This file is indexed.

/usr/share/pyshared/pywt/multilevel.py is in python-pywt 0.2.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -*- coding: utf-8 -*-

# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# See COPYING for license details.

"""
Multilevel 1D and 2D Discrete Wavelet Transform
and Inverse Discrete Wavelet Transform.
"""

__all__ = ['wavedec', 'waverec', 'wavedec2', 'waverec2']

from _pywt import Wavelet
from _pywt import dwt, idwt, dwt_max_level
from multidim import dwt2, idwt2
from numerix import as_float_array


def wavedec(data, wavelet, mode='sym', level=None):
    """
    Multilevel 1D Discrete Wavelet Transform of data.
    Returns coefficients list - [cAn, cDn, cDn-1, ..., cD2, cD1]

    data    - input data
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    level   - decomposition level. If level is None then it will be
              calculated using `dwt_max_level` function.
    """

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    if level is None:
        level = dwt_max_level(len(data), wavelet.dec_len)
    elif level < 0:
        raise ValueError(
            "Level value of %d is too low . Minimum level is 0." % level)

    coeffs_list = []

    a = data
    for i in xrange(level):
        a, d = dwt(a, wavelet, mode)
        coeffs_list.append(d)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec(coeffs, wavelet, mode='sym'):
    """
    Multilevel 1D Inverse Discrete Wavelet Transform.

    coeffs  - coefficients list [cAn, cDn, cDn-1, ..., cD2, cD1]
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    """

    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(coeffs) < 2:
        raise ValueError(
            "Coefficient list too short (minimum 2 arrays required).")

    a, ds = coeffs[0], coeffs[1:]

    for d in ds:
        a = idwt(a, d, wavelet, mode, 1)

    return a


def wavedec2(data, wavelet, mode='sym', level=None):
    """
    Multilevel 2D Discrete Wavelet Transform.

    data    - 2D input data
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    level   - decomposition level. If level is None then it will be
              calculated using `dwt_max_level` function .

    Returns coefficients list - [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)]
    """

    data = as_float_array(data)

    if len(data.shape) != 2:
        raise ValueError("Expected 2D input data.")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    if level is None:
        size = min(data.shape)
        level = dwt_max_level(size, wavelet.dec_len)
    elif level < 0:
        raise ValueError(
            "Level value of %d is too low . Minimum level is 0." % level)

    coeffs_list = []

    a = data
    for i in xrange(level):
        a, ds = dwt2(a, wavelet, mode)
        coeffs_list.append(ds)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec2(coeffs, wavelet, mode='sym'):
    """
    Multilevel 2D Inverse Discrete Wavelet Transform.

    coeffs  - coefficients list [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)]
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES

    Returns 2D array of reconstructed data.
    """

    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(coeffs) < 2:
        raise ValueError(
            "Coefficient list too short (minimum 2 arrays required).")

    a, ds = coeffs[0], coeffs[1:]

    for d in ds:
        a = idwt2((a, d), wavelet, mode)

    return a