This file is indexed.

/usr/lib/python2.7/dist-packages/Scientific/Physics/PhysicalQuantities.py is in python-scientific 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
# Physical quantities with units
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# with contributions from Greg Ward
# last revision: 2007-5-25
#

"""
Physical quantities with units.

This module provides a data type that represents a physical
quantity together with its unit. It is possible to add and
subtract these quantities if the units are compatible, and
a quantity can be converted to another compatible unit.
Multiplication, subtraction, and raising to integer powers
is allowed without restriction, and the result will have
the correct unit. A quantity can be raised to a non-integer
power only if the result can be represented by integer powers
of the base units.

The values of physical constants are taken from the 1986
recommended values from CODATA. Other conversion factors
(e.g. for British units) come from various sources. I can't
guarantee for the correctness of all entries in the unit
table, so use this at your own risk.
"""

from Scientific.NumberDict import NumberDict
from Scientific import N
import re, string

# Class definitions

class PhysicalQuantity:

    """
    Physical quantity with units

    PhysicalQuantity instances allow addition, subtraction,
    multiplication, and division with each other as well as
    multiplication, division, and exponentiation with numbers.
    Addition and subtraction check that the units of the two operands
    are compatible and return the result in the units of the first
    operand. A limited set of mathematical functions (from module
    Numeric) is applicable as well:

      - sqrt: equivalent to exponentiation with 0.5.

      - sin, cos, tan: applicable only to objects whose unit is
        compatible with 'rad'.

    See the documentation of the PhysicalQuantities module for a list
    of the available units.
    
    Here is an example on usage:

    >>> from PhysicalQuantities import PhysicalQuantity as p  # short hand
    >>> distance1 = p('10 m')
    >>> distance2 = p('10 km')
    >>> total = distance1 + distance2
    >>> total
    PhysicalQuantity(10010.0,'m')
    >>> total.convertToUnit('km')
    >>> total.getValue()
    10.01
    >>> total.getUnitName()
    'km'
    >>> total = total.inBaseUnits()
    >>> total
    PhysicalQuantity(10010.0,'m')
    >>> 
    >>> t = p(314159., 's')
    >>> # convert to days, hours, minutes, and second:
    >>> t2 = t.inUnitsOf('d','h','min','s')
    >>> t2_print = ' '.join([str(i) for i in t2])
    >>> t2_print
    '3.0 d 15.0 h 15.0 min 59.0 s'
    >>> 
    >>> e = p('2.7 Hartree*Nav')
    >>> e.convertToUnit('kcal/mol')
    >>> e
    PhysicalQuantity(1694.2757596034764,'kcal/mol')
    >>> e = e.inBaseUnits()
    >>> str(e)
    '7088849.77818 kg*m**2/s**2/mol'
    >>> 
    >>> freeze = p('0 degC')
    >>> freeze = freeze.inUnitsOf ('degF')
    >>> str(freeze)
    '32.0 degF'
    >>> 
    """

    def __init__(self, *args):
        """
        There are two constructor calling patterns:

            1. PhysicalQuantity(value, unit), where value is any number
            and unit is a string defining the unit

            2. PhysicalQuantity(value_with_unit), where value_with_unit
            is a string that contains both the value and the unit,
            i.e. '1.5 m/s'. This form is provided for more convenient
            interactive use.

        @param args: either (value, unit) or (value_with_unit,)
        @type args: (number, C{str}) or (C{str},)
        """
        if len(args) == 2:
            self.value = args[0]
            self.unit = _findUnit(args[1])
        else:
            s = string.strip(args[0])
            match = PhysicalQuantity._number.match(s)
            if match is None:
                raise TypeError('No number found')
            self.value = string.atof(match.group(0))
            self.unit = _findUnit(s[len(match.group(0)):])

    _number = re.compile('[+-]?[0-9]+(\\.[0-9]*)?([eE][+-]?[0-9]+)?')

    def __str__(self):
        return str(self.value) + ' ' + self.unit.name()

    def __repr__(self):
        return (self.__class__.__name__ + '(' + `self.value` + ',' + 
                `self.unit.name()` + ')')

    def _sum(self, other, sign1, sign2):
        if not isPhysicalQuantity(other):
            raise TypeError('Incompatible types')
        new_value = sign1*self.value + \
                    sign2*other.value*other.unit.conversionFactorTo(self.unit)
        return self.__class__(new_value, self.unit)

    def __add__(self, other):
        return self._sum(other, 1, 1)

    __radd__ = __add__

    def __sub__(self, other):
        return self._sum(other, 1, -1)

    def __rsub__(self, other):
        return self._sum(other, -1, 1)

    def __cmp__(self, other):
        diff = self._sum(other, 1, -1)
        return cmp(diff.value, 0)

    def __mul__(self, other):
        if not isPhysicalQuantity(other):
            return self.__class__(self.value*other, self.unit)
        value = self.value*other.value
        unit = self.unit*other.unit
        if unit.isDimensionless():
            return value*unit.factor
        else:
            return self.__class__(value, unit)

    __rmul__ = __mul__

    def __div__(self, other):
        if not isPhysicalQuantity(other):
            return self.__class__(self.value/other, self.unit)
        value = self.value/other.value
        unit = self.unit/other.unit
        if unit.isDimensionless():
            return value*unit.factor
        else:
            return self.__class__(value, unit)

    __truediv__ = __div__

    def __rdiv__(self, other):
        if not isPhysicalQuantity(other):
            return self.__class__(other/self.value, pow(self.unit, -1))
        value = other.value/self.value
        unit = other.unit/self.unit
        if unit.isDimensionless():
            return value*unit.factor
        else:
            return self.__class__(value, unit)

    def __pow__(self, other):
        if isPhysicalQuantity(other):
            raise TypeError('Exponents must be dimensionless')
        return self.__class__(pow(self.value, other), pow(self.unit, other))

    def __rpow__(self, other):
        raise TypeError('Exponents must be dimensionless')

    def __abs__(self):
        return self.__class__(abs(self.value), self.unit)

    def __pos__(self):
        return self

    def __neg__(self):
        return self.__class__(-self.value, self.unit)

    def __nonzero__(self):
        return self.value != 0

    def convertToUnit(self, unit):
        """
        Change the unit and adjust the value such that
        the combination is equivalent to the original one. The new unit
        must be compatible with the previous unit of the object.

        @param unit: a unit
        @type unit: C{str}
        @raise TypeError: if the unit string is not a know unit or a
        unit incompatible with the current one
        """
        unit = _findUnit(unit)
        self.value = _convertValue (self.value, self.unit, unit)
        self.unit = unit

    def inUnitsOf(self, *units):
        """
        Express the quantity in different units. If one unit is
        specified, a new PhysicalQuantity object is returned that
        expresses the quantity in that unit. If several units
        are specified, the return value is a tuple of
        PhysicalObject instances with with one element per unit such
        that the sum of all quantities in the tuple equals the the
        original quantity and all the values except for the last one
        are integers. This is used to convert to irregular unit
        systems like hour/minute/second.

        @param units: one or several units
        @type units: C{str} or sequence of C{str}
        @returns: one or more physical quantities
        @rtype: L{PhysicalQuantity} or C{tuple} of L{PhysicalQuantity}
        @raises TypeError: if any of the specified units are not compatible
        with the original unit
        """
        units = map(_findUnit, units)
        if len(units) == 1:
            unit = units[0]
            value = _convertValue (self.value, self.unit, unit)
            return self.__class__(value, unit)
        else:
            units.sort()
            result = []
            value = self.value
            unit = self.unit
            for i in range(len(units)-1,-1,-1):
                value = value*unit.conversionFactorTo(units[i])
                if i == 0:
                    rounded = value
                else:
                    rounded = _round(value)
                result.append(self.__class__(rounded, units[i]))
                value = value - rounded
                unit = units[i]
            return tuple(result)

    # Contributed by Berthold Hoellmann
    def inBaseUnits(self):
        """
        @returns: the same quantity converted to base units,
        i.e. SI units in most cases
        @rtype: L{PhysicalQuantity}
        """
        new_value = self.value * self.unit.factor
        num = ''
        denom = ''
        for i in xrange(9):
            unit = _base_names[i]
            power = self.unit.powers[i]
            if power < 0:
                denom = denom + '/' + unit
                if power < -1:
                    denom = denom + '**' + str(-power)
            elif power > 0:
                num = num + '*' + unit
                if power > 1:
                    num = num + '**' + str(power)
        if len(num) == 0:
            num = '1'
        else:
            num = num[1:]
        return self.__class__(new_value, num + denom)

    def isCompatible (self, unit):
        """
        @param unit: a unit
        @type unit: C{str}
        @returns: C{True} if the specified unit is compatible with the
        one of the quantity
        @rtype: C{bool}
        """
        unit = _findUnit (unit)
        return self.unit.isCompatible (unit)

    def getValue(self):
        """Return value (float) of physical quantity (no unit)."""
        return self.value

    def getUnitName(self):
        """Return unit (string) of physical quantity."""
        return self.unit.name()
    
    def sqrt(self):
        return pow(self, 0.5)

    def sin(self):
        if self.unit.isAngle():
            return N.sin(self.value * \
                             self.unit.conversionFactorTo(_unit_table['rad']))
        else:
            raise TypeError('Argument of sin must be an angle')

    def cos(self):
        if self.unit.isAngle():
            return N.cos(self.value * \
                             self.unit.conversionFactorTo(_unit_table['rad']))
        else:
            raise TypeError('Argument of cos must be an angle')

    def tan(self):
        if self.unit.isAngle():
            return N.tan(self.value * \
                             self.unit.conversionFactorTo(_unit_table['rad']))
        else:
            raise TypeError('Argument of tan must be an angle')


class PhysicalUnit:

    """
    Physical unit

    A physical unit is defined by a name (possibly composite), a scaling
    factor, and the exponentials of each of the SI base units that enter into
    it. Units can be multiplied, divided, and raised to integer powers.
    """
    
    def __init__(self, names, factor, powers, offset=0):
        """
        @param names: a dictionary mapping each name component to its
                      associated integer power (e.g. C{{'m': 1, 's': -1}})
                      for M{m/s}). As a shorthand, a string may be passed
                      which is assigned an implicit power 1.
        @type names: C{dict} or C{str}
        @param factor: a scaling factor
        @type factor: C{float}
        @param powers: the integer powers for each of the nine base units
        @type powers: C{list} of C{int}
        @param offset: an additive offset to the base unit (used only for
                       temperatures)
        @type offset: C{float}
        """
        if type(names) == type(''):
            self.names = NumberDict()
            self.names[names] = 1
        else:
            self.names = names
        self.factor = factor
        self.offset = offset
        self.powers = powers

    def __repr__(self):
        return '<PhysicalUnit ' + self.name() + '>'

    __str__ = __repr__

    def __cmp__(self, other):
        if self.powers != other.powers:
            raise TypeError('Incompatible units')
        return cmp(self.factor, other.factor)

    def __mul__(self, other):
        if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0):
            raise TypeError("cannot multiply units with non-zero offset")
        if isPhysicalUnit(other):
            return PhysicalUnit(self.names+other.names,
                                self.factor*other.factor,
                                map(lambda a,b: a+b,
                                    self.powers, other.powers))
        else:
            return PhysicalUnit(self.names+{str(other): 1},
                                self.factor*other,
                                self.powers,
                                self.offset * other)

    __rmul__ = __mul__

    def __div__(self, other):
        if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0):
            raise TypeError("cannot divide units with non-zero offset")
        if isPhysicalUnit(other):
            return PhysicalUnit(self.names-other.names,
                                self.factor/other.factor,
                                map(lambda a,b: a-b,
                                    self.powers, other.powers))
        else:
            return PhysicalUnit(self.names+{str(other): -1},
                                self.factor/other, self.powers)

    __truediv__ = __div__

    def __rdiv__(self, other):
        if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0):
            raise TypeError("cannot divide units with non-zero offset")
        if isPhysicalUnit(other):
            return PhysicalUnit(other.names-self.names,
                                other.factor/self.factor,
                                map(lambda a,b: a-b,
                                    other.powers, self.powers))
        else:
            return PhysicalUnit({str(other): 1}-self.names,
                                other/self.factor,
                                map(lambda x: -x, self.powers))

    def __pow__(self, other):
        if self.offset != 0:
            raise TypeError("cannot exponentiate units with non-zero offset")
        if isinstance(other, int):
            return PhysicalUnit(other*self.names, pow(self.factor, other),
                                map(lambda x,p=other: x*p, self.powers))
        if isinstance(other, float):
            inv_exp = 1./other
            rounded = int(N.floor(inv_exp+0.5))
            if abs(inv_exp-rounded) < 1.e-10:
                if reduce(lambda a, b: a and b,
                          map(lambda x, e=rounded: x%e == 0, self.powers)):
                    f = pow(self.factor, other)
                    p = map(lambda x,p=rounded: x/p, self.powers)
                    if reduce(lambda a, b: a and b,
                              map(lambda x, e=rounded: x%e == 0,
                                  self.names.values())):
                        names = self.names/rounded
                    else:
                        names = NumberDict()
                        if f != 1.:
                            names[str(f)] = 1
                        for i in range(len(p)):
                            names[_base_names[i]] = p[i]
                    return PhysicalUnit(names, f, p)
                else:
                    raise TypeError('Illegal exponent')
        raise TypeError('Only integer and inverse integer exponents allowed')

    def conversionFactorTo(self, other):
        """
        @param other: another unit
        @type other: L{PhysicalUnit}
        @returns: the conversion factor from this unit to another unit
        @rtype: C{float}
        @raises TypeError: if the units are not compatible
        """
        if self.powers != other.powers:
            raise TypeError('Incompatible units')
        if self.offset != other.offset and self.factor != other.factor:
            raise TypeError(('Unit conversion (%s to %s) cannot be expressed ' +
                             'as a simple multiplicative factor') % \
                             (self.name(), other.name()))
        return self.factor/other.factor

    def conversionTupleTo(self, other): # added 1998/09/29 GPW
        """
        @param other: another unit
        @type other: L{PhysicalUnit}
        @returns: the conversion factor and offset from this unit to
                  another unit
        @rtype: (C{float}, C{float})
        @raises TypeError: if the units are not compatible
        """
        if self.powers != other.powers:
            raise TypeError('Incompatible units')

        # let (s1,d1) be the conversion tuple from 'self' to base units
        #   (ie. (x+d1)*s1 converts a value x from 'self' to base units,
        #   and (x/s1)-d1 converts x from base to 'self' units)
        # and (s2,d2) be the conversion tuple from 'other' to base units
        # then we want to compute the conversion tuple (S,D) from
        #   'self' to 'other' such that (x+D)*S converts x from 'self'
        #   units to 'other' units
        # the formula to convert x from 'self' to 'other' units via the
        #   base units is (by definition of the conversion tuples):
        #     ( ((x+d1)*s1) / s2 ) - d2
        #   = ( (x+d1) * s1/s2) - d2
        #   = ( (x+d1) * s1/s2 ) - (d2*s2/s1) * s1/s2
        #   = ( (x+d1) - (d1*s2/s1) ) * s1/s2
        #   = (x + d1 - d2*s2/s1) * s1/s2
        # thus, D = d1 - d2*s2/s1 and S = s1/s2
        factor = self.factor / other.factor
        offset = self.offset - (other.offset * other.factor / self.factor)
        return (factor, offset)

    def isCompatible (self, other):     # added 1998/10/01 GPW
        """
        @param other: another unit
        @type other: L{PhysicalUnit}
        @returns: C{True} if the units are compatible, i.e. if the powers of
                  the base units are the same
        @rtype: C{bool}
        """
        return self.powers == other.powers

    def isDimensionless(self):
        return not reduce(lambda a,b: a or b, self.powers)

    def isAngle(self):
        return self.powers[7] == 1 and \
               reduce(lambda a,b: a + b, self.powers) == 1

    def setName(self, name):
        self.names = NumberDict()
        self.names[name] = 1

    def name(self):
        num = ''
        denom = ''
        for unit in self.names.keys():
            power = self.names[unit]
            if power < 0:
                denom = denom + '/' + unit
                if power < -1:
                    denom = denom + '**' + str(-power)
            elif power > 0:
                num = num + '*' + unit
                if power > 1:
                    num = num + '**' + str(power)
        if len(num) == 0:
            num = '1'
        else:
            num = num[1:]
        return num + denom


# Type checks

def isPhysicalUnit(x):
    """
    @param x: an object
    @type x: any
    @returns: C{True} if x is a L{PhysicalUnit}
    @rtype: C{bool}
    """
    return hasattr(x, 'factor') and hasattr(x, 'powers')

def isPhysicalQuantity(x):
    """
    @param x: an object
    @type x: any
    @returns: C{True} if x is a L{PhysicalQuantity}
    @rtype: C{bool}
    """
    return hasattr(x, 'value') and hasattr(x, 'unit')


# Helper functions

def _findUnit(unit):
    if type(unit) == type(''):
        name = string.strip(unit)
        unit = eval(name, _unit_table)
        for cruft in ['__builtins__', '__args__']:
            try: del _unit_table[cruft]
            except: pass

    if not isPhysicalUnit(unit):
        raise TypeError(str(unit) + ' is not a unit')
    return unit

def _round(x):
    if N.greater(x, 0.):
        return N.floor(x)
    else:
        return N.ceil(x)


def _convertValue (value, src_unit, target_unit):
    (factor, offset) = src_unit.conversionTupleTo(target_unit)
    return (value + offset) * factor


# SI unit definitions

_base_names = ['m', 'kg', 's', 'A', 'K', 'mol', 'cd', 'rad', 'sr']

_base_units = [('m',   PhysicalUnit('m',   1.,    [1,0,0,0,0,0,0,0,0])),
               ('g',   PhysicalUnit('g',   0.001, [0,1,0,0,0,0,0,0,0])),
               ('s',   PhysicalUnit('s',   1.,    [0,0,1,0,0,0,0,0,0])),
               ('A',   PhysicalUnit('A',   1.,    [0,0,0,1,0,0,0,0,0])),
               ('K',   PhysicalUnit('K',   1.,    [0,0,0,0,1,0,0,0,0])),
               ('mol', PhysicalUnit('mol', 1.,    [0,0,0,0,0,1,0,0,0])),
               ('cd',  PhysicalUnit('cd',  1.,    [0,0,0,0,0,0,1,0,0])),
               ('rad', PhysicalUnit('rad', 1.,    [0,0,0,0,0,0,0,1,0])),
               ('sr',  PhysicalUnit('sr',  1.,    [0,0,0,0,0,0,0,0,1])),
               ]

_prefixes = [('Y',  1.e24),
             ('Z',  1.e21),
             ('E',  1.e18),
             ('P',  1.e15),
             ('T',  1.e12),
             ('G',  1.e9),
             ('M',  1.e6),
             ('k',  1.e3),
             ('h',  1.e2),
             ('da', 1.e1),
             ('d',  1.e-1),
             ('c',  1.e-2),
             ('m',  1.e-3),
             ('mu', 1.e-6),
             ('n',  1.e-9),
             ('p',  1.e-12),
             ('f',  1.e-15),
             ('a',  1.e-18),
             ('z',  1.e-21),
             ('y',  1.e-24),
             ]

_unit_table = {}

for unit in _base_units:
    _unit_table[unit[0]] = unit[1]

_help = []

def _addUnit(name, unit, comment=''):
    if _unit_table.has_key(name):
        raise KeyError, 'Unit ' + name + ' already defined'
    if comment:
        _help.append((name, comment, unit))
    if type(unit) == type(''):
        unit = eval(unit, _unit_table)
        for cruft in ['__builtins__', '__args__']:
            try: del _unit_table[cruft]
            except: pass
    unit.setName(name)
    _unit_table[name] = unit

def _addPrefixed(unit):
    _help.append('Prefixed units for %s:' % unit)
    _prefixed_names = []
    for prefix in _prefixes:
        name = prefix[0] + unit
        _addUnit(name, prefix[1]*_unit_table[unit])
        _prefixed_names.append(name)
    _help.append(', '.join(_prefixed_names))


# SI derived units; these automatically get prefixes
_help.append('SI derived units; these automatically get prefixes:\n' + \
     ', '.join([prefix + ' (%.0E)' % value for prefix, value in _prefixes]) + \
             '\n')
             

_unit_table['kg'] = PhysicalUnit('kg',   1., [0,1,0,0,0,0,0,0,0])

_addUnit('Hz', '1/s', 'Hertz')
_addUnit('N', 'm*kg/s**2', 'Newton')
_addUnit('Pa', 'N/m**2', 'Pascal')
_addUnit('J', 'N*m', 'Joule')
_addUnit('W', 'J/s', 'Watt')
_addUnit('C', 's*A', 'Coulomb')
_addUnit('V', 'W/A', 'Volt')
_addUnit('F', 'C/V', 'Farad')
_addUnit('ohm', 'V/A', 'Ohm')
_addUnit('S', 'A/V', 'Siemens')
_addUnit('Wb', 'V*s', 'Weber')
_addUnit('T', 'Wb/m**2', 'Tesla')
_addUnit('H', 'Wb/A', 'Henry')
_addUnit('lm', 'cd*sr', 'Lumen')
_addUnit('lx', 'lm/m**2', 'Lux')
_addUnit('Bq', '1/s', 'Becquerel')
_addUnit('Gy', 'J/kg', 'Gray')
_addUnit('Sv', 'J/kg', 'Sievert')

del _unit_table['kg']

for unit in _unit_table.keys():
    _addPrefixed(unit)

# Fundamental constants
_help.append('Fundamental constants:')

_unit_table['pi'] = N.pi
_addUnit('c', '299792458.*m/s', 'speed of light')
_addUnit('mu0', '4.e-7*pi*N/A**2', 'permeability of vacuum')
_addUnit('eps0', '1/mu0/c**2', 'permittivity of vacuum')
_addUnit('Grav', '6.67259e-11*m**3/kg/s**2', 'gravitational constant')
_addUnit('hplanck', '6.6260755e-34*J*s', 'Planck constant')
_addUnit('hbar', 'hplanck/(2*pi)', 'Planck constant / 2pi')
_addUnit('e', '1.60217733e-19*C', 'elementary charge')
_addUnit('me', '9.1093897e-31*kg', 'electron mass')
_addUnit('mp', '1.6726231e-27*kg', 'proton mass')
_addUnit('Nav', '6.0221367e23/mol', 'Avogadro number')
_addUnit('k', '1.380658e-23*J/K', 'Boltzmann constant')

# Time units
_help.append('Time units:')

_addUnit('min', '60*s', 'minute')
_addUnit('h', '60*min', 'hour')
_addUnit('d', '24*h', 'day')
_addUnit('wk', '7*d', 'week')
_addUnit('yr', '365.25*d', 'year')

# Length units
_help.append('Length units:')

_addUnit('inch', '2.54*cm', 'inch')
_addUnit('ft', '12*inch', 'foot')
_addUnit('yd', '3*ft', 'yard')
_addUnit('mi', '5280.*ft', '(British) mile')
_addUnit('nmi', '1852.*m', 'Nautical mile')
_addUnit('Ang', '1.e-10*m', 'Angstrom')
_addUnit('lyr', 'c*yr', 'light year')
_addUnit('Bohr', '4*pi*eps0*hbar**2/me/e**2', 'Bohr radius')

# Area units
_help.append('Area units:')

_addUnit('ha', '10000*m**2', 'hectare')
_addUnit('acres', 'mi**2/640', 'acre')
_addUnit('b', '1.e-28*m**2', 'barn')

# Volume units
_help.append('Volume units:')

_addUnit('l', 'dm**3', 'liter')
_addUnit('dl', '0.1*l', 'deci liter')
_addUnit('cl', '0.01*l', 'centi liter')
_addUnit('ml', '0.001*l', 'milli liter')
_addUnit('tsp', '4.92892159375*ml', 'teaspoon')
_addUnit('tbsp', '3*tsp', 'tablespoon')
_addUnit('floz', '2*tbsp', 'fluid ounce')
_addUnit('cup', '8*floz', 'cup')
_addUnit('pt', '16*floz', 'pint')
_addUnit('qt', '2*pt', 'quart')
_addUnit('galUS', '4*qt', 'US gallon')
_addUnit('galUK', '4.54609*l', 'British gallon')

# Mass units
_help.append('Mass units:')

_addUnit('amu', '1.6605402e-27*kg', 'atomic mass units')
_addUnit('oz', '28.349523125*g', 'ounce')
_addUnit('lb', '16*oz', 'pound')
_addUnit('ton', '2000*lb', 'ton')

# Force units
_help.append('Force units:')

_addUnit('dyn', '1.e-5*N', 'dyne (cgs unit)')

# Energy units
_help.append('Energy units:')

_addUnit('erg', '1.e-7*J', 'erg (cgs unit)')
_addUnit('eV', 'e*V', 'electron volt')
_addUnit('Hartree', 'me*e**4/16/pi**2/eps0**2/hbar**2', 'Wavenumbers/inverse cm')
_addUnit('Ken', 'k*K', 'Kelvin as energy unit')
_addUnit('cal', '4.184*J', 'thermochemical calorie')
_addUnit('kcal', '1000*cal', 'thermochemical kilocalorie')
_addUnit('cali', '4.1868*J', 'international calorie')
_addUnit('kcali', '1000*cali', 'international kilocalorie')
_addUnit('Btu', '1055.05585262*J', 'British thermal unit')

_addPrefixed('eV')

# Power units
_help.append('Power units:')

_addUnit('hp', '745.7*W', 'horsepower')

# Pressure units
_help.append('Pressure units:')

_addUnit('bar', '1.e5*Pa', 'bar (cgs unit)')
_addUnit('atm', '101325.*Pa', 'standard atmosphere')
_addUnit('torr', 'atm/760', 'torr = mm of mercury')
_addUnit('psi', '6894.75729317*Pa', 'pounds per square inch')

# Angle units
_help.append('Angle units:')

_addUnit('deg', 'pi*rad/180', 'degrees')

_help.append('Temperature units:')
# Temperature units -- can't use the 'eval' trick that _addUnit provides
# for degC and degF because you can't add units
kelvin = _findUnit ('K')
_addUnit ('degR', '(5./9.)*K', 'degrees Rankine')
_addUnit ('degC', PhysicalUnit (None, 1.0, kelvin.powers, 273.15),
          'degrees Celcius')
_addUnit ('degF', PhysicalUnit (None, 5./9., kelvin.powers, 459.67),
          'degree Fahrenheit')
del kelvin


def description():
    """Return a string describing all available units."""
    s = ''  # collector for description text
    for entry in _help:
        if isinstance(entry, basestring):
            # headline for new section
            s += '\n' + entry + '\n'
        elif isinstance(entry, tuple):
            name, comment, unit = entry
            s += '%-8s  %-26s %s\n' % (name, comment, unit)
        else:
            # impossible
            raise TypeError, 'wrong construction of _help list'
    return s

# add the description of the units to the module's doc string:
__doc__ += '\n' + description()

# Some demonstration code. Run with "python -i PhysicalQuantities.py"
# to have this available.

if __name__ == '__main__':

    from Scientific.N import *
    l = PhysicalQuantity(10., 'm')
    big_l = PhysicalQuantity(10., 'km')
    print big_l + l
    t = PhysicalQuantity(314159., 's')
    print t.inUnitsOf('d','h','min','s')

    p = PhysicalQuantity # just a shorthand...

    e = p('2.7 Hartree*Nav')
    e.convertToUnit('kcal/mol')
    print e
    print e.inBaseUnits()

    freeze = p('0 degC')
    print freeze.inUnitsOf ('degF')