/usr/share/pyshared/pywt/functions.py is in python-pywt 0.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | # -*- coding: utf-8 -*-
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# See COPYING for license details.
"""
Other wavelet related functions.
"""
__all__ = ["intwave", "centfrq", "scal2frq", "qmf", "orthfilt"]
from math import sqrt
from _pywt import Wavelet
from numerix import asarray, array, float64
from numerix import integrate
from numerix import argmax
from numerix import fft
WAVELET_CLASSES = (Wavelet)
def wavelet_for_name(name):
if not isinstance(name, basestring):
raise TypeError(
"Wavelet name must be of string type, not %s" % type(name))
try:
wavelet = Wavelet(name)
except ValueError:
raise
#raise ValueError("Invalid wavelet name - %s." % name)
return wavelet
def intwave(wavelet, precision=8):
"""
intwave(wavelet, precision=8) -> [int_psi, x]
- for orthogonal wavelets
intwave(wavelet, precision=8) -> [int_psi_d, int_psi_r, x]
- for other wavelets
intwave((function_approx, x), precision=8) -> [int_function, x]
- for (function approx., x grid) pair
Integrate *psi* wavelet function from -Inf to x using the rectangle
integration method.
wavelet - Wavelet to integrate (Wavelet object, wavelet name string
or (wavelet function approx., x grid) pair)
precision = 8 - Precision that will be used for wavelet function
approximation computed with the wavefun(level=precision)
Wavelet's method.
(function_approx, x) - Function to integrate on the x grid. Used instead
of Wavelet object to allow custom wavelet functions.
"""
if isinstance(wavelet, tuple):
psi, x = asarray(wavelet[0]), asarray(wavelet[1])
step = x[1] - x[0]
return integrate(psi, step), x
else:
if not isinstance(wavelet, WAVELET_CLASSES):
wavelet = wavelet_for_name(wavelet)
functions_approximations = wavelet.wavefun(precision)
if len(functions_approximations) == 2: # continuous wavelet
psi, x = functions_approximations
step = x[1] - x[0]
return integrate(psi, step), x
elif len(functions_approximations) == 3: # orthogonal wavelet
phi, psi, x = functions_approximations
step = x[1] - x[0]
return integrate(psi, step), x
else: # biorthogonal wavelet
phi_d, psi_d, phi_r, psi_r, x = functions_approximations
step = x[1] - x[0]
return integrate(psi_d, step), integrate(psi_r, step), x
def centfrq(wavelet, precision=8):
"""
centfrq(wavelet, precision=8) -> float
- for orthogonal wavelets
centfrq((function_approx, x), precision=8) -> float
- for (function approx., x grid) pair
Computes the central frequency of the *psi* wavelet function.
wavelet - Wavelet (Wavelet object, wavelet name string
or (wavelet function approx., x grid) pair)
precision = 8 - Precision that will be used for wavelet function
approximation computed with the wavefun(level=precision)
Wavelet's method.
(function_approx, xgrid) - Function defined on xgrid. Used instead
of Wavelet object to allow custom wavelet functions.
"""
if isinstance(wavelet, tuple):
psi, x = asarray(wavelet[0]), asarray(wavelet[1])
else:
if not isinstance(wavelet, WAVELET_CLASSES):
wavelet = wavelet_for_name(wavelet)
functions_approximations = wavelet.wavefun(precision)
if len(functions_approximations) == 2:
psi, x = functions_approximations
else:
# (psi, x) for (phi, psi, x)
# (psi_d, x) for (phi_d, psi_d, phi_r, psi_r, x)
psi, x = functions_approximations[1], functions_approximations[-1]
domain = float(x[-1] - x[0])
assert domain > 0
index = argmax(abs(fft(psi)[1:])) + 2
if index > len(psi) / 2:
index = len(psi) - index + 2
return 1.0 / (domain / (index - 1))
def scal2frq(wavelet, scale, delta, precision=8):
"""
scal2frq(wavelet, scale, delta, precision=8) -> float
- for orthogonal wavelets
scal2frq(wavelet, scale, delta, precision=8) -> float
- for (function approx., x grid) pair
wavelet
scale
delta - sampling
"""
return centfrq(wavelet, precision=precision) / (scale * delta)
def qmf(filter):
filter = array(filter)[::-1]
filter[1::2] = -filter[1::2]
return filter
def orthfilt(scaling_filter):
assert len(scaling_filter) % 2 == 0
scaling_filter = asarray(scaling_filter, dtype=float64)
rec_lo = sqrt(2) * scaling_filter / sum(scaling_filter)
dec_lo = rec_lo[::-1]
rec_hi = qmf(rec_lo)
dec_hi = rec_hi[::-1]
return (dec_lo, dec_hi, rec_lo, rec_hi)
|