This file is indexed.

/usr/lib/python2.7/dist-packages/Scientific/IO/PDB.py is in python-scientific 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
# This module handles input and output of PDB files.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# Last revision: 2012-10-17
# 

"""
Parsing and writing of Protein Data Bank (PDB) files

This module provides classes that represent PDB (Protein Data Bank)
files and configurations contained in PDB files. It provides access to
PDB files on two levels: low-level (line by line) and high-level
(chains, residues, and atoms).

Caution: The PDB file format has been heavily abused, and it is
probably impossible to write code that can deal with all variants
correctly. This modules tries to read the widest possible range of PDB
files, but gives priority to a correct interpretation of the PDB
format as defined by the Brookhaven National Laboratory.

A special problem are atom names. The PDB file format specifies that
the first two letters contain the right-justified chemical element
name. A later modification allowed the initial space in hydrogen names
to be replaced by a digit. Many programs ignore all this and treat the
name as an arbitrary left-justified four-character name. This makes it
difficult to extract the chemical element accurately; most programs
write the '"CA"' for C_alpha in such a way that it actually stands for
a calcium atom. For this reason a special element field has been added
later, but only few files use it. In the absence of an element field,
the code in this module attempts to guess the element using all information
available.

The low-level routines in this module do not try to deal with the atom
name problem; they return and expect four-character atom names
including spaces in the correct positions. The high-level routines use
atom names without leading or trailing spaces, but provide and use the
element field whenever possible. For output, they use the element
field to place the atom name correctly, and for input, they construct
the element field content from the atom name if no explicit element
field is found in the file.

Except where indicated, numerical values use the same units and
conventions as specified in the PDB format description.

Example::

  >>>conf = Structure('example.pdb')
  >>>print conf
  >>>for residue in conf.residues:
  >>>    for atom in residue:
  >>>        print atom

@undocumented: atom_format
@undocumented: anisou_format
@undocumented: conect_format
@undocumented: ter_format
@undocumented: model_format
@undocumented: header_format
@undocumented: cryst1_format
@undocumented: scalen_format
@undocumented: mtrixn_format
@undocumented: generic_format
@undocumented: export_filters
@undocumented: DummyChain
"""

from Scientific.IO.TextFile import TextFile
from Scientific.IO.FortranFormat import FortranFormat, FortranLine
from Scientific.Geometry import Vector, Tensor
from Scientific import N
from PDBExportFilters import export_filters
import copy, string

#
# Fortran formats for PDB entries
#
atom_format = FortranFormat('A6,I5,1X,A4,A1,A4,A1,I4,A1,3X,3F8.3,2F6.2,' +
                            '6X,A4,2A2')
anisou_format = FortranFormat('A6,I5,1X,A4,A1,A4,A1,I4,A1,1X,6I7,2X,A4,2A2')
conect_format = FortranFormat('A6,11I5')
ter_format = FortranFormat('A6,I5,6X,A4,A1,I4,A1')
model_format = FortranFormat('A6,4X,I4')
header_format = FortranFormat('A6,4X,A40,A9,3X,A4')
cryst1_format = FortranFormat('A6,3F9.3,3F7.2,1X,A11,I4')
scalen_format = FortranFormat('A6,4X,3F10.6,5X,F10.5')
mtrixn_format = FortranFormat('A6,1X,I3,3F10.6,5X,F10.5,4X,I1')
generic_format = FortranFormat('A6,A74')

#
# Amino acid and nucleic acid residues
#
amino_acids = ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'CYX', 'GLN', 'GLU', 'GLY',
               'HIS', 'HID', 'HIE', 'HIP', 'HSD', 'HSE', 'HSP', 'ILE', 'LEU',
               'LYS', 'MET', 'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL',
               'ACE', 'NME', 'NHE']

nucleic_acids = [ 'A',  'C',  'G',  'I',  'T',  'U',
                 '+A', '+C', '+G', '+I', '+T', '+U',
                  'RA',  'RC',  'RG',  'RU',
                  'DA',  'DC',  'DG',  'DT',
                  'RA5',  'RC5',  'RG5',  'RU5',
                  'DA5',  'DC5',  'DG5',  'DT5',
                  'RA3',  'RC3',  'RG3',  'RU3',
                  'DA3',  'DC3',  'DG3',  'DT3',
                  'RAN',  'RCN',  'RGN',  'RUN',
                  'DAN',  'DCN',  'DGN',  'DTN',
                  ]

def defineAminoAcidResidue(symbol):
    """
    Make the parser recognize a particular residue type as an amino
    acid residue
    
    @param symbol: the three-letter code for an amino acid
    @type symbol: C{str}
    """
    symbol = symbol.upper()
    if symbol not in amino_acids:
        amino_acids.append(symbol)

def defineNucleicAcidResidue(symbol):
    """
    Make the parser recognize a particular residue type as an nucleic
    acid residue
    
    @param symbol: the one-letter code for a nucleic acid
    @type symbol: C{str}
    """
    symbol = symbol.upper()
    if symbol not in nucleic_acids:
        nucleic_acids.append(symbol)


#
# Low-level file object. It represents line contents as Python dictionaries.
# For output, there are additional methods that generate sequence numbers
# for everything.
#
class PDBFile:

    """
    X{PDB} file with access at the record level

    The low-level file access is handled by the module
    L{Scientific.IO.TextFile}, therefore compressed files and URLs
    (for reading) can be used as well.
    """

    def __init__(self, file_or_filename, mode = 'r', subformat = None):
        """
        @param file_or_filename: the name of the PDB file, or a file object
        @type file_or_filename: C{str} or C{file}
        @param mode: the file access mode, 'r' (read) or 'w' (write)
        @type mode: C{str}
        @param subformat: indicates a specific dialect of the PDB format.
                          Subformats are defined in
                          L{Scientific.IO.PDBExportFilters}; they are used
                          only when writing.
        @type subformat: C{str} or C{NoneType}
        """
        if isinstance(file_or_filename, basestring):
            self.file = TextFile(file_or_filename, mode)
        else:
            self.file = file_or_filename
        self.output = mode[0].lower() == 'w'
        self.export_filter = None
        if subformat is not None:
            export = export_filters.get(subformat, None)
            if export is not None:
                self.export_filter = export()
        self.open = 1
        if self.output:
            self.data = {'serial_number': 0,
                         'residue_number': 0,
                         'chain_id': '',
                         'segment_id': ''}
            self.het_flag = 0
            self.chain_number = -1

    def readLine(self):
        """
        Return the contents of the next non-blank line (= record) The
        return value is a tuple whose first element (a string)
        contains the record type. For supported record types (HEADER,
        CRYST1, SCALEn, MTRIXn, ATOM, HETATM, ANISOU, TERM, MODEL,
        CONECT), the items from the remaining fields are put into a
        dictionary which is returned as the second tuple element. Most
        dictionary elements are strings or numbers; atom positions are
        returned as a vector, and anisotropic temperature factors are
        returned as a rank-2 tensor, already multiplied by 1.e-4.
        White space is stripped from all strings except for atom
        names, whose correct interpretation can depend on an initial
        space. For unsupported record types, the second tuple element
        is a string containing the remaining part of the record.

        @returns: the contents of one PDB record
        @rtype: C{tuple}
        """
        while 1:
            line = self.file.readline()
            if not line: return ('END','')
            if line[-1] == '\n': line = line[:-1]
            line = line.strip()
            if line: break
        line = line.ljust(80)
        type = line[:6].strip()
        if type == 'ATOM' or type == 'HETATM':
            line = FortranLine(line, atom_format)
            data = {'serial_number': line[1],
                    'name': line[2],
                    'alternate': line[3].strip(),
                    'residue_name': line[4].strip(),
                    'chain_id': line[5].strip(),
                    'residue_number': line[6],
                    'insertion_code': line[7].strip(),
                    'position': Vector(line[8:11]),
                    'occupancy': line[11],
                    'temperature_factor': line[12],
                    'segment_id': line[13].strip(),
                    'element': line[14].strip(),
                    'charge': line[15].strip()}
            return type, data
        elif type == 'ANISOU':
            line = FortranLine(line, anisou_format)
            data = {'serial_number': line[1],
                    'name': line[2],
                    'alternate': line[3].strip(),
                    'residue_name': line[4].strip(),
                    'chain_id': line[5].strip(),
                    'residue_number': line[6],
                    'insertion_code': line[7].strip(),
                    'u': 1.e-4*Tensor([[line[8], line[11], line[12]],
                                       [line[11], line[9] , line[13]],
                                       [line[12], line[13], line[10]]]),
                    'segment_id': line[14].strip(),
                    'element': line[15].strip(),
                    'charge': line[16].strip()}
            return type, data
        elif type == 'TER':
            line = FortranLine(line, ter_format)
            data = {'serial_number': line[1],
                    'residue_name': line[2].strip(),
                    'chain_id': line[3].strip(),
                    'residue_number': line[4],
                    'insertion_code': line[5].strip()}
            return type, data
        elif type == 'CONECT':
            line = FortranLine(line, conect_format)
            data = {'serial_number': line[1],
                    'bonded': [i for i in line[2:6] if i > 0],
                    'hydrogen_bonded': [i for i in line[6:10] if i > 0],
                    'salt_bridged': [i for i in line[10:12] if i > 0]}
            return type, data
        elif type == 'MODEL':
            line = FortranLine(line, model_format)
            data = {'serial_number': line[1]}
            return type, data
        elif type == 'HEADER':
            line = FortranLine(line, header_format)
            data = {'compound': line[1],
                    'date': line[2],
                    'pdb_code': line[3]}
            return type, data
        elif type == 'CRYST1':
            line = FortranLine(line, cryst1_format)
            data = {'a': line[1],
                    'b': line[2],
                    'c': line[3],
                    'alpha': line[4],
                    'beta': line[5],
                    'gamma': line[6],
                    'space_group': line[7],
                    'z': line[8]}
            return type, data
        elif type[:-1] == 'SCALE':
            line = FortranLine(line, scalen_format)
            data = {'s1': line[1],
                    's2': line[2],
                    's3': line[3],
                    'u': line[4]}
            return type, data
        elif type[:-1] == 'MTRIX':
            line = FortranLine(line, mtrixn_format)
            data = {'serial': line[1],
                    'm1': line[2],
                    'm2': line[3],
                    'm3': line[4],
                    'v': line[5],
                    'given': line[6] == 1}
            return type, data
        else:
            return type, line[6:]

    def writeLine(self, type, data):
        """
        Write a line using record type and data dictionary in the
        same format as returned by readLine(). Default values are
        provided for non-essential information, so the data dictionary
        need not contain all entries.

        @param type: PDB record type
        @type type: C{str}
        @param data: PDB record data
        @type data: C{tuple}
        """
        if self.export_filter is not None:
            type, data = self.export_filter.processLine(type, data)
            if type is None:
                return
        line = [type]
        if type == 'ATOM' or type == 'HETATM':
            format = atom_format
            position = data['position']
            line = line + [data.get('serial_number', 1),
                           data.get('name'),
                           data.get('alternate', ''),
                           data.get('residue_name', '').rjust(3),
                           data.get('chain_id', ''),
                           data.get('residue_number', 1),
                           data.get('insertion_code', ''),
                           position[0], position[1], position[2],
                           data.get('occupancy', 0.),
                           data.get('temperature_factor', 0.),
                           data.get('segment_id', ''),
                           data.get('element', '').rjust(2),
                           data.get('charge', '')]
        elif type == 'ANISOU':
            format = anisou_format
            u = 1.e4*data['u']
            u = [int(u[0,0]), int(u[1,1]), int(u[2,2]),
                 int(u[0,1]), int(u[0,2]), int(u[1,2])]
            line = line + [data.get('serial_number', 1),
                           data.get('name'),
                           data.get('alternate', ''),
                           data.get('residue_name').rjust(3),
                           data.get('chain_id', ''),
                           data.get('residue_number', 1),
                           data.get('insertion_code', '')] \
                        + u \
                        + [data.get('segment_id', ''),
                           data.get('element', '').rjust(2),
                           data.get('charge', '')]
        elif type == 'TER':
            format = ter_format
            line = line + [data.get('serial_number', 1),
                           data.get('residue_name').rjust(3),
                           data.get('chain_id', ''),
                           data.get('residue_number', 1),
                           data.get('insertion_code', '')]
        elif type == 'CONECT':
            format = conect_format
            line = line + [data.get('serial_number')]
            line = line + (data.get('bonded', [])+4*[None])[:4]
            line = line + (data.get('hydrogen_bonded', [])+4*[None])[:4]
            line = line + (data.get('salt_bridged', [])+2*[None])[:2]
        elif type == 'MODEL':
            format = model_format
            line = line + [data.get('serial_number')]
        elif type == 'CRYST1':
            format = cryst1_format
            line = line + [data.get('a'), data.get('b'), data.get('c'),
                           data.get('alpha'), data.get('beta'),
                           data.get('gamma'),
                           data.get('space_group'),
                           data.get('z')]
        elif type[:-1] == 'SCALE':
            format = scalen_format
            line = line + [data.get('s1'), data.get('s2'), data.get('s3'),
                           data.get('u')]
        elif type[:-1] == 'MTRIX':
            format = scalen_format
            line = line + [data.get('serial'),
                           data.get('m1'), data.get('m2'), data.get('m3'),
                           data.get('v'), int(data.get('given'))]
        elif type == 'HEADER':
            format = header_format
            line = line + [data.get('compound', ''), data.get('date', ''),
                           data.get('pdb_code')]
        else:
            format = generic_format
            line = line + [data]
        self.file.write(str(FortranLine(line, format)) + '\n')

    def writeComment(self, text):
        """
        Write text into one or several comment lines.
        Each line of the text is prefixed with 'REMARK' and written
        to the file.

        @param text: the comment contents
        @type text: C{str}
        """
        while text:
            eol = text.find('\n')
            if eol == -1:
                eol = len(text)
            self.file.write('REMARK %s \n' % text[:eol])
            text = text[eol+1:]

    def writeAtom(self, name, position, occupancy=0.0, temperature_factor=0.0,
                  element='', alternate=''):
        """
        Write an ATOM or HETATM record using the information supplied.
        The residue and chain information is taken from the last calls to
        the methods L{nextResidue} and L{nextChain}.

        @param name: the atom name
        @type name: C{str}
        @param position: the atom position
        @type position: L{Scientific.Geometry.Vector}
        @param occupancy: the occupancy
        @type occupancy: C{float}
        @param temperature_factor: the temperature factor (B-factor)
        @type temperature_factor: C{float}
        @param element: the chemical element
        @type element: C{str}
        @param alternate: the alternate location character
        @type element: C{str}
        """
        if self.het_flag:
            type = 'HETATM'
        else:
            type = 'ATOM'
        name = name.upper()
        if element != '' and len(element) == 1 and name and name[0] == element and len(name) < 4:
            name = ' ' + name
        self.data['name'] = name
        self.data['position'] = position
        self.data['serial_number'] = (self.data['serial_number'] + 1) % 100000
        self.data['alternate'] = alternate
        self.data['occupancy'] = occupancy
        self.data['temperature_factor'] = temperature_factor
        self.data['element'] = element
        self.writeLine(type, self.data)

    def nextResidue(self, name, number = None, terminus = None):
        """
        Signal the beginning of a new residue, starting with the
        next call to L{writeAtom}.

        @param name: the residue name
        @type name: C{str}
        @param number: the residue number. If C{None}, the residues
                       will be numbered sequentially, starting from 1.
        @type number: C{int} or C{NoneType}
        @param terminus: C{None}, "C", or "N". This information
                         is passed to export filters that can use this
                         information in order to use different atom or
                         residue names in terminal residues.
        """
        name  = name.upper()
        if self.export_filter is not None:
            name, number = self.export_filter.processResidue(name, number,
                                                             terminus)
        self.het_flag =  not (name in amino_acids or name in nucleic_acids)
        self.data['residue_name'] = name
        self.data['residue_number'] = (self.data['residue_number'] + 1) % 10000
        self.data['insertion_code'] = ''
        if number is not None:
            if isinstance(number, int):
                if number >= 0:
                    self.data['residue_number'] = number % 10000
                else:
                    self.data['residue_number'] = -((-number) % 1000)
            else:
                self.data['residue_number'] = number.number % 10000
                self.data['insertion_code'] = number.insertion_code

    def nextChain(self, chain_id = None, segment_id = ''):
        """
        Signal the beginning of a new chain.

        @param chain_id: a chain identifier. If C{None}, consecutive letters
                         from the alphabet are used.
        @type chain_id: C{str} or C{NoneType}
        @param segment_id: a chain identifier
        @type segment_id: C{str}
        """
        if chain_id is None:
            self.chain_number = (self.chain_number + 1) % len(self._chain_ids)
            chain_id = self._chain_ids[self.chain_number]
        if self.export_filter is not None:
            chain_id, segment_id = \
                      self.export_filter.processChain(chain_id, segment_id)
        self.data['chain_id'] = (chain_id+' ')[:1]
        self.data['segment_id'] = (segment_id+'    ')[:4]
        self.data['residue_number'] = 0

    _chain_ids = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

    def terminateChain(self):
        """
        Signal the end of a chain.
        """
        if self.export_filter is not None:
            self.export_filter.terminateChain()
        self.data['serial_number'] = (self.data['serial_number'] + 1) % 100000
        self.writeLine('TER', self.data)
        self.data['chain_id'] = ''
        self.data['segment_id'] = ''
        
    def close(self):
        """
        Close the file. This method B{must} be called for write mode
        because otherwise the file will be incomplete.
        """
        if self.open:
            if self.output:
                self.file.write('END\n')
            self.file.close()
            self.open = 0

    def __del__(self):
        self.close()


#
# High-level object representation of PDB file contents.
#

#
# Representation of objects.
#
class Atom:

    """
    Atom in a PDB structure
    """
    
    def __init__(self, name, position, **properties):
        """
        @param name: the atom name
        @type name: C{str}
        @param position: the atom position
        @type position: L{Scientific.Geometry.Vector}
        @param properties: any other atom properties as keyword parameters.
                           These properties are stored in the atom object
                           and can be accessed by indexing, as for
                           dictionaries.
        """
        self.position = position
        self.properties = properties
        if self.properties.get('element', '') == '':
            if name[0] == ' ' or name[0] in string.digits:
                self.properties['element'] = name[1]
            elif name[1] in string.digits:
                self.properties['element'] = name[0]
            else:
                self.properties['element'] = name[0:2]
        self.name = name.strip()
        self.parent = None

    def __getitem__(self, item):
        """
        @param item: the name of a property, including "name" or "position"
        @type item: C{str}
        @returns: the property value
        """
        try:
            return self.properties[item]
        except KeyError:
            if item == 'name':
                return self.name
            elif item == 'position':
                return self.position
            else:
                raise KeyError("Undefined atom property: " + repr(item))

    def __setitem__(self, item, value):
        """
        @param item: the name of an existing or to be defined property
        @type item: C{str}
        @param value: the new value for the property
        """
        self.properties[item] = value

    def __str__(self):
        return self.__class__.__name__ + ' ' + self.name + \
               ' at ' + str(self.position)
    __repr__ = __str__

    def type(self):
        """
        @returns: the six-letter record type, ATOM or HETATM
        @rtype: C{str}
        """
        return 'ATOM  '

    def writeToFile(self, file):
        """
        Write an atom record to a file

        @param file: a PDB file object or a filename
        @type file: L{PDBFile} or C{str}
        """
        close = 0
        if type(file) == type(''):
            file = PDBFile(file, 'w')
            close = 1
        file.writeAtom(self.name, self.position,
                       self.properties.get('occupancy', 0.),
                       self.properties.get('temperature_factor', 0.),
                       self.properties.get('element', ''))
        if close:
            file.close()


class HetAtom(Atom):

    """
    HetAtom in a PDB structure

    A subclass of Atom, which differs only in the return value
    of the method type().
    """

    def type(self):
        return 'HETATM'
    

class Group:

    """
    Atom group (residue or molecule) in a PDB file

    This is an abstract base class. Instances can be created using
    one of the subclasses (L{Molecule}, L{AminoAcidResidue},
    L{NucleotideResidue}).

    Group objects permit iteration over atoms with for-loops,
    as well as extraction of atoms by indexing with the
    atom name.
    """

    def __init__(self, name, atoms = None, number = None):
        """
        @param name: the name of the group
        @type name: C{str}
        @param atoms: a list of atoms (or C{None} for no atoms)
        @type atoms: C{list} or C{NoneType}
        @param number: the PDB residue number (or C{None})
        @type number: C{int} or C{NoneType}
        """
        self.name = name
        self.number = number
        self.atom_list = []
        self.atoms = {}
        if atoms:
            self.atom_list = atoms
            for a in atoms:
                self.atoms[a.name] = a

    def __len__(self):
        return len(self.atom_list)

    def __getitem__(self, item):
        """
        @param item: an integer index or an atom name
        @type item: C{int} or C{str}
        """
        if isinstance(item, int):
            return self.atom_list[item]
        else:
            return self.atoms[item]

    def __str__(self):
        s = self.__class__.__name__ + ' ' + self.name + ':\n'
        for atom in self.atom_list:
            s = s + '  ' + `atom` + '\n'
        return s
    __repr__ = __str__

    def isCompatible(self, residue_data):
        return residue_data['residue_name'] == self.name \
               and residue_data['residue_number'] == self.number

    def addAtom(self, atom):
        """
        Add an atom to the group
        
        @param atom: the atom
        @type atom: L{Atom}
        """
        self.atom_list.append(atom)
        self.atoms[atom.name] = atom
        atom.parent = self

    def deleteAtom(self, atom):
        """
        Remove an atom from the group

        @param atom: the atom to be removed
        @type atom: L{Atom}
        @raises KeyError: if the atom is not part of the group
        """
        self.atom_list.remove(atom)
        del self.atoms[atom.name]
        atom.parent = None

    def deleteHydrogens(self):
        """
        Remove all hydrogen atoms of the group
        """
        delete = []
        for a in self.atom_list:
            if a.name[0] == 'H' or (a.name[0] in string.digits
                                    and a.name[1] == 'H'):
                delete.append(a)
        for a in delete:
            self.deleteAtom(a)

    def changeName(self, name):
        """
        Set the PDB residue name

        @param name: the new name
        @type name: C{str}
        """
        self.name = name

    def writeToFile(self, file):
        """
        Write the group to a file

        @param file: a PDBFile object or a file name
        @type file: L{PDBFile} or C{str}
        """
        close = 0
        if type(file) == type(''):
            file = PDBFile(file, 'w')
            close = 1
        file.nextResidue(self.name, self.number, None)
        for a in self.atom_list:
            a.writeToFile(file)
        if close:
            file.close()

class Molecule(Group):

    """
    Molecule in a PDB file

    B{Note:} In PDB files, non-chain molecules are treated as residues,
    there is no separate molecule definition. This module defines
    every residue as a molecule that is not an amino acid residue or a
    nucleotide residue.
    """

    pass

class Residue(Group):

    pass

class AminoAcidResidue(Residue):

    """
    Amino acid residue in a PDB file
    """

    is_amino_acid = 1

    def isCTerminus(self):
        """
        @returns: C{True} if the residue is in C-terminal configuration,
        i.e. if it has a second oxygen bound to the carbon atom of
        the peptide group. C{False} otherwise.
        @rtype: C{bool}
        """
        return self.name == 'NME' \
               or self.atoms.has_key('OXT') \
               or self.atoms.has_key('OT2')

    def isNTerminus(self):
        """
        @returns: C{True} if the residue is in N-terminal configuration,
        i.e. if it contains more than one hydrogen bound to be
        nitrogen atom of the peptide group. C{False} otherwise.
        @rtype: C{bool}
        """
        return self.atoms.has_key('1HT') or self.atoms.has_key('2HT') \
               or self.atoms.has_key('3HT')

    def addAtom(self, atom):
        Residue.addAtom(self, atom)
        if atom.name == 'CA': # Make sure it's not a calcium
            atom.properties['element'] = 'C'

    def writeToFile(self, file):
        close = 0
        if type(file) == type(''):
            file = PDBFile(file, 'w')
            close = 1
        terminus = None
        if self.isCTerminus(): terminus = 'C'
        if self.isNTerminus(): terminus = 'N'
        file.nextResidue(self.name, self.number, terminus)
        for a in self.atom_list:
            a.writeToFile(file)
        if close:
            file.close()


class NucleotideResidue(Residue):

    """
    Nucleotide residue in a PDB file
    """

    is_nucleotide = 1

    def __init__(self, name, atoms = None, number = None):
        self.pdbname = name
        name = name.strip()
        if name[0] != 'D' and name[0] != 'R':
            name = 'D' + name
        Residue.__init__(self, name, atoms, number)
        for a in atoms:
            if a.name == 'O2*' or a.name == "O2'": # Ribose
                self.name = 'R' + self.name[1:]

    def isCompatible(self, residue_data):
        return (residue_data['residue_name'] == self.name or
                residue_data['residue_name'] == self.pdbname) \
               and residue_data['residue_number'] == self.number

    def addAtom(self, atom):
        Residue.addAtom(self, atom)
        if atom.name == 'O2*' or atom.name == "O2'": # Ribose
            self.name = 'R' + self.name[1:]

    def hasRibose(self):
        """
        @returns: C{True} if the residue has an atom named O2*
        @rtype: C{bool}
        """
        return self.atoms.has_key('O2*') or self.atoms.has_key("O2'")

    def hasDesoxyribose(self):
        """
        @returns: C{True} if the residue has no atom named O2*
        @rtype: C{bool}
        """
        return not self.hasRibose()

    def hasPhosphate(self):
        """
        @returns: C{True} if the residue has a phosphate group
        @rtype: C{bool}
        """
        return self.atoms.has_key('P')

    def hasTerminalH(self):
        """
        @returns: C{True} if the residue has a 3-terminal H atom
        @rtype: C{bool}
        """
        return self.atoms.has_key('H3T')

    def writeToFile(self, file):
        close = 0
        if type(file) == type(''):
            file = PDBFile(file, 'w')
            close = 1
        terminus = None
        if not self.hasPhosphate(): terminus = '5'
        file.nextResidue(self.name[1:], self.number, terminus)
        for a in self.atom_list:
            a.writeToFile(file)
        if close:
            file.close()

class Chain:

    """Chain of PDB residues

    This is an abstract base class. Instances can be created using
    one of the subclasses (L{PeptideChain}, L{NucleotideChain}).

    Chain objects respond to len() and return their residues
    by indexing with integers.
    """

    def __init__(self, residues = None, chain_id = None, segment_id = None):
        """
        @param residues: a list of residue objects, or C{None} meaning
                         that the chain is initially empty
        @type residues: C{list} or C{NoneType}
        @param chain_id: a one-letter chain identifier or C{None}
        @type chain_id: C{str} or C{NoneType}
        @param segment_id: a multi-character segment identifier or C{None}
        @type segment_id: C{str} or C{NoneType}
        """
        if residues is None:
            self.residues = []
        else:
            self.residues = residues
        self.chain_id = chain_id
        self.segment_id = segment_id

    def __len__(self):
        """
        @returns: the number of residues in the chain
        @rtype: C{int}
        """
        return len(self.residues)

    def sequence(self):
        """
        @returns: the list of residue names
        @rtype: C{list} of C{str}
        """
        return [r.name for r in self.residues]

    def __getitem__(self, index):
        """
        @param index: an index into the chain
        @type index: C{int}
        @returns: the residue corresponding to the index
        @rtype: L{AminoAcidResidue} or L{NucleotideResidue}
        @raises IndexError: if index exceeds the chain length
        """
        return self.residues[index]

    def __getslice__(self, i1, i2):
        """
        @param i1: in index into the chain
        @type i1: C{int}
        @param i2: in index into the chain
        @type i12 C{int}
        @returns: the subchain from i1 to i2
        @rtype: L{PeptideChain} or L{NucleotideChain}
        """
        return self.__class__(self.residues[i1:i2])

    def addResidue(self, residue):
        """
        Add a residue at the end of the chain

        @param residue: the residue to be added
        @type residue: L{AminoAcidResidue} or L{NucleotideResidue}
        """
        self.residues.append(residue)

    def removeResidues(self, first, last):
        """
        Remove residues in a given index range.

        @param first: the index of the first residue to be removed
        @type first: C{int}
        @param last: the index of the first residue to be kept, or C{None}
                     meaning remove everything to the end of the chain.
        @type last: C{int} or C{NoneType}
        """
        if last is None:
            del self.residues[first:]
        else:
            del self.residues[first:last]

    def deleteHydrogens(self):
        """
        Remove all hydrogen atoms in the chain
        """
        for r in self.residues:
            r.deleteHydrogens()

    def writeToFile(self, file):
        """
        Write the chain to a file

        @param file: a PDBFile object or a file name
        @type file: L{PDBFile} or C{str}
        """
        close = 0
        if type(file) == type(''):
            file = PDBFile(file, 'w')
            close = 1
        file.nextChain(self.chain_id, self.segment_id)
        for r in self.residues:
            r.writeToFile(file)
        file.terminateChain()
        if close:
            file.close()

class PeptideChain(Chain):

    """
    Peptide chain in a PDB file
    """

    def isTerminated(self):
        """
        @returns: C{True} if the last residue is in C-terminal configuration
        @rtype: C{bool}
        """
        return self.residues and self.residues[-1].isCTerminus()

    def isCompatible(self, chain_data, residue_data):
        return chain_data['chain_id'] == self.chain_id and \
               chain_data['segment_id'] == self.segment_id and \
               residue_data['residue_name'] in amino_acids


class NucleotideChain(Chain):

    """
    Nucleotide chain in a PDB file
    """

    def isTerminated(self):
        """
        @returns: C{True} if the last residue is in 3-terminal configuration
        @rtype: C{bool}
        @note: There is no way to perform this test with standard PDB files.
               The algorithm used works for certain non-standard files only.
        """
        return self.residues and \
               (self.residues[-1].name[-1] == '3'
                or self.residues[-1].hasTerminalH())

    def isCompatible(self, chain_data, residue_data):
        return chain_data['chain_id'] == self.chain_id and \
               chain_data['segment_id'] == self.segment_id and \
               residue_data['residue_name'] in nucleic_acids

class DummyChain(Chain):

    def __init__(self, structure, chain_id, segment_id):
        self.structure = structure
        self.chain_id = chain_id
        self.segment_id = segment_id

    def isTerminated(self):
        return 0

    def addResidue(self, residue):
        self.structure.addMolecule(residue)

    def isCompatible(self, chain_data, residue_data):
        return chain_data['chain_id'] == self.chain_id and \
               chain_data['segment_id'] == self.segment_id and \
               residue_data['residue_name'] not in amino_acids and \
               residue_data['residue_name'] not in nucleic_acids

#
# Residue number class for dealing with insertion codes
#
class ResidueNumber:

    """
    PDB residue number

    Most PDB residue numbers are simple integers, but when insertion
    codes are used a number can consist of an integer plus a letter.
    Such compound residue numbers are represented by this class.
    """

    def __init__(self, number, insertion_code):
        """
        @param number: the numeric part of the residue number
        @type number: C{int}
        @param insertion_code: the letter part of the residue number
        @type insertion_code: C{str}
        """
        self.number = number
        self.insertion_code = insertion_code

    def __cmp__(self, other):
        if isinstance(other, int):
            if self.number == other:
                return 1
            else:
                return cmp(self.number, other)
        if self.number == other.number:
            return cmp(self.insertion_code, other.insertion_code)
        else:
            return cmp(self.number, other.number)

    def __str__(self):
        return str(self.number) + self.insertion_code
    __repr__ = __str__

#
# The configuration class.
#
class Structure:

    """
    A high-level representation of the contents of a PDB file

    The components of a structure can be accessed in several ways
    ('s' is an instance of this class):

     - 's.residues' is a list of all PDB residues, in the order in
       which they occurred in the file.

     - 's.peptide_chains' is a list of PeptideChain objects, containing
       all peptide chains in the file in their original order.

     - 's.nucleotide_chains' is a list of NucleotideChain objects, containing
       all nucleotide chains in the file in their original order.

     - 's.molecules' is a list of all PDB residues that are neither
       amino acid residues nor nucleotide residues, in their original
       order.

     - 's.objects' is a list of all high-level objects (peptide chains,
       nucleotide chains, and molecules) in their original order.

     - 's.to_fractional' is the transformation from real-space coordinates
       to fractional coordinates, as read from the SCALEn records.

     - 's.from_fractional' is the transformation from fractional coordinates
       to real-space coordinates, the inverse of s.to_fractional.

     - 's.ncs_transformations' is a list of transformations that
        describe non-crystallographic symmetries, as read from the
        MTRIXn records.

     - if a CRYST1 record exists, 's.a', 's.b', 's.c', 's.alpha',
       's.beta', 's.gamma' are the parameters of the unit cell and
       's.space_group' is a string indicating the space group.
       If no CRYST1 record exists, all those values are None.
       Furthermore, 's.cs_transformations' is a list of transformations
       that describe crystallographic symmetries. If no CRYST1 record
       exists, the list is empty.

    An iteration over a Structure instance by a for-loop is equivalent
    to an iteration over the residue list.
    """

    def __init__(self, file_or_filename, model = 0, alternate_code = 'A'):
        """
        @param file_or_filename: the name of the PDB file, or a file object.
                                 Compressed files and URLs are accepted,
                                 as for class L{PDBFile}.
        @type file_or_filename: C{str} or C{file}
        @param model: the number of the model to read from a multiple-model
                      file. Only one model can be treated at a time.
        @type model: C{int}
        @param alternate_code: the version of the positions to be read
                               from a file with alternate positions.
        @type alternate_code: single-letter C{str}
        """
        if isinstance(file_or_filename, basestring):
            self.filename = file_or_filename
        else:
            self.filename = ''
        self.model = model
        self.alternate = alternate_code
        self.pdb_code = ''
        self.residues = []
        self.objects = []
        self.peptide_chains = []
        self.nucleotide_chains = []
        self.molecules = {}
        self.to_fractional = self.from_fractional = None
        self.ncs_transformations = []
        self.cs_transformations = []
        self.a = self.b = self.c = None
        self.alpha = self.beta = self.gamma = None
        self.space_group = None
        self.parseFile(PDBFile(file_or_filename))
        self.findSpaceGroupTransformations()

    peptide_chain_constructor = PeptideChain
    nucleotide_chain_constructor = NucleotideChain
    molecule_constructor = Molecule

    def __len__(self):
        return len(self.residues)

    def __getitem__(self, item):
        return self.residues[item]

    def deleteHydrogens(self):
        """
        Remove all hydrogen atoms
        """
        for r in self.residues:
            r.deleteHydrogens()

    def splitPeptideChain(self, number, position):
        """
        Split a peptide chain into two chains

        The two chain fragments remain adjacent in the peptide chain
        list, i.e. the numbers of all following chains increase
        by one.

        @param number: the number of the peptide chain to be split
        @type number: C{int}
        @param position: the residue index at which the chain is split.
        @type position: C{int}
        """
        self._splitChain(self.peptide_chain_constructor,
                         self.peptide_chains, number, position)
        
    def splitNucleotideChain(self, number, position):
        """
        Split a nucleotide chain into two chains

        The two chain fragments remain adjacent in the nucleotide chain
        list, i.e. the numbers of all following chains increase
        by one.

        @param number: the number of the nucleotide chain to be split
        @type number: C{int}
        @param position: the residue index at which the chain is split.
        @type position: C{int}
        """
        self._splitChain(self.nucleotide_chain_constructor,
                         self.nucleotide_chains, number, position)

    def _splitChain(self, constructor, chain_list, number, position):
        chain = chain_list[number]
        part1 = constructor(chain.residues[:position],
                            chain.chain_id, chain.segment_id)
        part2 = constructor(chain.residues[position:])
        chain_list[number:number+1] = [part1, part2]
        index = self.objects.index(chain)
        self.objects[index:index+1] = [part1, part2]

    def joinPeptideChains(self, first, second):
        """
        Join two peptide chains into a single one. The new chain occupies
        the position of the first chain, the second one is removed from
        the peptide chain list.

        @param first: the number of the first chain
        @type first: C{int}
        @param second: the number of the second chain
        @type second: C{int}
        """
        self._joinChains(self.peptide_chain_constructor,
                         self.peptide_chains, first, second)
        
    def joinNucleotideChains(self, first, second):
        """
        Join two nucleotide chains into a single one. The new chain occupies
        the position of the first chain, the second one is removed from
        the nucleotide chain list.

        @param first: the number of the first chain
        @type first: C{int}
        @param second: the number of the second chain
        @type second: C{int}
        """
        self._joinChains(self.nucleotide_chain_constructor,
                         self.nucleotide_chains, first, second)

    def _joinChains(self, constructor, chain_list, first, second):
        chain1 = chain_list[first]
        chain2 = chain_list[second]
        total = constructor(chain1.residues+chain2.residues,
                            chain1.chain_id, chain1.segment_id)
        chain_list[first] = total
        del chain_list[second]
        index = self.objects.index(chain1)
        self.objects[index] = total
        index = self.objects.index(chain2)
        del self.objects[index]

    def addMolecule(self, molecule):
        try:
            molecule_list = self.molecules[molecule.name]
        except KeyError:
            molecule_list = []
            self.molecules[molecule.name] = molecule_list
        molecule_list.append(molecule)
        self.objects.append(molecule)
    
    def deleteResidue(self, residue):
        self.residues.remove(residue)
        delete = None
        for type, mlist in self.molecules.items():
            try:
                mlist.remove(residue)
            except ValueError:
                pass
            if len(mlist) == 0:
                delete = type
        if delete is not None:
            del self.molecules[delete]
        delete = None
        for chain in self.peptide_chains + self.nucleotide_chains:
            try:
                chain.residues.remove(residue)
            except ValueError:
                pass
            if len(chain.residues) == 0:
                delete = chain
        if delete is not None:
            try:
                self.peptide_chains.remove(chain)
            except ValueError:
                pass
            try:
                self.nucleotide_chains.remove(chain)
            except ValueError:
                pass
        try:
            self.objects.remove(residue)
        except ValueError:
            pass

    def extractData(self, data):
        atom_data = {}
        for name in ['serial_number', 'name', 'position',
                     'occupancy', 'temperature_factor']:
            atom_data[name] = data[name]
        for name in ['alternate', 'charge']:
            value = data[name]
            if value:
                atom_data[name] = value
        element = data['element']
        if element != '':
            try:
                int(element)
            except ValueError:
                atom_data['element'] = element
        residue_data = {'residue_name': data['residue_name']}
        number = data['residue_number']
        insertion = data['insertion_code']
        if insertion == '':
            residue_data['residue_number'] = number
        else:
            residue_data['residue_number'] = ResidueNumber(number, insertion)
        chain_data = {}
        for name in ['chain_id', 'segment_id']:
            chain_data[name] = data[name]
        if chain_data['segment_id'] == self.pdb_code:
            chain_data['segment_id'] = ''
        return atom_data, residue_data, chain_data

    def newResidue(self, residue_data):
        name = residue_data['residue_name']
        residue_number = residue_data['residue_number']
        if name in amino_acids:
            residue = AminoAcidResidue(name, [], residue_number)
        elif name in nucleic_acids:
            residue = NucleotideResidue(name, [], residue_number)
        else:
            residue = self.molecule_constructor(name, [], residue_number)
        self.residues.append(residue)
        return residue

    def newChain(self, residue, chain_data):
        if hasattr(residue, 'is_amino_acid'):
            chain = self.peptide_chain_constructor([], chain_data['chain_id'],
                                                   chain_data['segment_id'])
            self.peptide_chains.append(chain)
            self.objects.append(chain)
        elif hasattr(residue, 'is_nucleotide'):
            chain = self.nucleotide_chain_constructor([],
                                                      chain_data['chain_id'],
                                                      chain_data['segment_id'])
            self.nucleotide_chains.append(chain)
            self.objects.append(chain)
        else:
            chain = DummyChain(self, chain_data['chain_id'],
                               chain_data['segment_id'])
        return chain

    def parseFile(self, file):
        atom = None
        residue = None
        chain = None
        read = self.model == 0
        while 1:
            type, data = file.readLine()
            if type == 'END': break
            elif type == 'HEADER':
                self.pdb_code = data['pdb_code']
            elif type == 'CRYST1':
                for name, value in data.items():
                    setattr(self, name, value)
                self.space_group = self.space_group.strip()
            elif type[:-1] == 'SCALE':
                if not hasattr(self, '_scale_matrix'):
                    self._scale_matrix = {}
                self._scale_matrix[type[-1]] = data
                if type[-1] == '3': # last line read
                    from Scientific.Geometry.Transformation \
                         import Shear, Translation
                    l1 = self._scale_matrix['1']
                    l2 = self._scale_matrix['2']
                    l3 = self._scale_matrix['3']
                    s = N.array([[l1['s1'], l1['s2'], l1['s3']],
                                 [l2['s1'], l2['s2'], l2['s3']],
                                 [l3['s1'], l3['s2'], l3['s3']]])
                    u = Vector(l1['u'], l2['u'], l3['u'])
                    self.to_fractional = Translation(u)*Shear(s)
                    self.from_fractional = self.to_fractional.inverse()
                    del self._scale_matrix
            elif type[:-1] == 'MTRIX':
                if not hasattr(self, '_ncs_matrix'):
                    self._ncs_matrix = {}
                self._ncs_matrix[type[-1]] = data
                if type[-1] == '3': # last line read
                    from Scientific.Geometry.Transformation \
                         import Rotation, Translation
                    l1 = self._ncs_matrix['1']
                    l2 = self._ncs_matrix['2']
                    l3 = self._ncs_matrix['3']
                    m = N.array([[l1['m1'], l1['m2'], l1['m3']],
                                 [l2['m1'], l2['m2'], l2['m3']],
                                 [l3['m1'], l3['m2'], l3['m3']]])
                    v = Vector(l1['v'], l2['v'], l3['v'])
                    tr = Translation(v)*Rotation(Tensor(m))
                    tr.given = data['given']
                    tr.serial = data['serial']
                    self.ncs_transformations.append(tr)
                    del self._ncs_matrix
            elif type == 'MODEL':
                read = data['serial_number'] == self.model
                if self.model == 0 and len(self.residues) == 0:
                    read = 1
            elif type == 'ENDMDL':
                read = 0
            elif read:
                if type == 'ATOM' or type == 'HETATM':
                    alt = data['alternate']
                    if alt == '' or alt == self.alternate:
                        atom_data, residue_data, chain_data = \
                                   self.extractData(data)
                        if type == 'ATOM':
                            atom = apply(Atom, (), atom_data)
                        else:
                            atom = apply(HetAtom, (), atom_data)
                        new_chain = chain is None or \
                                    not chain.isCompatible(chain_data,
                                                           residue_data)
                        new_residue = new_chain or residue is None \
                                      or not residue.isCompatible(residue_data)
                        if new_residue and chain is not None and \
                           chain.isTerminated():
                            new_chain = 1
                        if new_residue:
                            residue = self.newResidue(residue_data)
                            if new_chain:
                                chain = self.newChain(residue, chain_data)
                            chain.addResidue(residue)
                        residue.addAtom(atom)
                elif type == 'ANISOU':
                    alt = data['alternate']
                    if alt == '' or alt == self.alternate:
                        if atom is None:
                            raise ValueError("ANISOU record before " +
                                              "ATOM record")
                        atom['u'] = data['u']
                elif type == 'TERM':
                    if chain is None:
                        raise ValueError("TERM record before chain")
                    chain = None

    def findSpaceGroupTransformations(self):
        if self.space_group is not None and self.to_fractional is not None:
            from Scientific.IO.PDBSpaceGroups import \
                 getSpaceGroupTransformations
            try:
                trs = getSpaceGroupTransformations(self.space_group)
            except KeyError:
                return
            for tr in trs:
                tr = self.from_fractional*tr*self.to_fractional
                self.cs_transformations.append(tr)

    def renumberAtoms(self):
        """
        Renumber all atoms sequentially starting with 1
        """
        n = 0
        for residue in self.residues:
            for atom in residue:
                atom['serial_number'] = n
                n = n + 1

    def __repr__(self):
        s = self.__class__.__name__ + "(" + repr(self.filename)
        if self.model != 0:
            s = s + ", model=" + repr(self.model)
        if self.alternate != 'A':
            s = s + ", alternate_code = " + repr(self.alternate)
        s = s + "):\n"
        for name, list in [("Peptide", self.peptide_chains),
                           ("Nucleotide", self.nucleotide_chains)]:
            for c in list:
                s = s + "  " + name + " chain "
                if c.segment_id:
                    s = s + c.segment_id + " "
                elif c.chain_id:
                    s = s + c.chain_id + " "
                s = s + "of length " + repr(len(c)) + "\n"
        for name, list in self.molecules.items():
            s = s + "  " + repr(len(list)) + " " + name + " molecule"
            if len(list) == 1:
                s = s + "\n"
            else:
                s = s + "s\n"
        return s

    def writeToFile(self, file):
        """
        Write everything to a file

        @param file: a PDB file object or a filename
        @type file: L{PDBFile} or C{str}
        """
        close = 0
        if type(file) == type(''):
            file = PDBFile(file, 'w')
            close = 1
        for o in self.objects:
            o.writeToFile(file)
        if close:
            file.close()

if __name__ == '__main__':

    if 0:

        file = PDBFile('~/3lzt.pdb')
        copy = PDBFile('test.pdb', 'w', 'xplor')
        while 1:
            type, data = file.readLine()
            if type == 'END':
                break
            copy.writeLine(type, data)
        copy.close()

    if 1:

        s = Structure('~/Programs/MMTK/main/MMTK/Database/PDB/insulin.pdb')
        print s