This file is indexed.

/usr/lib/python2.7/dist-packages/Scientific/Geometry/TensorModule.py is in python-scientific 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# This module defines 3d geometrical tensors with the standard
# operations on them. The elements are stored in an array.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2006-11-23
#

from Scientific import N; Numeric = N

class Tensor:

    """Tensor in 3D space

    Tensors support the usual arithmetic operations
    ('t1', 't2': tensors, 'v': vector, 's': scalar): 

     -  't1+t2'        (addition)
     -  't1-t2'        (subtraction)
     -  't1*t2'        (tensorial (outer) product)
     -  't1*v'         (contraction with a vector, same as t1.dot(v.asTensor()))
     -  's*t1', 't1*s' (multiplication with a scalar)
     -  't1/s'         (division by a scalar)

    The coordinates can be extracted by indexing; a tensor of rank N
    can be indexed like an array of dimension N.

    Tensors are I{immutable}, i.e. their elements cannot be changed.

    Tensor elements can be any objects on which the standard
    arithmetic operations are defined. However, eigenvalue calculation
    is supported only for float elements.
    """

    is_tensor = 1

    def __init__(self, elements, nocheck = None):
        """
        @param elements: 2D array or nested list specifying the nine
                         tensor components
                         [[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]]
        @type elements: C{Numeric.array} or C{list}
        """
        self.array = N.array(elements)
        if nocheck is None:
            if not N.logical_and.reduce(N.equal(N.array(self.array.shape), 3)):
                raise ValueError('Tensor must have length 3 along any axis')
        self.rank = len(self.array.shape)

    def __repr__(self):
        return 'Tensor(' + str(self) + ')'

    def __str__(self):
        return str(self.array)

    def __add__(self, other):
        return Tensor(self.array+other.array, 1)
    __radd__ = __add__

    def __neg__(self):
        return Tensor(-self.array, 1)

    def __sub__(self, other):
        return Tensor(self.array-other.array, 1)

    def __rsub__(self, other):
        return Tensor(other.array-self.array, 1)

    def __mul__(self, other):
        from Scientific import Geometry
        if isTensor(other):
            a = self.array[self.rank*(slice(None),)+(N.NewAxis,)]
            b = other.array[other.rank*(slice(None),)+(N.NewAxis,)]
            return Tensor(N.innerproduct(a, b), 1)
        elif Geometry.isVector(other):
            return other.__rmul__(self)
        else:
            return Tensor(self.array*other, 1)

    def __rmul__(self, other):
        return Tensor(self.array*other, 1)

    def __div__(self, other):
        if isTensor(other):
            raise TypeError("Can't divide by a tensor")
        else:
            return Tensor(self.array/(1.*other), 1)

    __truediv__ = __div__

    def __rdiv__(self, other):
        raise TypeError("Can't divide by a tensor")

    def __cmp__(self, other):
        if not isTensor(other):
            return NotImplemented
        if self.rank != other.rank:
            return 1
        else:
            return not N.logical_and.reduce(
                N.equal(self.array, other.array).flat)

    def __len__(self):
        return 3

    def __getitem__(self, index):
        elements = self.array[index]
        if type(elements) == type(self.array):
            return Tensor(elements)
        else:
            return elements

    def asVector(self):
        """
        @returns: an equivalent vector object
        @rtype: L{Scientific.Geometry.Vector}
        @raises ValueError: if rank > 1
        """
        from Scientific import Geometry
        if self.rank == 1:
            return Geometry.Vector(self.array)
        else:
            raise ValueError('rank > 1')

    def dot(self, other):
        """
        @returns: the contraction with other
        @rtype: L{Tensor}
        """
        if isTensor(other):
            a = self.array
            b =  N.transpose(other.array, range(1, other.rank)+[0])
            return Tensor(N.innerproduct(a, b), 1)
        else:
            return Tensor(self.array*other, 1)

    def diagonal(self, axis1=0, axis2=1):
        if self.rank == 2:
            return Tensor([self.array[0,0], self.array[1,1], self.array[2,2]])
        else:
            if axis2 < axis1: axis1, axis2 = axis2, axis1
            raise ValueError('Not yet implemented')

    def trace(self, axis1=0, axis2=1):
        """
        @returns: the trace of the tensor
        @rtype: type of tensor elements
        @raises ValueError: if rank !=2 
        """
        if self.rank == 2:
            return self.array[0,0]+self.array[1,1]+self.array[2,2]
        else:
            raise ValueError('Not yet implemented')

    def transpose(self):
        """
        @returns: the transposed (index reversed) tensor
        @rtype: L{Tensor}
        """
        return Tensor(N.transpose(self.array))

    def symmetricalPart(self):
        """
        @returns: the symmetrical part of the tensor
        @rtype: L{Tensor}
        @raises ValueError: if rank !=2 
        """
        if self.rank == 2:
            return Tensor(0.5*(self.array + \
                               N.transpose(self.array,
                                           N.array([1,0]))),
                          1)
        else:
            raise ValueError('Not yet implemented')

    def asymmetricalPart(self):
        """
        @returns: the asymmetrical part of the tensor
        @rtype: L{Tensor}
        @raises ValueError: if rank !=2 
        """
        if self.rank == 2:
            return Tensor(0.5*(self.array - \
                               N.transpose(self.array,
                                           N.array([1,0]))),
                          1)
        else:
            raise ValueError('Not yet implemented')

    def eigenvalues(self):
        """
        @returns: the eigenvalues of the tensor
        @rtype: C{Numeric.array}
        @raises ValueError: if rank !=2 
        """
        if self.rank == 2:
            from Scientific.LA import eigenvalues
            return eigenvalues(self.array)
        else:
            raise ValueError('Undefined operation')

    def diagonalization(self):
        """
        @returns: the eigenvalues of the tensor and a tensor
                  representing the rotation matrix to the diagonal form
        @rtype: (C{Numeric.array}, L{Tensor})
        @raises ValueError: if rank !=2 
        """
        if self.rank == 2:
            from Scientific.LA import eigenvectors
            ev, vectors = eigenvectors(self.array)
            return ev, Tensor(vectors)
        else:
            raise ValueError, 'Undefined operation'

    def inverse(self):
        """
        @returns: the inverse of the tensor
        @rtype: L{Tensor}
        @raises ValueError: if rank !=2 
        """
        if self.rank == 2:
            from Scientific.LA import inverse
            return Tensor(inverse(self.array))
        else:
            raise ValueError('Undefined operation')

# Type check

def isTensor(x):
    """
    @returns: C{True} if x is a L{Tensor}
    """
    return hasattr(x,'is_tensor')