This file is indexed.

/usr/share/pyshared/pyolib/fourier.py is in python-pyo 0.6.8-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
"""
Fast Fourier Transform.

A Fast Fourier Transform (FFT) is an efficient algorithm to compute 
the discrete Fourier transform (DFT) and its inverse (IFFT).

The objects below can be used to perform sound processing in the 
spectral domain.

"""

"""
Copyright 2011 Olivier Belanger

This file is part of pyo, a python module to help digital signal
processing script creation.

pyo is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

pyo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with pyo.  If not, see <http://www.gnu.org/licenses/>.
"""
from _core import *
from _maps import *
from _widgets import createSpectrumWindow
from pattern import Pattern

class FFT(PyoObject):
    """
    Fast Fourier Transform.

    FFT analyses an input signal and converts it into the spectral
    domain. Three audio signals are sent out of the object, the
    `real` part, from bin 0 (DC) to bin size/2 (Nyquist), the 
    `imaginary` part, from bin 0 to bin size/2-1, and the bin 
    number, an increasing count from 0 to size-1. `real` and 
    `imaginary` buffer's left samples  up to size-1 are filled 
    with zeros. See notes below for an example of how to retrieve 
    each signal component.
    
    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        input : PyoObject
            Input signal to process.
        size : int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. Defaults to 1024.
        overlaps : int, optional
            The number of overlaped analysis block. Must be a
            positive integer. More overlaps can greatly improved
            sound quality synthesis but it is also more CPU
            expensive. Defaults to 4.
        wintype : int, optional
            Shape of the envelope used to filter each input frame.
            Possible shapes are :
                0. rectangular (no windowing)
                1. Hamming
                2. Hanning
                3. Bartlett (triangular)
                4. Blackman 3-term
                5. Blackman-Harris 4-term
                6. Blackman-Harris 7-term
                7. Tuckey (alpha = 0.66)
                8. Sine (half-sine window)

    .. note::
    
        FFT has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

        FFT has no `mul` and `add` attributes.
        
        Real, imaginary and bin_number parts are three separated set 
        of audio streams. The user should call :
        
        FFT['real'] to retrieve the real part.
        FFT['imag'] to retrieve the imaginary part.
        FFT['bin'] to retrieve the bin number part.

    >>> s = Server().boot()
    >>> s.start()
    >>> a = Noise(.25).mix(2)
    >>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
    >>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
    >>> amp = TableIndex(t, fin["bin"])
    >>> re = fin["real"] * amp
    >>> im = fin["imag"] * amp
    >>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()

    """
    def __init__(self, input, size=1024, overlaps=4, wintype=2):
        PyoObject.__init__(self)
        self._real_dummy = []
        self._imag_dummy = []
        self._bin_dummy = []
        self._input = input
        self._size = size
        self._overlaps = overlaps
        self._wintype = wintype
        self._in_fader = InputFader(input)
        in_fader, size, wintype, lmax = convertArgsToLists(self._in_fader, size, wintype)
        self._base_players = []
        for j in range(overlaps):
            for i in range(lmax):
                hopsize = wrap(size,i) * j / overlaps
                self._base_players.append(FFTMain_base(wrap(in_fader,i), wrap(size,i), hopsize, wrap(wintype,i)))
        self._real_objs = []
        self._imag_objs = []
        self._bin_objs = []
        for j in range(len(self._base_players)):
            self._real_objs.append(FFT_base(wrap(self._base_players,j), 0, self._mul, self._add))
            self._imag_objs.append(FFT_base(wrap(self._base_players,j), 1, self._mul, self._add))
            self._bin_objs.append(FFT_base(wrap(self._base_players,j), 2, self._mul, self._add))
            
    def __len__(self):
        return len(self._real_objs)

    def __getitem__(self, str):
        if str == 'real':
            self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._real_objs)]))
            return self._real_dummy[-1]
        if str == 'imag':
            self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._imag_objs)]))
            return self._imag_dummy[-1]
        if str == 'bin':
            self._bin_dummy.append(Dummy([obj for i, obj in enumerate(self._bin_objs)]))
            return self._bin_dummy[-1]

    def get(self, identifier="real", all=False):
        """
        Return the first sample of the current buffer as a float.
        
        Can be used to convert audio stream to usable Python data.
        
        "real", "imag" or "bin" must be given to `identifier` to specify
        which stream to get value from.
        
        :Args:

            identifier : string {"real", "imag", "bin"}
                Address string parameter identifying audio stream.
                Defaults to "real".
            all : boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.
                 
        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]
 
    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.
        
        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)
                    
    def play(self, dur=0, delay=0):
        dur, delay, lmax = convertArgsToLists(dur, delay)
        self._base_players = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._base_players)]
        self._real_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._real_objs)]
        self._imag_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._imag_objs)]
        self._bin_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._bin_objs)]
        return self
    
    def stop(self):
        [obj.stop() for obj in self._base_players]
        [obj.stop() for obj in self._real_objs]
        [obj.stop() for obj in self._imag_objs]
        [obj.stop() for obj in self._bin_objs]
        return self

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setSize(self, x):
        """
        Replace the `size` attribute.
        
        :Args:

            x : int
                new `size` attribute.
        
        """
        self._size = x
        x, lmax = convertArgsToLists(x)
        poly = len(self._base_players) / self._overlaps
        for j in range(self._overlaps):
            for i in range(poly):
                hopsize = wrap(x,i) * j / self._overlaps
                self._base_players[j*poly+i].setSize(wrap(x,i), hopsize)

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.
        
        :Args:

            x : int
                new `wintype` attribute.
        
        """
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Input signal to process.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size
    @size.setter
    def size(self, x): self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype
    @wintype.setter
    def wintype(self, x): self.setWinType(x)

class IFFT(PyoObject):
    """
    Inverse Fast Fourier Transform.

    IFFT takes a signal in the spectral domain and converts it to a 
    real audio signal using an inverse fast fourier transform. 
    IFFT takes two signals in input, the `real` and `imaginary` parts
    of an FFT analysis and returns the corresponding real signal.
    These signals must correspond to `real` and `imaginary` parts
    from an FFT object.

    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        inreal : PyoObject
            Input `real` signal.
        inimag : PyoObject
            Input `imaginary` signal.
        size : int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. This value must match the `size` 
            attribute of the former FFT object. Defaults to 1024.
        overlaps : int, optional
            The number of overlaped analysis block. Must be a
            positive integer. More overlaps can greatly improved
            sound quality synthesis but it is also more CPU
            expensive. This value must match the `overlaps` 
            atribute of the former FFT object. Defaults to 4.
        wintype : int, optional
            Shape of the envelope used to filter each output frame.
            Possible shapes are :
                0. rectangular (no windowing)
                1. Hamming
                2. Hanning
                3. Bartlett (triangular)
                4. Blackman 3-term
                5. Blackman-Harris 4-term
                6. Blackman-Harris 7-term
                7. Tuckey (alpha = 0.66)
                8. Sine (half-sine window)

    .. note::
    
        The number of streams in `inreal` and `inimag` attributes
        must be egal to the output of the former FFT object. In
        most case, it will be `channels of processed sound` * `overlaps`.

        The output of IFFT must be mixed to reconstruct the real
        signal from the overlapped streams. It is left to the user
        to call the mix(channels of the processed sound) method on
        an IFFT object.
    
    >>> s = Server().boot()
    >>> s.start()
    >>> a = Noise(.25).mix(2)
    >>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
    >>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
    >>> amp = TableIndex(t, fin["bin"])
    >>> re = fin["real"] * amp
    >>> im = fin["imag"] * amp
    >>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()

    """
    def __init__(self, inreal, inimag, size=1024, overlaps=4, wintype=2, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._inreal = inreal
        self._inimag = inimag
        self._size = size
        self._overlaps = overlaps
        self._wintype = wintype
        self._in_fader = InputFader(inreal)
        self._in_fader2 = InputFader(inimag)
        in_fader, in_fader2, size, wintype, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, size, wintype, mul, add)
        self._base_objs = []
        ratio = lmax / overlaps
        for i in range(lmax):
            hopsize = wrap(size,i) * ((i/ratio)%overlaps) / overlaps
            self._base_objs.append(IFFT_base(wrap(in_fader,i), wrap(in_fader2,i), wrap(size,i), hopsize, wrap(wintype,i), wrap(mul,i), wrap(add,i)))

    def __len__(self):
        return len(self._inreal)
        
    def setInReal(self, x, fadetime=0.05):
        """
        Replace the `inreal` attribute.
        
        :Args:

            x : PyoObject
                New input `real` signal.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inreal = x
        self._in_fader.setInput(x, fadetime)

    def setInImag(self, x, fadetime=0.05):
        """
        Replace the `inimag` attribute.
        
        :Args:

            x : PyoObject
                New input `imag` signal.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inimag = x
        self._in_fader2.setInput(x, fadetime)

    def setSize(self, x):
        """
        Replace the `size` attribute.
        
        :Args:

            x : int
                new `size` attribute.
        
        """
        self._size = x
        x, lmax = convertArgsToLists(x)
        ratio = len(self._base_objs) / self._overlaps
        for i, obj in enumerate(self._base_objs):
            hopsize = wrap(x,i) * ((i/ratio)%self._overlaps) / self._overlaps
            self._base_objs[i].setSize(wrap(x,i), hopsize)

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.
        
        :Args:

            x : int
                new `wintype` attribute.
        
        """
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)
      
    @property
    def inreal(self):
        """PyoObject. Real input signal.""" 
        return self._inreal
    @inreal.setter
    def inreal(self, x): self.setInReal(x)

    @property
    def inimag(self):
        """PyoObject. Imaginary input signal.""" 
        return self._inimag
    @inimag.setter
    def inimag(self, x): self.setInImag(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size
    @size.setter
    def size(self, x): self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype
    @wintype.setter
    def wintype(self, x): self.setWinType(x)

class CarToPol(PyoObject):
    """
    Performs the cartesian to polar conversion.

    The Cartesian system locates points on a plane by measuring the  horizontal and 
    vertical distances from an arbitrary origin to a point.  These are usually denoted 
    as a pair of values (X,Y).

    The Polar system locates the point by measuring the straight line distance, usually 
    denoted by R, from the origin to the point and the angle of an imaginary line from 
    the origin to the point measured counterclockwise from the positive X axis.

    :Parent: :py:class:`PyoObject`

    :Args:

        inreal : PyoObject
            Real input signal.
        inimag : PyoObject
            Imaginary input signal.

    .. note::
    
        Polar coordinates can be retrieve by calling :
        
        CarToPol['mag'] to retrieve the magnitude part.
        CarToPol['ang'] to retrieve the angle part.

        CarToPol has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
    >>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
    >>> fin1 = FFT(snd1, size=1024, overlaps=4)
    >>> fin2 = FFT(snd2, size=1024, overlaps=4)
    >>> # get magnitudes and phases of input sounds
    >>> pol1 = CarToPol(fin1["real"], fin1["imag"])
    >>> pol2 = CarToPol(fin2["real"], fin2["imag"])
    >>> # times magnitudes and adds phases
    >>> mag = pol1["mag"] * pol2["mag"] * 100
    >>> pha = pol1["ang"] + pol2["ang"]
    >>> # converts back to rectangular
    >>> car = PolToCar(mag, pha)
    >>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
    >>> s.start()

    """
    def __init__(self, inreal, inimag, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._mag_dummy = []
        self._ang_dummy = []
        self._inreal = inreal
        self._inimag = inimag
        self._in_fader = InputFader(inreal)
        self._in_fader2 = InputFader(inimag)
        in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
        self._base_objs = []
        for i in range(lmax):
            self._base_objs.append(CarToPol_base(wrap(in_fader,i), wrap(in_fader2,i), 0, wrap(mul,i), wrap(add,i)))
            self._base_objs.append(CarToPol_base(wrap(in_fader,i), wrap(in_fader2,i), 1, wrap(mul,i), wrap(add,i)))

    def __len__(self):
        return len(self._inreal)

    def __getitem__(self, str):
        if str == 'mag':
            self._mag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 0]))
            return self._mag_dummy[-1]
        if str == 'ang':
            self._ang_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 1]))
            return self._ang_dummy[-1]

    def get(self, identifier="mag", all=False):
        """
        Return the first sample of the current buffer as a float.

        Can be used to convert audio stream to usable Python data.

        "mag" or "ang" must be given to `identifier` to specify
        which stream to get value from.

        :Args:

            identifier : string {"mag", "ang"}
                Address string parameter identifying audio stream.
                Defaults to "mag".
            all : boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.

        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]

    def setInReal(self, x, fadetime=0.05):
        """
        Replace the `inreal` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inreal = x
        self._in_fader.setInput(x, fadetime)

    def setInImag(self, x, fadetime=0.05):
        """
        Replace the `inimag` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inimag = x
        self._in_fader2.setInput(x, fadetime)

    @property
    def inreal(self):
        """PyoObject. Real input signal.""" 
        return self._inreal
    @inreal.setter
    def inreal(self, x): self.setInReal(x)

    @property
    def inimag(self):
        """PyoObject. Imaginary input signal.""" 
        return self._inimag
    @inimag.setter
    def inimag(self, x): self.setInImag(x)

class PolToCar(PyoObject):
    """
    Performs the polar to cartesian conversion.

    The Polar system locates the point by measuring the straight line distance, usually 
    denoted by R, from the origin to the point and the angle of an imaginary line from 
    the origin to the point measured counterclockwise from the positive X axis.

    The Cartesian system locates points on a plane by measuring the  horizontal and 
    vertical distances from an arbitrary origin to a point.  These are usually denoted 
    as a pair of values (X,Y).

    :Parent: :py:class:`PyoObject`

    :Args:

        inmag : PyoObject
            Magintude input signal.
        inang : PyoObject
            Angle input signal.

    .. note::

        Cartesians coordinates can be retrieve by calling :
        
        PolToCar['real'] to retrieve the real part.
        CarToPol['imag'] to retrieve the imaginary part.

        PolToCar has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
    >>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
    >>> fin1 = FFT(snd1, size=1024, overlaps=4)
    >>> fin2 = FFT(snd2, size=1024, overlaps=4)
    >>> # get magnitudes and phases of input sounds
    >>> pol1 = CarToPol(fin1["real"], fin1["imag"])
    >>> pol2 = CarToPol(fin2["real"], fin2["imag"])
    >>> # times magnitudes and adds phases
    >>> mag = pol1["mag"] * pol2["mag"] * 100
    >>> pha = pol1["ang"] + pol2["ang"]
    >>> # converts back to rectangular
    >>> car = PolToCar(mag, pha)
    >>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
    >>> s.start()

    """
    def __init__(self, inmag, inang, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._real_dummy = []
        self._imag_dummy = []
        self._inmag = inmag
        self._inang = inang
        self._in_fader = InputFader(inmag)
        self._in_fader2 = InputFader(inang)
        in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
        self._base_objs = []
        for i in range(lmax):
            self._base_objs.append(PolToCar_base(wrap(in_fader,i), wrap(in_fader2,i), 0, wrap(mul,i), wrap(add,i)))
            self._base_objs.append(PolToCar_base(wrap(in_fader,i), wrap(in_fader2,i), 1, wrap(mul,i), wrap(add,i)))

    def __len__(self):
        return len(self._inmag)

    def __getitem__(self, str):
        if str == 'real':
            self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 0]))
            return self._real_dummy[-1]
        if str == 'imag':
            self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 1]))
            return self._imag_dummy[-1]

    def get(self, identifier="real", all=False):
        """
        Return the first sample of the current buffer as a float.

        Can be used to convert audio stream to usable Python data.

        "real" or "imag" must be given to `identifier` to specify
        which stream to get value from.

        :Args:

            identifier : string {"real", "imag"}
                Address string parameter identifying audio stream.
                Defaults to "mag".
            all : boolean, optional
                If True, the first value of each object's stream
                will be returned as a list. Otherwise, only the value
                of the first object's stream will be returned as a float.
                Defaults to False.

        """
        if not all:
            return self.__getitem__(identifier)[0]._getStream().getValue()
        else:
            return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]

    def setInMag(self, x, fadetime=0.05):
        """
        Replace the `inmag` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inmag = x
        self._in_fader.setInput(x, fadetime)

    def setInAng(self, x, fadetime=0.05):
        """
        Replace the `inang` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._inang = x
        self._in_fader2.setInput(x, fadetime)

    @property
    def inmag(self):
        """PyoObject. Magnitude input signal.""" 
        return self._inmag
    @inmag.setter
    def inmag(self, x): self.setInMag(x)

    @property
    def inang(self):
        """PyoObject. Angle input signal.""" 
        return self._inang
    @inang.setter
    def inang(self, x): self.setInAng(x)

class FrameDelta(PyoObject):
    """
    Computes the phase differences between successive frames.

    The difference between the phase values of successive FFT frames for a given bin 
    determines the exact frequency of the energy centered in that bin. This is often 
    known as the phase difference (and sometimes also referred to as phase derivative 
    or instantaneous frequency if it's been subjected to a few additional calculations).

    In order to reconstruct a plausible playback of re-ordered FFT frames, we need to 
    calculate the phase difference between successive frames and use it to construct a 
    `running phase` (by simply summing the successive differences with FrameAccum) for 
    the output FFT frames.

    :Parent: :py:class:`PyoObject`

    :Args:

        input : PyoObject
            Phase input signal, usually from an FFT analysis.
        framesize : int, optional
            Frame size in samples. Usually the same as the FFT size.
            Defaults to 1024.
        overlaps : int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.

    .. note::

        FrameDelta has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> s.start()
    >>> snd = SNDS_PATH + '/transparent.aif'
    >>> size, hop = 1024, 256
    >>> nframes = sndinfo(snd)[0] / size
    >>> a = SfPlayer(snd, mul=.3)
    >>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> fin = FFT(a, size=size, overlaps=4)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
    >>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
    >>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
    >>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
    >>> car = PolToCar(m_mag_read, accum)
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
    >>> right = Delay(fout, delay=0.013).out(1)

    """
    def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, mul, add)
        num_of_mains = len(self._in_fader) / self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i % num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(FrameDeltaMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i / num_of_mains
            self._base_objs.append(FrameDelta_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x : int
                new `framesize` attribute.

        """
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Phase input signal.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def framesize(self):
        """PyoObject. Frame size in samples.""" 
        return self._framesize
    @framesize.setter
    def framesize(self, x): self.setFrameSize(x)

class FrameAccum(PyoObject):
    """
    Accumulates the phase differences between successive frames.

    The difference between the phase values of successive FFT frames for a given bin 
    determines the exact frequency of the energy centered in that bin. This is often 
    known as the phase difference (and sometimes also referred to as phase derivative 
    or instantaneous frequency if it's been subjected to a few additional calculations).

    In order to reconstruct a plausible playback of re-ordered FFT frames, we need to 
    calculate the phase difference between successive frames, with FrameDelta, and use 
    it to construct a `running phase` (by simply summing the successive differences) for 
    the output FFT frames.

    :Parent: :py:class:`PyoObject`

    :Args:

        input : PyoObject
            Phase input signal.
        framesize : int, optional
            Frame size in samples. Usually same as the FFT size.
            Defaults to 1024.
        overlaps : int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.

    .. note::

        FrameAccum has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> s.start()
    >>> snd = SNDS_PATH + '/transparent.aif'
    >>> size, hop = 1024, 256
    >>> nframes = sndinfo(snd)[0] / size
    >>> a = SfPlayer(snd, mul=.3)
    >>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
    >>> fin = FFT(a, size=size, overlaps=4)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
    >>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
    >>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
    >>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
    >>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
    >>> car = PolToCar(m_mag_read, accum)
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
    >>> right = Delay(fout, delay=0.013).out(1)

    """
    def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, mul, add)
        num_of_mains = len(self._in_fader) / self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i%num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(FrameAccumMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i / num_of_mains
            self._base_objs.append(FrameAccum_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x : int
                new `framesize` attribute.

        """
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    @property
    def input(self):
        """PyoObject. Phase input signal.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def framesize(self):
        """PyoObject. Frame size in samples.""" 
        return self._framesize
    @framesize.setter
    def framesize(self, x): self.setFrameSize(x)

class Vectral(PyoObject):
    """
    Performs magnitude smoothing between successive frames.

    Vectral applies filter with different coefficients for increasing
    and decreasing magnitude vectors, bin by bin.

    :Parent: :py:class:`PyoObject`

    :Args:

        input : PyoObject
            Magnitude input signal, usually from an FFT analysis.
        framesize : int, optional
            Frame size in samples. Usually the same as the FFT size.
            Defaults to 1024.
        overlaps : int, optional
            Number of overlaps in incomming signal. Usually the same
            as the FFT overlaps. Defaults to 4.
        up : float or PyoObject, optional
            Filter coefficient for increasing bins, between 0 and 1.
            Lower values results in a longer ramp time for bin magnitude.
            Defaults to 1.
        down : float or PyoObject, optional
            Filter coefficient for decreasing bins, between 0 and 1.
            Lower values results in a longer decay time for bin magnitude.
            Defaults to 0.7
        damp : float or PyoObject, optional
            High frequencies damping factor, between 0 and 1. Lower values
            mean more damping. Defaults to 0.9.

    .. note::

        Vectral has no `out` method. Signal must be converted back to time domain, 
        with IFFT, before being sent to output.

    >>> s = Server().boot()
    >>> snd = SNDS_PATH + '/accord.aif'
    >>> size, olaps = 1024, 4
    >>> snd = SfPlayer(snd, speed=[.75,.8], loop=True, mul=.3)
    >>> fin = FFT(snd, size=size, overlaps=olaps)
    >>> pol = CarToPol(fin["real"], fin["imag"])
    >>> vec = Vectral(pol["mag"], framesize=size, overlaps=olaps, down=.2, damp=.6)
    >>> car = PolToCar(vec, pol["ang"])
    >>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=olaps).mix(2).out()
    >>> s.start()

    """
    def __init__(self, input, framesize=1024, overlaps=4, up=1.0, down=0.7, damp=0.9, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._framesize = framesize
        self._overlaps = overlaps
        self._up = up
        self._down = down
        self._damp = damp
        self._in_fader = InputFader(input)
        in_fader, framesize, overlaps, up, down, damp, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, up, down, damp, mul, add)
        num_of_mains = len(self._in_fader) / self._overlaps
        self._base_players = []
        for j in range(num_of_mains):
            objs_list = []
            for i in range(len(self._in_fader)):
                if (i % num_of_mains) == j:
                    objs_list.append(self._in_fader[i])
            self._base_players.append(VectralMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j), wrap(up,j), wrap(down,j), wrap(damp,j)))
        self._base_objs = []
        for i in range(lmax):
            base_player = i % num_of_mains
            overlap = i / num_of_mains
            self._base_objs.append(Vectral_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))

    def out(self, chnl=0, inc=1, dur=0, delay=0):
        return self.play(dur, delay)

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.

        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setFrameSize(self, x):
        """
        Replace the `framesize` attribute.

        :Args:

            x : int
                new `framesize` attribute.

        """
        self._framesize = x
        x, lmax = convertArgsToLists(x)
        [obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def setUp(self, x):
        """
        Replace the `up` attribute.

        :Args:

            x : float or PyoObject
                new `up` attribute.

        """
        self._up = x
        x, lmax = convertArgsToLists(x)
        [obj.setUp(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def setDown(self, x):
        """
        Replace the `down` attribute.

        :Args:

            x : float or PyoObject
                new `down` attribute.

        """
        self._down = x
        x, lmax = convertArgsToLists(x)
        [obj.setDown(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def setDamp(self, x):
        """
        Replace the `damp` attribute.

        :Args:

            x : float or PyoObject
                new `damp` attribute.

        """
        self._damp = x
        x, lmax = convertArgsToLists(x)
        [obj.setDamp(wrap(x,i)) for i, obj in enumerate(self._base_players)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMap(0., 1., "lin", "up", self._up),
                          SLMap(0., 1., "lin", "down", self._down),
                          SLMap(0., 1., "lin", "damp", self._damp),
                          SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def input(self):
        """PyoObject. Magnitude input signal.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def framesize(self):
        """int. Frame size in samples.""" 
        return self._framesize
    @framesize.setter
    def framesize(self, x): self.setFrameSize(x)

    @property
    def up(self):
        """float or PyoObject. Filter coefficient for increasing bins.""" 
        return self._up
    @up.setter
    def up(self, x): self.setUp(x)

    @property
    def down(self):
        """float or PyoObject. Filter coefficient for decreasing bins.""" 
        return self._down
    @down.setter
    def down(self, x): self.setDown(x)

    @property
    def damp(self):
        """float or PyoObject. High frequencies damping factor.""" 
        return self._damp
    @damp.setter
    def damp(self, x): self.setDamp(x)
    
class CvlVerb(PyoObject):
    """
    Convolution based reverb.

    CvlVerb implements convolution based on a uniformly partitioned overlap-save 
    algorithm. This object can be used to convolve an input signal with an 
    impulse response soundfile to simulate real acoustic spaces.
    
    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        input : PyoObject
            Input signal to process.
        impulse : string, optional
            Path to the impulse response soundfile. The file must have the same 
            sampling rate as the server to get the proper convolution. Available at
            initialization time only. Defaults to 'IRMediumHallStereo.wav', located 
            in pyolib SNDS_PATH folder.
        size : int {pow-of-two}, optional
            The size in samples of each partition of the impulse file. Small size means
            smaller latency but more computation time. If not a power-of-2, the object
            will find the next power-of-2 greater and use that as the actual partition size.
            This value must also be greater or equal than the server's buffer size.
            Available at initialization time only. Defaults to 1024.
        bal : float or PyoObject, optional
            Balance between wet and dry signal, between 0 and 1. 0 means no 
            reverb. Defaults to 0.25.
    
    >>> s = Server().boot()
    >>> s.start()
    >>> sf = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=0.5)
    >>> cv = CvlVerb(sf, SNDS_PATH+"/IRMediumHallStereo.wav", size=1024, bal=0.4).out()

    """
    def __init__(self, input, impulse=SNDS_PATH+"/IRMediumHallStereo.wav", bal=0.25, size=1024, mul=1, add=0):
        PyoObject.__init__(self, mul, add)
        self._input = input
        self._impulse = impulse
        self._bal = bal
        self._size = size
        self._in_fader = InputFader(input)
        in_fader, bal, size, mul, add, lmax = convertArgsToLists(self._in_fader, bal, size, mul, add)
        impulse, lmax2 = convertArgsToLists(impulse)
        self._base_objs = []
        for file in impulse:
            _size, _dur, _snd_sr, _snd_chnls, _format, _type = sndinfo(file)
            lmax3 = max(lmax, _snd_chnls)
            self._base_objs.extend([CvlVerb_base(wrap(in_fader,i), file, wrap(bal,i), wrap(size,i), i%_snd_chnls, wrap(mul,i), wrap(add,i)) for i in range(lmax3)])

    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.
        
        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setBal(self, x):
        """
        Replace the `bal` attribute.

        :Args:

            x : float or PyoObject
                new `bal` attribute.

        """
        self._bal = x
        x, lmax = convertArgsToLists(x)
        [obj.setBal(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def ctrl(self, map_list=None, title=None, wxnoserver=False):
        self._map_list = [SLMap(0., 1., "lin", "bal", self._bal),
                          SLMapMul(self._mul)]
        PyoObject.ctrl(self, map_list, title, wxnoserver)

    @property
    def input(self):
        """PyoObject. Input signal to process.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def bal(self):
        """float or PyoObject. Wet / dry balance.""" 
        return self._bal
    @bal.setter
    def bal(self, x): self.setBal(x)

class Spectrum(PyoObject):
    """
    Spectrum analyzer and display.

    Spectrum measures the magnitude of an input signal versus frequency
    within a user defined range. It can show both magnitude and frequency
    on linear or logarithmic scale.
    
    :Parent: :py:class:`PyoObject`
    
    :Args:
    
        input : PyoObject
            Input signal to process.
        size : int {pow-of-two > 4}, optional
            FFT size. Must be a power of two greater than 4.
            The FFT size is the number of samples used in each
            analysis frame. Defaults to 1024.
        wintype : int, optional
            Shape of the envelope used to filter each input frame.
            Possible shapes are :
                0. rectangular (no windowing)
                1. Hamming
                2. Hanning
                3. Bartlett (triangular)
                4. Blackman 3-term
                5. Blackman-Harris 4-term
                6. Blackman-Harris 7-term
                7. Tuckey (alpha = 0.66)
                8. Sine (half-sine window)
        function : python callable, optional
            If set, this function will be called with magnitudes (as
            list of lists, one list per channel). Useful if someone
            wants to save the analysis data into a text file.
            Defaults to None.

    .. note::
    
        Spectrum has no `out` method.
        Spectrum has no `mul` and `add` attributes.

    >>> s = Server().boot()
    >>> s.start()
    >>> a = SuperSaw(freq=[500,750], detune=0.6, bal=0.7, mul=0.5).out()
    >>> spec = Spectrum(a, size=1024)

    """
    def __init__(self, input, size=1024, wintype=2, function=None):
        PyoObject.__init__(self)
        self.points = None
        self.viewFrame = None
        self._input = input
        self._size = size
        self._wintype = wintype
        self._function = function
        self._fscaling = 0
        self._mscaling = 1
        self._lowbound = 0
        self._highbound = 0.5
        self._width = 500
        self._height = 400
        self._gain = 1
        self._in_fader = InputFader(input)
        in_fader, size, wintype, lmax = convertArgsToLists(self._in_fader, size, wintype)
        self._base_objs = [Spectrum_base(wrap(in_fader,i), wrap(size,i), wrap(wintype,i)) for i in range(lmax)]
        if function == None:
            self.view()
        self._timer = Pattern(self.refreshView, 0.05).play()
 
    def setInput(self, x, fadetime=0.05):
        """
        Replace the `input` attribute.
        
        :Args:

            x : PyoObject
                New signal to process.
            fadetime : float, optional
                Crossfade time between old and new input. Default to 0.05.

        """
        self._input = x
        self._in_fader.setInput(x, fadetime)

    def setSize(self, x):
        """
        Replace the `size` attribute.
        
        :Args:

            x : int
                new `size` attribute.
        
        """
        self._size = x
        x, lmax = convertArgsToLists(x)
        [obj.setSize(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setWinType(self, x):
        """
        Replace the `wintype` attribute.
        
        :Args:

            x : int
                new `wintype` attribute.
        
        """
        self._wintype = x
        x, lmax = convertArgsToLists(x)
        [obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setFunction(self, function):
        """
        Sets the function to be called to retrieve the analysis data.
        
        :Args:
            
            function : python callable
                The function called by the internal timer to retrieve the
                analysis data. The function must be created with one argument
                and will receive the data as a list of lists (one list per channel).

        """
        self._function = function

    def poll(self, active):
        """
        Turns on and off the analysis polling.
        
        :Args:
            
            active : boolean
                If True, starts the analysis polling, False to stop it.
                defaults to True.

        """
        if active:
            self._timer.play()
        else:
            self._timer.stop()

    def polltime(self, time):
        """
        Sets the polling time in seconds.
        
        :Args:
            
            time : float
                Adjusts the frequency of the internal timer used to
                retrieve the current analysis frame. defaults to 0.05.
        
        """
        self._timer.time = time

    def setLowbound(self, x):
        """
        Sets the lower frequency, as multiplier of sr, returned by the analysis.
        
        Returns the real low frequency en Hz.
        
        :Args:

            x : float {0 <= x <= 0.5}
                new `lowbound` attribute.
        
        """
        self._lowbound = x
        x, lmax = convertArgsToLists(x)
        tmp = [obj.setLowbound(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        return tmp[0]

    def setHighbound(self, x):
        """
        Sets the higher frequency, as multiplier of sr, returned by the analysis.
        
        Returns the real high frequency en Hz.
        
        :Args:

            x : float {0 <= x <= 0.5}
                new `highbound` attribute.
        
        """
        self._highbound = x
        x, lmax = convertArgsToLists(x)
        tmp = [obj.setHighbound(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        return tmp[0]

    def getLowfreq(self):
        """
        Returns the current lower frequency, in Hz, used by the analysis.
        
        """

        return self._base_objs[0].getLowfreq()

    def getHighfreq(self):
        """
        Returns the current higher frequency, in Hz, used by the analysis.
        
        """
        return self._base_objs[0].getHighfreq()

    def setWidth(self, x):
        """
        Sets the width, in pixels, of the current display.
        
        Used internally to build the list of points to draw.
        
        :Args:

            x : int
                new `width` attribute.
        
        """
        self._width = x
        x, lmax = convertArgsToLists(x)
        [obj.setWidth(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setHeight(self, x):
        """
        Sets the height, in pixels, of the current display.
        
        Used internally to build the list of points to draw.
        
        :Args:

            x : int
                new `height` attribute.
        
        """
        self._height = x
        x, lmax = convertArgsToLists(x)
        [obj.setHeight(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def setFscaling(self, x):
        """
        Sets the frequency display to linear or logarithmic.
        
        :Args:

            x : boolean
                If True, the frequency display is logarithmic. False turns
                it back to linear. Defaults to False.
        
        """
        self._fscaling = x
        x, lmax = convertArgsToLists(x)
        [obj.setFscaling(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        if self.viewFrame != None:
            self.viewFrame.setFscaling(self._fscaling)

    def setMscaling(self, x):
        """
        Sets the magnitude display to linear or logarithmic.
        
        :Args:

            x : boolean
                If True, the magnitude display is logarithmic (which means in dB). 
                False turns it back to linear. Defaults to True.
        
        """
        self._mscaling = x
        x, lmax = convertArgsToLists(x)
        [obj.setMscaling(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
        if self.viewFrame != None:
            self.viewFrame.setMscaling(self._mscaling)

    def getFscaling(self):
        """
        Returns the scaling of the frequency display.
        
        Returns True for logarithmic or False for linear.

        """
        return self._fscaling

    def getMscaling(self):
        """
        Returns the scaling of the magnitude display.
        
        Returns True for logarithmic or False for linear.

        """
        return self._mscaling

    def setGain(self, x):
        """
        Set the gain of the anaysis data. For drawing purpose.
        
        :Args:

            x : float
                new `gain` attribute, as linear values.
        
        """
        self._gain = x
        x, lmax = convertArgsToLists(x)
        [obj.setGain(wrap(x,i)) for i, obj in enumerate(self._base_objs)]

    def view(self, title="Spectrum", wxnoserver=False):
        """
        Opens a window showing the result of the analysis.
        
        :Args:
        
            title : string, optional
                Window title. Defaults to "Spectrum". 
            wxnoserver : boolean, optional
                With wxPython graphical toolkit, if True, tells the 
                interpreter that there will be no server window.
                
        If `wxnoserver` is set to True, the interpreter will not wait for 
        the server GUI before showing the controller window. 
        
        """
        createSpectrumWindow(self, title, wxnoserver)

    def _setViewFrame(self, frame):
        self.viewFrame = frame
        
    def refreshView(self):
        """
        Updates the graphical display of the spectrum.
        
        Called automatically by the internal timer.

        """
        self.points = [obj.display() for obj in self._base_objs]
        if self._function != None:
            self._function(self.points)
        if self.viewFrame != None:
            self.viewFrame.update(self.points)


    @property
    def input(self):
        """PyoObject. Input signal to process.""" 
        return self._input
    @input.setter
    def input(self, x): self.setInput(x)

    @property
    def size(self):
        """int. FFT size."""
        return self._size
    @size.setter
    def size(self, x): self.setSize(x)

    @property
    def wintype(self):
        """int. Windowing method."""
        return self._wintype
    @wintype.setter
    def wintype(self, x): self.setWinType(x)

    @property
    def gain(self):
        """float. Sets the gain of the analysis data."""
        return self._gain
    @gain.setter
    def gain(self, x): self.setGain(x)

    @property
    def lowbound(self):
        """float. Lowest frequency (multiplier of sr) to output."""
        return self._lowbound
    @lowbound.setter
    def lowbound(self, x): self.setLowbound(x)

    @property
    def highbound(self):
        """float. Highest frequency (multiplier of sr) to output."""
        return self._highbound
    @highbound.setter
    def highbound(self, x): self.setHighbound(x)

    @property
    def width(self):
        """int. Width, in pixels, of the current display."""
        return self._width
    @width.setter
    def width(self, x): self.setWidth(x)

    @property
    def height(self):
        """int. Height, in pixels, of the current display."""
        return self._height
    @height.setter
    def height(self, x): self.setHeight(x)

    @property
    def fscaling(self):
        """boolean. Scaling of the frequency display."""
        return self._fscaling
    @fscaling.setter
    def fscaling(self, x): self.setFscaling(x)

    @property
    def mscaling(self):
        """boolean. Scaling of the magnitude display."""
        return self._mscaling
    @mscaling.setter
    def mscaling(self, x): self.setMscaling(x)