/usr/share/pyshared/swignifit/utility.py is in python-pypsignifit 3.0~beta.20120611.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | #/usr/bin/env python
# encoding: utf-8
# vi: set ft=python sts=4 ts=4 sw=4 et:
######################################################################
#
# See COPYING file distributed along with the psignifit package for
# the copyright and license terms
#
######################################################################
"""Variety of utilities for working with swig generated code."""
__docformat__ = "restructuredtext"
import operator as op
import re
import numpy as np
import swignifit_raw as sfr
class PsignifitException(Exception):
pass
def extract_subclasses(base, sub_func):
"""Recursively extract subclasses, given a swig base class.
Parameters
----------
base : swig class
The base class from which to start.
sub_func : string
The function or attribute to use as name for subclass.
Returns
-------
subs : dict
A dictionary mapping subclass names to constructors.
"""
to_visit = base.__subclasses__()
subclasses = dict()
for cl in to_visit:
descriptor = eval("cl."+sub_func)
if descriptor not in subclasses.keys():
subclasses[descriptor] = cl
to_visit.extend(cl.__subclasses__())
return subclasses
def extract_subclasses_descriptor(base):
"""Recursively extract subclasses, using the `getDescriptor()` method."""
return extract_subclasses(base, "getDescriptor()")
def extract_subclasses_reflection(base):
"""Recursively extract subclasses, using the `__name__` attribute."""
return extract_subclasses(base, "__name__")
sig_dict = extract_subclasses_descriptor(sfr.PsiSigmoid)
core_dict = extract_subclasses_descriptor(sfr.PsiCore)
prior_dict = extract_subclasses_reflection(sfr.PsiPrior)
sampler_dict = extract_subclasses_reflection(sfr.PsiSampler)
def available_cores():
print "The following cores are availabe:"
print core_dict.keys()
def available_sigmoids():
print "The following sigmoids are available:"
print sig_dict.keys()
def available_priors():
print "The following priors are available:"
print prior_dict.keys()
def available_samplers():
print "The following mcmc samplers are available:"
print sampler_dict.keys()
def make_dataset(data, nafc):
"""Create a PsiData object from column based input.
Parameters
----------
data : sequence on length 3 sequences
Psychometric data in colum based input,
e.g.[[1, 1, 5], [2, 3, 5] [3, 5, 5]].
nafc : int
Number of alternative choices in forced choice procedure.
Returns
-------
data: PsiData
Dataset object.
"""
data = np.array(data).T
x = sfr.vector_double(map(float, data[0]))
k = sfr.vector_int(map(int, data[1]))
N = sfr.vector_int(map(int, data[2]))
return sfr.PsiData(x,N,k,nafc)
def make_pmf(dataset, nafc, sigmoid, core, priors, gammaislambda=False):
"""Assemble PsiPsychometric object from model parameters.
Parameters
----------
dataset: sequence of length 3 sequences
Psychometric data in colum based input,
e.g.[[1, 1, 5], [2, 3, 5] [3, 5, 5]].
nafc : int
Number of alternative choices in forced choice procedure.
sigmoid : string
Description of model sigmoid.
core : string
Description of model core.
priors : sequence of strings
The model priors.
gammaislambda : bool
Constrain guessing rate and lapsing rate to be equal
Returns
-------
pmf : PsiPsychometric
Model object.
nparams : int
Number of free parameters in model..
"""
sigmoid = get_sigmoid(sigmoid)
core = get_core(core, dataset, sigmoid)
if not priors is None:
pr = "".join(priors)
else:
pr = ""
if pr in ["Jeffreys","jeffreys","Jeffrey","jeffrey"]:
pmf = sfr.PMF_with_JeffreysPrior ( nafc, core, sigmoid );
else:
pmf = sfr.PsiPsychometric(nafc, core, sigmoid)
if gammaislambda:
pmf.setgammatolambda()
nparams = pmf.getNparams()
if not pr in ["Jeffreys","jeffreys","Jeffrey","jeffrey"]:
set_priors(pmf,priors)
return pmf, nparams
def make_dataset_and_pmf(data, nafc, sigmoid, core, priors, gammaislambda=False ):
"""Assemble PsiData and PsiPsychometric objects simultaneously.
Parameters
----------
see: make_dataset and make_pmf
Returns
-------
data : PsiData
Dataset object.
pmf : PsiPsychometric
Model object.
nparams : int
Number of free parameters.
"""
dataset = make_dataset(data, nafc)
pmf, nparams = make_pmf(dataset, nafc, sigmoid, core, priors, gammaislambda)
return dataset, pmf, nparams
def get_sigmoid(descriptor):
"""Convert string representation of sigmoid to PsiSigmoid object.
Parameters
----------
descriptor : string
Description of sigmoid.
Returns
-------
sigmoid : subclass of PsiSigmoid
An instantiated sigmoid of the requested type.
Raises
------
ValueError
If the requested sigmoid is not available.
See Also
--------
`available_sigmoids()`
"""
if not sig_dict.has_key(descriptor):
raise ValueError("The sigmoid '%s' you requested, is not available." %
descriptor)
return sig_dict[descriptor]()
def get_core(descriptor, data, sigmoid):
"""Convert string representation of core to PsiCore object.
Parameters
----------
descriptor : string
Description of core.
data : PsiData
Instantiated dataset.
sigmoid : PsiSigmoid
Instantiated sigmoid.
Returns
-------
prior : subclass of PsiCore
An instantiated core of the requested type.
Raises
------
ValueError
If the requested core is not available.
See Also
--------
`available_cores()`
Notes
-----
The core objects may require a dataset and a sigmoid type identifier to be
instantiated. See the Psi++ code for details.
"""
descriptor, parameter = re.match('([a-z]+)([\d\.]*)', descriptor).groups()
sigmoid_type = sigmoid.getcode()
if descriptor not in core_dict.keys():
raise ValueError("The core '%s' you requested, is not available." %
descriptor)
if len(parameter) > 0:
return core_dict[descriptor](data, sigmoid_type, float(parameter))
else:
return core_dict[descriptor](data, sigmoid_type)
def get_prior(prior):
"""Convert string based representation of prior to PsiPrior object.
Parameters
----------
prior : string
Description of prior, with paramters.
Returns
-------
prior : PsiPrior
An instantiated prior of the requested type.
See Also
--------
`available_priors()`
Notes
-----
This function does not raise any error and silently returns `None` if the
prior does not exist.
"""
try:
prior = "sfr."+"Prior(".join(prior.split('('))
return eval(prior)
except Exception, e:
return None
def set_priors(pmf, priors):
"""Set the priors to be used in the model object.
Parameters
----------
pmf : PsiPsychometric object
Instantiated model.
priors : Sequence of strings of length of free parameters of `pmf`
Model priors.
Raises
------
ValueError
If the number of priors is not equal to the number of free parameters in
the model.
"""
if priors is not None:
nparams = pmf.getNparams()
if len(priors) != nparams:
raise ValueError("You specified %d priors, " % len(priors) +
"but there are %d free parameters in the model." % nparams)
for (i,p) in enumerate((get_prior(p) for p in priors)):
if p is not None:
pmf.setPrior(i, p)
def get_start(start, nparams):
"""Convert sequence of starting values to vector_double type.
Parameters
----------
start : sequence of numbers
Starting values.
nparams : int
Number of free parameters of the model.
Returns
-------
start: vector_double
Starting values.
Raises
------
ValueError
If the length of the sequence is not equal to the number of free
parameters.
"""
if len(start) != nparams:
raise ValueError("You specified %d starting value(s), " % len(start)
+"but there are %d parameters." % nparams)
else:
return sfr.vector_double(start)
def get_params(params, nparams):
"""Convert sequence of parameter values to vector_double type.
Parameters
----------
params : sequence of numbers
Parameter values.
nparams : int
Number of free parameters in the model.
Returns
-------
params : vector_double
Parameter values.
Raises
------
ValueError
If the length of the sequence is not equal to the number of free
parameters.
"""
if len(params) != nparams:
raise ValueError("You specified %d parameters, " % len(params) +
"but the model has parameters." % nparams)
else:
return sfr.vector_double(params)
def get_cuts(cuts):
""" Convert `cuts` argument to vector_double type.
Argument can be None, a number or a sequence of numbers. If None, there is
only one cut at 0.5. If `cuts` is a number, function returns a vector_double
with that number as a single element. If its a sequence, that sequence will
be converted to vector_double type.
Parameters
----------
cuts : None, number or sequence of numbers
Cut values
Returns
-------
cuts : vector_double
Cut values.
Raises
------
TypeError
If `cuts` is not None, a number or a sequence of numbers.
"""
if cuts is None:
return sfr.vector_double([0.5])
elif op.isSequenceType(cuts) and np.array([op.isNumberType(a) for a in cuts]).all():
return sfr.vector_double(cuts)
elif op.isNumberType(cuts):
return sfr.vector_double([cuts])
else:
raise TypeError("'cuts' must be either None, a number or a "+
"sequence of numbers.")
def make_pilotsample ( mcsamples ):
"""create an MCList from a set of pilot samples
Deviances of the pilot list will be meaningless!
Parameters
----------
mcsamples : array of Nsamples x Nparams
pilot samples
Returns
-------
pilot : PsiMClist
MClist with the pilot samples
"""
N,nprm = mcsamples.shape
pilot = sfr.PsiMClist ( N, nprm )
for i in xrange ( N ):
pilot.setEst ( i, mcsamples[i,:], -1 )
return pilot
|