This file is indexed.

/usr/lib/python2.7/dist-packages/Scientific/Functions/Rational.py is in python-scientific 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# This module defines a univariate rational function class
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2006-6-12
#

"""
Rational functions in one variable
"""

from Polynomial import Polynomial
from Scientific import N; Numeric = N

class RationalFunction:

    """Rational Function

    Instances of this class represent rational functions
    in a single variable. They can be evaluated like functions.

    Rational functions support addition, subtraction, multiplication,
    and division.
    """

    def __init__(self, numerator, denominator=[1.]):
        """
        @param numerator: polynomial in one variable, or a list
            of polynomial coefficients
        @type numerator: L{Scientific.Functions.Polynomial.Polynomial}
            or C{list} of numbers
        @param denominator: polynomial in one variable, or a list
            of polynomial coefficients
        @type denominator: L{Scientific.Functions.Polynomial.Polynomial}
            or C{list} of numbers
        """
        if hasattr(numerator, 'is_polynomial'):
            self.numerator = numerator
        else:
            self.numerator = Polynomial(numerator)
        if hasattr(denominator, 'is_polynomial'):
            self.denominator = denominator
        else:
            self.denominator = Polynomial(denominator)
        self._normalize()

    is_rational_function = 1

    def __call__(self, value):
        return self.numerator(value)/self.denominator(value)

    def __repr__(self):
        return "RationalFunction(%s,%s)" % (repr(list(self.numerator.coeff)),
                                            repr(list(self.denominator.coeff)))

    def _normalize(self):
        self.numerator = self._truncate(self.numerator)
        self.denominator = self._truncate(self.denominator)
        n = 0
        while 1:
            if self.numerator.coeff[n] != 0:
                break
            if self.denominator.coeff[n] != 0:
                break
            n = n + 1
            if n == len(self.numerator.coeff):
                break
        if n > 0:
            self.numerator = Polynomial(self.numerator.coeff[n:])
            self.denominator = Polynomial(self.denominator.coeff[n:])
        factor = self.denominator.coeff[-1]
        if factor != 1.:
            self.numerator = self.numerator/factor
            self.denominator = self.denominator/factor

    def _truncate(self, poly):
        if poly.coeff[-1] != 0.:
            return poly
        coeff = poly.coeff
        while len(coeff) > 1 and coeff[-1] == 0.:
            coeff = coeff[:-1]
        return Polynomial(coeff)

    def __coerce__(self, other):
        if hasattr(other, 'is_rational_function'):
            return (self, other)
        elif hasattr(other, 'is_polynomial'):
            return (self, RationalFunction(other, [1.]))
        else:
            return (self, RationalFunction([other], [1.]))

    def __mul__(self, other):
        return RationalFunction(self.numerator*other.numerator,
                                self.denominator*other.denominator)
    __rmul__ = __mul__

    def __div__(self, other):
        return RationalFunction(self.numerator*other.denominator,
                                self.denominator*other.numerator)

    __truediv__ = __div__

    def __rdiv__(self, other):
        return RationalFunction(other.numerator*self.denominator,
                                other.denominator*self.numerator)

    def __add__(self, other):
        return RationalFunction(self.numerator*other.denominator+
                                self.denominator*other.numerator,
                                self.denominator*other.denominator)
    __radd__ = __add__

    def __sub__(self, other):
        return RationalFunction(self.numerator*other.denominator-
                                self.denominator*other.numerator,
                                self.denominator*other.denominator)

    def __rsub__(self, other):
        return RationalFunction(other.numerator*self.denominator-
                                other.denominator*self.numerator,
                                self.denominator*other.denominator)

    def divide(self, shift=0):
        """
        @param shift: the power of the independent variable by which
            the numerator is multiplied prior to division
        @type shift: C{int} (non-negative)
        @return: a polynomial and a rational function such that the
            sum of the two is equal to the original rational function. The
            returned rational function's numerator is of lower order than
            its denominator.
        @rtype: (L{Scientific.Functions.Polynomial.Polynomial},
            L{RationalFunction})
        """
        num = Numeric.array(self.numerator.coeff, copy=1)
        if shift > 0:
            num = Numeric.concatenate((shift*[0.], num))
        den = self.denominator.coeff
        den_order = len(den)
        coeff = []
        while len(num) >= den_order:
            q = num[-1]/den[-1]
            coeff.append(q)
            num[-den_order:] = num[-den_order:]-q*den
            num = num[:-1]
        if not coeff:
            coeff = [0]
        coeff.reverse()
        if len(num) == 0:
            num = [0]
        return Polynomial(coeff), RationalFunction(num, den)

    def zeros(self):
        """
        Find the X{zeros} (X{roots}) of the numerator by diagonalization
        of the associated Frobenius matrix.

        @returns: an array containing the zeros
        @rtype: C{Numeric.array}
        """
        return self.numerator.zeros()

    def poles(self):
        """
        Find the X{poles} (zeros of the denominator) by diagonalization
        of the associated Frobenius matrix.

        @returns: an array containing the poles
        @rtype: C{Numeric.array}
        """
        return self.denominator.zeros()


# Test code

if __name__ == '__main__':

    p = Polynomial([1., 1.])
    invp = 1./p
    pr = RationalFunction(p)
    print pr+invp