some series x is computed by:
.. math:: \frac{E[x_s] - E[x_e]}{\sqrt{V[x_s] + V[x_e]}}
where :math:`E` stands for the mean, :math:`V` the variance,
:math:`x_s` a section at the start of the series and
:math:`x_e` a section at the end of the series.
References
----------
Geweke (1992)
"""
if np.rank(x)>1:
return [geweke(y, first, last, intervals) for y in np.transpose(x)]
# Filter out invalid intervals
if first + last >= 1:
raise ValueError("Invalid intervals for Geweke convergence analysis",(first,last))
# Initialize list of z-scores
zscores = []
# Last index value
end = len(x) - 1
# Calculate starting indices
sindices = np.arange(0, end/2, step = int((end / 2) / (intervals-1)))
# Loop over start indices
for start in sindices:
# Calculate slices
first_slice = x[start : start + int(first * (end - start))]
last_slice = x[int(end - last * (end - start)):]
z = (first_slice.mean() - last_slice.mean())
z /= np.sqrt(first_slice.std()**2 + last_slice.std()**2)
zscores.append([start, z])
if intervals == None:
return zscores[0]
else:
return zscores
# From StatLib -- gibbsit.f
@diagnostic()
def raftery_lewis(x, q, r, s=.95, epsilon=.001, verbose=1):
"""
Return the number of iterations needed to achieve a given
precision.
:Parameters:
x : sequence
Sampled series.
q : float
Quantile.
r : float
Accuracy requested for quantile.
s (optional) : float
Probability of attaining the requested accuracy (defaults to 0.95).
epsilon (optional) : float
Half width of the tolerance interval required for the q-quantile (defaults to 0.001).
verbose (optional) : int
Verbosity level for output (defaults to 1).
:Return:
nmin : int
Minimum number of independent iterates required to achieve
the specified accuracy for the q-quantile.
kthin : int
Skip parameter sufficient to produce a first-order Markov
chain.
nburn : int
Number of iterations to be discarded at the beginning of the
simulation, i.e. the number of burn-in iterations.
nprec : int
Number of iterations not including the burn-in iterations which
need to be obtained in order to attain the precision specified
by the values of the q, r and s input parameters.
kmind : int
Minimum skip parameter sufficient to produce an independence
chain.
:Example:
>>> raftery_lewis(x, q=.025, r=.005)
:Reference:
Raftery, A.E. and Lewis, S.M. (1995). The number of iterations,
convergence diagnostics and generic Metropolis algorithms. In
Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegelhalter
and S. Richardson, eds.). London, U.K.: Chapman and Hall.
See the fortran source file `gibbsit.f` for more details and references.
"""
if np.rank(x)>1:
return [raftery_lewis(y, q, r, s, epsilon, verbose) for y in np.transpose(x)]
output = nmin, kthin, nburn, nprec, kmind = pymc.flib.gibbmain(x, q, r, s, epsilon)
if verbose:
print_("\n========================")
print_("Raftery-Lewis Diagnostic")
print_("========================")
print_()
print_("%s iterations required (assuming independence) to achieve %s accuracy with %i percent probability." % (nmin, r, 100*s))
print_()
print_("Thinning factor of %i required to produce a first-order Markov chain." % kthin)
print_()
print_("%i iterations to be discarded at the beginning of the simulation (burn-in)." % nburn)
print_()
print_("%s subsequent iterations required." % nprec)
print_()
print_("Thinning factor of %i required to produce an independence chain." % kmind)
return output
def batch_means(x, f=lambda y:y, theta=.5, q=.95, burn=0):
"""
TODO: Use Bayesian CI.
Returns the half-width of the frequentist confidence interval
(q'th quantile) of the Monte Carlo estimate of E[f(x)].
:Parameters:
x : sequence
Sampled series. Must be a one-dimensional array.
f : function
The MCSE of E[f(x)] will be computed.
theta : float between 0 and 1
The batch length will be set to len(x) ** theta.
q : float between 0 and 1
The desired quantile.
:Example:
>>>batch_means(x, f=lambda x: x**2, theta=.5, q=.95)
:Reference:
Flegal, James M. and Haran, Murali and Jones, Galin L. (2007).
Markov chain Monte Carlo: Can we trust the third significant figure?
<Publication>
:Note:
Requires SciPy
"""
try:
import scipy
from scipy import stats
except ImportError:
raise ImportError('SciPy must be installed to use batch_means.')
x=x[burn:]
n = len(x)
b = np.int(n**theta)
a = n/b
t_quant = stats.t.isf(1-q,a-1)
Y = np.array([np.mean(f(x[i*b:(i+1)*b])) for i in xrange(a)])
sig = b / (a-1.) * sum((Y - np.mean(f(x))) ** 2)
return t_quant * sig / np.sqrt(n)
def discrepancy(observed, simulated, expected):
"""Calculates Freeman-Tukey statistics (Freeman and Tukey 1950) as
a measure of discrepancy between observed and r replicates of simulated data. This
is a convenient method for assessing goodness-of-fit (see Brooks et al. 2000).
D(x|\theta) = \sum_j (\sqrt{x_j} - \sqrt{e_j})^2
:Parameters:
observed : Iterable of observed values (size=(n,))
simulated : Iterable of simulated values (size=(r,n))
expected : Iterable of expected values (size=(r,) or (r,n))
:Returns:
D_obs : Discrepancy of observed values
D_sim : Discrepancy of simulated values
"""
try:
simulated = simulated.astype(float)
except AttributeError:
simulated = simulated.trace().astype(float)
try:
expected = expected.astype(float)
except AttributeError:
expected = expected.trace().astype(float)
# Ensure expected values are rxn
expected = np.resize(expected, simulated.shape)
D_obs = np.sum([(np.sqrt(observed)-np.sqrt(e))**2 for e in expected], 1)
D_sim = np.sum([(np.sqrt(s)-np.sqrt(e))**2 for s,e in zip(simulated, expected)], 1)
# Print p-value
count = sum(s>o for o,s in zip(D_obs,D_sim))
print_('Bayesian p-value: p=%.3f' % (1.*count/len(D_obs)))
return D_obs, D_sim
@diagnostic(all_chains=True)
def gelman_rubin(x):
""" Returns estimate of R for a set of traces.
The Gelman-Rubin diagnostic tests for lack of convergence by comparing
the variance between multiple chains to the variance within each chain.
If convergence has been achieved, the between-chain and within-chain
variances should be identical. To be most effective in detecting evidence
for nonconvergence, each chain should have been initialized to starting
values that are dispersed relative to the target distribution.
Parameters
----------
x : array-like
A two-dimensional array containing the parallel traces (minimum 2)
of some stochastic parameter.
Returns
-------
Rhat : float
Return the potential scale reduction factor, :math:`\hat{R}`
Notes
-----
The diagnostic is computed by:
.. math:: \hat{R} = \frac{\hat{V}}{W}
where :math:`W` is the within-chain variance and :math:`\hat{V}` is
the posterior variance estimate for the pooled traces. This is the
potential scale reduction factor, which converges to unity when each
of the traces is a sample from the target posterior. Values greater
than one indicate that one or more chains have not yet converged.
References
----------
Brooks and Gelman (1998)
Gelman and Rubin (1992)"""
if np.shape(x) < (2,):
raise ValueError('Gelman-Rubin diagnostic requires multiple chains.')
try:
m,n = np.shape(x)
except ValueError:
return [gelman_rubin(np.transpose(y)) for y in np.transpose(x)]
# Calculate between-chain variance
B_over_n = np.sum((np.mean(x,1) - np.mean(x))**2)/(m-1)
# Calculate within-chain variances
W = np.sum([(x[i] - xbar)**2 for i,xbar in enumerate(np.mean(x,1))]) / (m*(n-1))
# (over) estimate of variance
s2 = W*(n-1)/n + B_over_n
# Pooled posterior variance estimate
V = s2 + B_over_n/m
# Calculate PSRF
R = V/W
return R
def _find_max_lag(x, rho_limit=0.05, maxmaxlag=20000, verbose=0):
"""Automatically find an appropriate maximum lag to calculate IAT"""
# Fetch autocovariance matrix
acv = autocov(x)
# Calculate rho
rho = acv[0,1]/acv[0,0]
lam = -1./np.log(abs(rho))
# Initial guess at 1.5 times lambda (i.e. 3 times mean life)
maxlag = int(np.floor(3.*lam)) + 1
# Jump forward 1% of lambda to look for rholimit threshold
jump = int(np.ceil(0.01*lam)) + 1
T = len(x)
while ((abs(rho) > rho_limit) & (maxlag < min(T/2, maxmaxlag))):
acv = autocov(x, maxlag)
rho = acv[0,1]/acv[0,0]
maxlag += jump
# Add 30% for good measure
maxlag = int(np.floor(1.3*maxlag))
if maxlag >= min(T/2, maxmaxlag):
maxlag = min(min(T/2, maxlag), maxmaxlag)
"maxlag fixed to %d" % maxlag
return maxlag
if maxlag <= 1:
print_("maxlag = %d, fixing value to 10" % maxlag)
return 10
if verbose:
print_("maxlag = %d" % maxlag)
return maxlag
def _cut_time(gammas):
"""Support function for iat().
Find cutting time, when gammas become negative."""
for i in range(len(gammas)-1):
if not ((gammas[i+1]>0.0) & (gammas[i+1]<gammas[i])): return i
return i
@diagnostic()
def iat(x, maxlag=None):
"""Calculate the integrated autocorrelation time (IAT), given the trace from a Stochastic."""
if not maxlag:
# Calculate maximum lag to which autocorrelation is calculated
maxlag = _find_max_lag(x)
acr = [autocorr(x, lag) for lag in range(1, maxlag+1)]
# Calculate gamma values
gammas = [(acr[2*i]+acr[2*i+1]) for i in range(maxlag//2)]
cut = _cut_time(gammas)
if cut+1 == len(gammas):
print_("Not enough lag to calculate IAT")
return np.sum(2*gammas[:cut+1]) - 1.0
|