This file is indexed.

/usr/lib/python2.7/dist-packages/pysparse/pysparseMatrix.py is in python-sparse 1.1-1.2build1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#! /usr/bin/python

## -*-Pyth-*-
 # ###################################################################
 #  FiPy - Python-based finite volume PDE solver
 # 
 #  FILE: "pysparseMatrix.py"
 #                                    created: 11/10/03 {3:15:38 PM} 
 #                                last update: 1/3/07 {3:03:32 PM} 
 #  Author: Jonathan Guyer <guyer@nist.gov>
 #  Author: Daniel Wheeler <daniel.wheeler@nist.gov>
 #  Author: James Warren   <jwarren@nist.gov>
 #    mail: NIST
 #     www: http://www.ctcms.nist.gov/fipy/
 #  
 # ========================================================================
 # This software was developed at the National Institute of Standards
 # and Technology by employees of the Federal Government in the course
 # of their official duties.  Pursuant to title 17 Section 105 of the
 # United States Code this software is not subject to copyright
 # protection and is in the public domain.  FiPy is an experimental
 # system.  NIST assumes no responsibility whatsoever for its use by
 # other parties, and makes no guarantees, expressed or implied, about
 # its quality, reliability, or any other characteristic.  We would
 # appreciate acknowledgement if the software is used.
 # 
 # This software can be redistributed and/or modified freely
 # provided that any derivative works bear some notice that they are
 # derived from it, and any modified versions bear some notice that
 # they have been modified.
 # ========================================================================
 #  
 #  Description: 
 # 
 #  History
 # 
 #  modified   by  rev reason
 #  ---------- --- --- -----------
 #  2003-11-10 JEG 1.0 original
 # ###################################################################
 ##

# A number of updates by Dominique Orban <dominique.orban@gmail.com>
# - allow creation of rectangular and square symmetric matrices
# - updates to __add__ and others to allow addition/subtraction of symmetric
#   matrices
# - new creator function PysparseMatrixSpDiags() to create banded matrices
#   with given diagonals. 

__docformat__ = 'restructuredtext'

from pysparse import spmatrix
from sparseMatrix import SparseMatrix
import numpy

class PysparseMatrix(SparseMatrix):
    """
    A PysparseMatrix is a class wrapper for the pysparse spmatrix sparse matrix
    type. This class facilitates matrix populating and allows intuitive
    operations on sparse matrices and vectors. 

    :Currently accepted keywords include:

    +-------------+------------------------------------------------------------+
    | `nrow`      | The number of rows of the matrix                           |
    +-------------+------------------------------------------------------------+
    | `ncol`      | The number of columns of the matrix                        |
    +-------------+------------------------------------------------------------+
    | `size`      | The common number of rows and columns, for a square matrix |
    +-------------+------------------------------------------------------------+
    | `bandwidth` | The bandwidth (if creating a band matrix)                  |
    +-------------+------------------------------------------------------------+
    | `matrix`    | The starting `spmatrix` if there is one                    |
    +-------------+------------------------------------------------------------+
    | `sizeHint`  | A guess on the number of nonzero elements of the matrix    |
    +-------------+------------------------------------------------------------+
    | `symmetric` | A boolean indicating whether the matrix is symmetric.      |
    +-------------+------------------------------------------------------------+
    """

    def __init__(self, **kwargs):

        nrow = kwargs.get('nrow', 0)
        ncol = kwargs.get('ncol', 0)
        bandwidth = kwargs.get('bandwidth', 0)
        matrix = kwargs.get('matrix', None)
        sizeHint = kwargs.get('sizeHint', 0)
        symmetric = 'symmetric' in kwargs and kwargs['symmetric']
        size = kwargs.get('size',0)
        if size > 0:
            if nrow > 0 or ncol > 0:
                if size != nrow or size != ncol:
                    msg =  'size argument was given but does not match '
                    msg += 'nrow and ncol'
                raise ValueError, msg
            else:
                nrow = ncol = size

        if matrix is not None:
            self.matrix = matrix
        else:
            if symmetric and nrow==ncol:
                if sizeHint is None:
                    sizeHint = nrow
                    if bandwidth > 0:
                        sizeHint += 2*(bandwidth-1)*(2*nrow-bandwidth-2)
                self.matrix = spmatrix.ll_mat_sym(nrow, sizeHint)
            else:
                if sizeHint is None:
                    sizeHint = min(nrow,ncol)
                    if bandwidth > 0:
                        sizeHint = bandwidth * (2*sizeHint-bandwidth-1)/2
                self.matrix = spmatrix.ll_mat(nrow, ncol, sizeHint)

    def isSymmetric(self):
        "Returns `True` is `self` is a symmetric matrix or `False` otherwise"
        if self.matrix.issym: return True
        return False

    def getNnz(self):
        "Returns the number of nonzero elements of `self`"
        return self.matrix.nnz

    def getMatrix(self):
        "Returns the underlying `ll_mat` sparse matrix of `self`"
        return self.matrix
    
    def copy(self):
        "Returns a (deep) copy of a sparse matrix"
        return PysparseMatrix(matrix = self.matrix.copy())
        
    def __coerce__(self, other):
        return self, other
    
    def __getattr__(self, name):
        if name == 'nnz':
            return self.getNnz()
        elif name == 'shape':
            return self.getShape()
        msg = 'No such attribute: %s' % name
        raise ValueError, msg

    def __getitem__(self, index):
        m = self.matrix[index]
        if isinstance(m, int) or isinstance(m, float):
            return m
        else:
            return PysparseMatrix(matrix = m, symmetric=self.matrix.issym)

    def __setitem__(self, index, value):
        #if type(value) is type(self):
        if isinstance(value, PysparseMatrix):
            self.matrix[index] = value.matrix
        else:
            self.matrix[index] = value

    def __iadd__(self, other):
        # In-place addition
        return self._iadd(self.getMatrix(), other)
        
    def _iadd(self, L, other, sign = 1):
        # In-place addition helper
        if other != 0:
            if self.isSymmetric() and not other.isSymmetric():
                L.generalize()
            L.shift(sign, other.getMatrix())
        return self

    def __add__(self, other):
        """
        Add two sparse matrices, return a new sparse matrix
        
            >>> L = PysparseMatrix(size = 3)
            >>> L.put([3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0])
            >>> print L + PysparseIdentityMatrix(size = 3)
             1.000000  10.000000   3.000000  
                ---     4.141593      ---    
             2.500000      ---     1.000000  
             
            >>> print L + 0
                ---    10.000000   3.000000  
                ---     3.141593      ---    
             2.500000      ---        ---    
            
            >>> print L + 3
                ---    13.000000   6.000000  
                ---     6.141593      ---    
             5.500000      ---        ---    
        """
        if other is 0 or other is 0.0:
            return self
        elif isinstance(other, int) or isinstance(other, float): #type(other) in [type(1), type(1.0)]:
            # Add give value to all elements of sparse matrix in nonzero pattern
            L = self.copy()
            val, irow, jcol = L.find()
            L.matrix.update_add_at( other*numpy.ones(val.shape), irow, jcol)
            return L
        elif type(self) is type(other):
            if self.getShape() != other.getShape():
                msg = 'Only sparse matrices of the same size may be added'
                raise TypeError, msg
            L = self.matrix.copy()
            if self.isSymmetric() and not other.isSymmetric():
                L.generalize()
            L.shift(1, other.getMatrix())
            return PysparseMatrix(matrix = L)
        
    def __sub__(self, other):

        if isinstance(other,int) or isinstance(other, float): #type(other) in [type(1), type(1.0)]:
            return self.__add__(-other)
        else:
            if self.getShape() != other.getShape():
                msg = 'Only sparse matrices of the same size may be subtracted'
                raise TypeError, msg
            L = self.matrix.copy()
            if self.isSymmetric() and not other.isSymmetric():
                L.generalize()
            L.shift(-1, other.getMatrix())
            return PysparseMatrix(matrix = L)

    def __isub__(self, other):
        # In-place subtraction
        return self._iadd(self.getMatrix(), other, sign=-1)

    def __mul__(self, other):
        """
        Multiply a sparse matrix by another sparse matrix
        
            >>> L1 = PysparseMatrix(size = 3)
            >>> L1.put([3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0])
            >>> L2 = PysparseMatrix(size = 3)
            >>> L2.put(numpy.ones(3), numpy.arange(3), numpy.arange(3))
            >>> L2.put([4.38,12357.2,1.1], [2,1,0], [1,0,2])
            
            >>> tmp = numpy.array(((1.23572000e+05, 2.31400000e+01, 3.00000000e+00),
            ...                      (3.88212887e+04, 3.14159265e+00, 0.00000000e+00),
            ...                      (2.50000000e+00, 0.00000000e+00, 2.75000000e+00)))

            >>> numpy.allclose((L1 * L2).getNumpyArray(), tmp)
            1

        or a sparse matrix by a vector

            >>> tmp = numpy.array((29., 6.28318531, 2.5))       
            >>> numpy.allclose(L1 * numpy.array((1,2,3),'d'), tmp)
            1
            
        or a vector by a sparse matrix

            >>> tmp = numpy.array((7.5, 16.28318531,  3.))  
            >>> numpy.allclose(numpy.array((1,2,3),'d') * L1, tmp) ## The multiplication is broken. Numpy is calling __rmul__ for every element instead of with  the whole array.
            1
        """
        M, N = self.getShape()

        if isinstance(other, PysparseMatrix):
            if N != other.getShape()[0]:
                raise TypeError, 'Matrices dimensions do not match for product'

            p = spmatrix.matrixmultiply(self.matrix, other.getMatrix())
            return PysparseMatrix(matrix=p)
        else:
            shape = numpy.shape(other)
            if shape == ():  # other is a scalar
                p = self.matrix.copy()
                p.scale(other)
                return PysparseMatrix(matrix=p)
            elif shape == (N,):
                y = numpy.empty(M)
                self.matrix.matvec(other, y)
                return y
            else:
                raise TypeError, 'Cannot multiply objects'

    def __imul__(self, other):
        # In-place multiplication (by a scalar)
        #if type(other) not in [type(0), type(0.0)]:
        if not (isinstance(other, int) or isinstance(other, float)):
            raise TypeError, 'In-place multiplication is with scalars only'
        p = self.matrix
        p.scale(other)
        return self

    def __rmul__(self, other):
        # Compute  other * A  which is really  A^T * other
        if type(numpy.ones(1.0)) == type(other):
            M, N = self.getShape()
            y = numpy.empty(N)
            self.matrix.matvec_transp(other, y)
            return y
        else:
            return self * other
            
    def getShape(self):
        "Returns the shape ``(nrow,ncol)`` of a sparse matrix"
        return self.matrix.shape

    def find(self):
        """
        Returns three Numpy arrays to describe the sparsity pattern of ``self``
        in so-called coordinate (or triplet) format:

            >>> L = PysparseMatrix(size = 3)
            >>> L.put([3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0])
            >>> (val,irow,jcol) = L.find()
            >>> val
            array([ 10.        ,   3.        ,   3.14159265,   2.5       ])
            >>> irow
            array([0, 0, 1, 2])
            >>> jcol
            array([1, 2, 1, 0])
        """
        return self.matrix.find()
        
    def put(self, value, id1, id2):
        """
        Put elements of ``value`` at positions of the matrix
        corresponding to ``(id1, id2)``
        
            >>> L = PysparseMatrix(size = 3)
            >>> L.put( [3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0] )
            >>> print L
                ---    10.000000   3.000000  
                ---     3.141593      ---    
             2.500000      ---        ---    
            >>> L.put(2*numpy.pi, range(3), range(3))
            >>> print L
             6.283185  10.000000   3.000000  
                ---     6.283185      ---    
             2.500000      ---     6.283185  

        If ``value`` is a scalar, it has the same effect as the vector
        of appropriate length with all values equal to ``value``.
        If ``id1`` is omitted, it is replaced with ``range(nrow)``.
        If ``id2`` is omitted, it is replaced with ``range(ncol)``.
        """
        self.matrix.put(value, id1, id2)
        return None

    def putDiagonal(self, vector):
        """
        Put elements of ``vector`` along diagonal of matrix
        
            >>> L = PysparseMatrix(size = 3)
            >>> L.putDiagonal([3.,10.,numpy.pi])
            >>> print L
             3.000000      ---        ---    
                ---    10.000000      ---    
                ---        ---     3.141593  
            >>> L.putDiagonal([10.,3.])
            >>> print L
            10.000000      ---        ---    
                ---     3.000000      ---    
                ---        ---     3.141593  
            >>> L.putDiagonal(2.7182)
            >>> print L
             2.718200      ---        ---    
                ---     2.718200      ---    
                ---        ---     2.718200  

        """
        if isinstance(vector, int) or isinstance(vector, float):
            ids = numpy.arange(self.getShape()[0])
            #tmp = numpy.zeros((self.getShape()[0],), 'd')
            #tmp[:] = vector
            self.put(vector, ids, ids)
        else:
            #ids = numpy.arange(len(vector))
            self.matrix.put(vector) #, ids, ids)

    def take(self, id1, id2):
        """
        Extract elements at positions ``(irow[i], jcol[i])`` and place them in
        the array ``val``. In other words::

            for i in range(len(val)): val[i] = A[irow[i],jcol[i]]

        """
        vector = numpy.zeros(len(id1), 'd')
        self.matrix.take(vector, id1, id2)
        return vector

    def takeDiagonal(self):
        """
        Extract the diagonal of a matrix and place it in a Numpy array.
        """
        ids = numpy.arange(self.getShape()[0])
        return self.take(ids, ids)

    def addAt(self, vector, id1, id2):
        """
        Add elements of ``vector`` to the positions in the matrix corresponding
        to ``(id1,id2)``
        
            >>> L = PysparseMatrix(size = 3)
            >>> L.put([3.,10.,numpy.pi,2.5], [0,0,1,2], [2,1,1,0])
            >>> L.addAt((1.73,2.2,8.4,3.9,1.23), (1,2,0,0,1), (2,2,0,0,2))
            >>> print L
            12.300000  10.000000   3.000000  
                ---     3.141593   2.960000  
             2.500000      ---     2.200000  
        """
        self.matrix.update_add_at(vector, id1, id2)

    def addAtDiagonal(self, vector):
        """
        Add the components of vector ``vector`` to the diagonal elements of the
        matrix.
        """
        #if type(vector) in [type(1), type(1.)]:
        if isinstance(vector, int) or isinstance(vector, float):
            ids = numpy.arange(self.getShape()[0])
            tmp = numpy.empty((self.getShape()[0],), 'd')
            tmp[:] = vector
            self.addAt(tmp, ids, ids)
        else:
            ids = numpy.arange(len(vector))
            self.addAt(vector, ids, ids)

    def getNumpyArray(self):
        """
        Convert a sparse matrix to a dense Numpy matrix.
        """
        shape = self.getShape()
        indices = numpy.indices(shape)
        numMatrix = self.take(indices[0].ravel(), indices[1].ravel())
        return numpy.reshape(numMatrix, shape)
        
    def matvec(self, x):
        """
        This method is required for scipy solvers.
        """
        return self * x

    def exportMmf(self, filename):
        """
        Exports the matrix to a Matrix Market file of the given filename.
        """
        self.matrix.export_mtx(filename)
    

class PysparseIdentityMatrix(PysparseMatrix):
    """
    Represents a sparse identity matrix for pysparse.

        >>> print PysparseIdentityMatrix(size = 3)
         1.000000      ---        ---    
            ---     1.000000      ---    
            ---        ---     1.000000  
    """
    def __init__(self, size):

        PysparseMatrix.__init__(self, nrow=size, ncol=size,
                                bandwidth=1, symmetric=True)
        ids = numpy.arange(size)
        self.put(numpy.ones(size), ids, ids)


class PysparseSpDiagsMatrix(PysparseMatrix):
    """
    Represents a banded matrix with specified diagonals.

    *Example:* Create a tridiagonal matrix with 1's on the diagonal, 2's above
    the diagonal, and -2's below the diagonal.

        >>> from numpy import ones
        >>> e = ones(5)
        >>> print PysparseSpDiagsMatrix(size=5, vals=(-2*e,e,2*e), pos=(-1,0,1))
         1.000000   2.000000      ---        ---        ---    
        -2.000000   1.000000   2.000000      ---        ---    
            ---    -2.000000   1.000000   2.000000      ---    
            ---        ---    -2.000000   1.000000   2.000000  
            ---        ---        ---    -2.000000   1.000000  

    Note that since the `pos[k]`-th diagonal has `size-|pos[k]|` elements, only
    that many first elements of `vals[k]` will be inserted.

    If the banded matrix is requested to be symmetric, elements above the
    main diagonal are not inserted.
    """
    def __init__(self, size, vals, pos, **kwargs):

        if type(pos) in [ type(()), type([]) ]: pos = numpy.array(pos)

        bw = max(numpy.abs(pos))
        diags = size - numpy.abs(pos)
        nz = sum(diags)
        kwargs.pop('bandwidth', True)
        kwargs.pop('sizeHint', True)
        PysparseMatrix.__init__(self, nrow=size, ncol=size,
                                bandwidth=bw, sizeHint=nz, **kwargs)
        
        # Insert elements on specified diagonals
        ndiags = len(pos)
        for k in range(ndiags):
            dk = diags[k]
            d = pos[k]
            if d >= 0 and not self.isSymmetric():
                self.put(vals[k][:dk], numpy.arange(dk), d + numpy.arange(dk))
            else:
                self.put(vals[k][:dk], -d + numpy.arange(dk), numpy.arange(dk))

        
def _test(): 
    import doctest
    return doctest.testmod()
    
if __name__ == "__main__": 
    _test()