This file is indexed.

/usr/lib/python2.7/dist-packages/Scientific/QtWidgets/QtVisualizationCanvas.py is in python-scientific 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# This module defines a 3D wireframe visualization widget
# for Qt user interfaces.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# Last revision: 2006-5-31
#

"""
3D wireframe canvas widget for Qt

This module provides a special widget for Qt user interfaces
which permits the display of 3D wireframe structures with interactive
manipulation.

Note that this widget can become sluggish if two many lines are to
be displayed. An OpenGL widget should be used for serious visualization
needs. The advantage of this module is that it requires no special
graphics libraries in addition to Qt.

@undocumented: PolyPoints3D
"""

try:
    from qt import *
except ImportError:
    from qt_fake import *

import string, os
from Scientific import N
from Scientific.Geometry import Vector
from Scientific.Geometry.Transformation import Rotation

# This must be 0 on the Zaurus
colors_by_name = not os.environ.has_key('QPEDIR')


class PolyPoints3D:

    def __init__(self, points, attr):
        self.points = N.array(points)
        self.scaled = self.points
        self.attributes = {}
        for name, value in self._attributes.items():
            try:
                value = attr[name]
            except KeyError: pass
            self.attributes[name] = value

    def boundingBox(self):
        return N.minimum.reduce(self.points), \
               N.maximum.reduce(self.points)

    def project(self, axis, plane):
        self.depth = N.dot(self.points, axis)
        self.projection = N.dot(self.points, plane)

    def boundingBoxPlane(self):
        return N.minimum.reduce(self.projection), \
               N.maximum.reduce(self.projection)

    def scaleAndShift(self, scale=1, shift=0):
        self.scaled = scale*self.projection+shift


class PolyLine3D(PolyPoints3D):

    """
    Multiple connected lines
    """

    def __init__(self, points, **attr):
        """
        @param points: any sequence of (x, y, z) coordinate triples
        @param attr: line attributes

        @keyword width: line width (default: 1)
        @type width: C{int}
        @keyword color: a Qt color name (default: C{"black"})
        @type color: C{str}
        """
        PolyPoints3D.__init__(self, points, attr)

    _attributes = {'color': 'black',
                   'width': 1}

    def lines(self):
        color = self.attributes['color']
        width = self.attributes['width']
        lines = []
        depths = []
        for i in range(len(self.scaled)-1):
            x1, y1 = self.scaled[i]
            x2, y2 = self.scaled[i+1]
            lines.append((x1, y1, x2, y2,
                          color, width))
            depths.append(min(self.depth[i], self.depth[i+1]))
        return lines, depths


class VisualizationGraphics:

    """
    Compound graphics object

    @undocumented: boundingBox
    @undocumented: boundingBoxPlane
    @undocumented: project
    @undocumented: scaleAndShift
    @undocumented: lines
    """
    
    def __init__(self, objects):
        """
        @param objects: a list of graphics objects (L{PolyLine3D},
                        L{VisualizationGraphics})
        """
        self.objects = objects

    def boundingBox(self):
        p1, p2 = self.objects[0].boundingBox()
        for o in self.objects[1:]:
            p1o, p2o = o.boundingBox()
            p1 = N.minimum(p1, p1o)
            p2 = N.maximum(p2, p2o)
        return p1, p2

    def project(self, axis, plane):
        for o in self.objects:
            o.project(axis, plane)

    def boundingBoxPlane(self):
        p1, p2 = self.objects[0].boundingBoxPlane()
        for o in self.objects[1:]:
            p1o, p2o = o.boundingBoxPlane()
            p1 = N.minimum(p1, p1o)
            p2 = N.maximum(p2, p2o)
        return p1, p2

    def scaleAndShift(self, scale=1, shift=0):
        for o in self.objects:
            o.scaleAndShift(scale, shift)

    def lines(self):
        items = []
        depths = []
        for o in self.objects:
            i, d = o.lines()
            items = items + i
            depths = depths + d
        return items, depths

    def __len__(self):
        return len(self.objects)

    def __getitem__(self, item):
        return self.objects[item]


class VisualizationCanvas(QWidget):

    """
    Qt visualization widget

    VisualizationCanvas objects support all operations of Qt widgets.

    Interactive manipulation of the display is possible with
    click-and-drag operations. The left mouse button rotates the
    objects, the middle button translates it, and the right button
    scales it up or down.
    """
    
    def __init__(self, parent=None, background='white'):
        """
        @param parent: the parent widget
        @param background: the background color
        @type background: C{str}
        """
        QWidget.__init__(self, parent)
        if colors_by_name:
            self.background_color = QColor(background)
        else:
            self.background_color = getattr(Qt, background)
        self.border = (1, 1)
        self._setsize()
        self.scale = None
        self.translate = N.array([0., 0.])
        self.last_draw = None
        self.axis = N.array([0.,0.,1.])
        self.plane = N.array([[1.,0.], [0.,1.], [0.,0.]])

    def resizeEvent(self, event):
        self._setsize()
        self.update()

    def _setsize(self):
        width = self.width()
        height = self.height()
        self.plotbox_size = 0.97*N.array([width, -height])
        xo = 0.5*(width-self.plotbox_size[0])
        yo = height-0.5*(height+self.plotbox_size[1])
        self.plotbox_origin = N.array([xo, yo])

    def copyViewpointFrom(self, other):
        self.axis = other.axis
        self.plane = other.plane
        self.scale = other.scale
        self.translate = other.translate

    def setViewpoint(self, axis, plane, scale=None, translate=None):
        self.axis = axis
        self.plane = plane
        if scale is not None:
            self.scale = scale
        if translate is not None:
            self.translate = translate

    def draw(self, graphics):
        """
        Draw something on the canvas

        @param graphics: the graphics object (L{PolyLine3D},
                         or L{VisualizationGraphics}) to be drawn
        """
        self.last_draw = (graphics, )
        self.update()

    def paintEvent(self, event):
        graphics = self.last_draw[0]
        if graphics is None:
            return
        graphics.project(self.axis, self.plane)
        p1, p2 = graphics.boundingBoxPlane()
        center = 0.5*(p1+p2)
        scale = self.plotbox_size / (p2-p1)
        sign = scale/N.fabs(scale)
        if self.scale is None:
            minscale = N.minimum.reduce(N.fabs(scale))
            self.scale = 0.9*minscale
        scale = sign*self.scale
        box_center = self.plotbox_origin + 0.5*self.plotbox_size
        shift = -center*scale + box_center + self.translate
        graphics.scaleAndShift(scale, shift)
        items, depths = graphics.lines()
        sort = N.argsort(depths)
        painter = QPainter()
        painter.begin(self)
        painter.fillRect(self.rect(), QBrush(self.background_color))
        if colors_by_name:
            for index in sort:
                x1, y1, x2, y2, color, width = items[index]
                painter.setPen(QPen(QColor(color), width, Qt.SolidLine))
                painter.drawLine(x1, y1, x2, y2)
        else:
            for index in sort:
                x1, y1, x2, y2, color, width = items[index]
                painter.setPen(QPen(getattr(Qt, color), width, Qt.SolidLine))
                painter.drawLine(x1, y1, x2, y2)
        painter.end()

    def redraw(self):
        self.update()

    def clear(self, keepscale = 0):
        """
        Clear the canvas
        """
        self.last_draw = None
        if not keepscale:
            self.scale = None
        self.update()

    def mousePressEvent(self, event):
        button = event.button()
        x = event.x()
        y = event.y()
        if button == Qt.LeftButton:
            self.click1x = x
            self.click1y = y
            self.setCursor(Qt.arrowCursor)
        elif button == Qt.MidButton:
            self.click2x = x
            self.click2y = y
            self.setCursor(Qt.sizeAllCursor)
        else:
            self.click3x = x
            self.click3y = y
            self.setCursor(Qt.sizeFDiagCursor)

    def mouseReleaseEvent(self, event):
        button = event.button()
        self.setCursor(Qt.arrowCursor)
        if button == Qt.LeftButton:
            try:
                dx = event.x() - self.click1x
                dy = event.y() - self.click1y
            except AttributeError:
                return
            if dx != 0 or dy != 0:
                normal = Vector(self.axis)
                move = Vector(-dx*self.plane[:,0]+dy*self.plane[:,1])
                axis = normal.cross(move) / \
                       N.minimum.reduce(N.fabs(self.plotbox_size))
                rot = Rotation(axis.normal(), axis.length())
                self.axis = rot(normal).array
                self.plane[:,0] = rot(Vector(self.plane[:,0])).array
                self.plane[:,1] = rot(Vector(self.plane[:,1])).array
        elif button == Qt.MidButton:
            try:
                dx = event.x() - self.click2x
                dy = event.y() - self.click2y
            except AttributeError:
                return
            if dx != 0 or dy != 0:
                self.translate = self.translate + N.array([dx, dy])
        else:
            try:
                dy = event.y() - self.click3y
            except AttributeError:
                return
            if dy != 0:
                ratio = -dy/self.plotbox_size[1]
                self.scale = self.scale * (1.+ratio)
        self.update()


if __name__ == '__main__':

    from Scientific.IO.TextFile import TextFile
    from Scientific.IO.FortranFormat import FortranFormat, FortranLine
    import string

    generic_format = FortranFormat('A6')
    atom_format = FortranFormat('A6,I5,1X,A4,A1,A3,1X,A1,I4,A1,' +
                                '3X,3F8.3,2F6.2,7X,A4,2A2')

    # Read the PDB file and make a list of all C-alpha positions
    def readCAlphaPositions(filename):
        positions = []
        chains = [positions]
        for line in TextFile(filename):
            record_type = FortranLine(line, generic_format)[0]
            if record_type == 'ATOM  ' or record_type == 'HETATM':
                data = FortranLine(line, atom_format)
                atom_name = string.strip(data[2])
                position = N.array(data[8:11])
                if atom_name == 'CA':
                    positions.append(position)
                elif atom_name == 'OXT':
                    positions = []
                    chains.append(positions)
        if len(chains[-1]) == 0:
            del chains[-1]
        return chains

    conf = readCAlphaPositions('~/mmtk2/MMTK/Database/PDB/insulin.pdb')
    colors = ['black', 'red', 'green', 'blue', 'yellow']
    colors = (len(conf)*colors)[:len(conf)]
    objects = []
    for chain, color in map(None, conf, colors):
        objects.append(PolyLine3D(chain, color=color))
    graphics = VisualizationGraphics(objects)

    import sys
    app = QApplication(sys.argv)

    c = VisualizationCanvas()
    c.draw(graphics)

    app.setMainWidget(c)
    c.show()
    app.exec_loop()