This file is indexed.

/usr/lib/python2.7/dist-packages/yade/post2d.py is in python-yade 1.07.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# encoding: utf-8
# 2009 © Václav Šmilauer <eudoxos@arcig.cz>
"""
Module for 2d postprocessing, containing classes to project points from 3d to 2d in various ways,
providing basic but flexible framework for extracting arbitrary scalar values from bodies/interactions
and plotting the results. There are 2 basic components: flatteners and extractors.

The algorithms operate on bodies (default) or interactions, depending on the ``intr`` parameter
of post2d.data.

Flatteners
==========
Instance of classes that convert 3d (model) coordinates to 2d (plot) coordinates. Their interface is
defined by the :yref:`yade.post2d.Flatten` class (``__call__``, ``planar``, ``normal``).

Extractors
==========
Callable objects returning scalar or vector value, given a body/interaction object.
If a 3d vector is returned, Flattener.planar is called, which should return only in-plane
components of the vector.

Example
=======
This example can be found in examples/concrete/uniax-post.py ::

 from yade import post2d
 import pylab # the matlab-like interface of matplotlib

 O.load('/tmp/uniax-tension.xml.bz2')

 # flattener that project to the xz plane
 flattener=post2d.AxisFlatten(useRef=False,axis=1)
 # return scalar given a Body instance
 extractDmg=lambda b: b.state.normDmg
 # will call flattener.planar implicitly
 # the same as: extractVelocity=lambda b: flattener.planar(b,b.state.vel)
 extractVelocity=lambda b: b.state.vel

 # create new figure
 pylab.figure()
 # plot raw damage
 post2d.plot(post2d.data(extractDmg,flattener))

 # plot smooth damage into new figure
 pylab.figure(); ax,map=post2d.plot(post2d.data(extractDmg,flattener,stDev=2e-3))
 # show color scale
 pylab.colorbar(map,orientation='horizontal')

 # raw velocity (vector field) plot
 pylab.figure(); post2d.plot(post2d.data(extractVelocity,flattener))

 # smooth velocity plot; data are sampled at regular grid
 pylab.figure(); ax,map=post2d.plot(post2d.data(extractVelocity,flattener,stDev=1e-3))
 # save last (current) figure to file
 pylab.gcf().savefig('/tmp/foo.png') 

 # show the figures
 pylab.show()

"""
from yade.wrapper import *

try:
	from minieigen import *
except ImportError:
	from miniEigen import *

class Flatten:
	"""Abstract class for converting 3d point into 2d. Used by post2d.data2d."""
	def __init__(self): pass
	def __call__(self,b):
		"Given a :yref:`Body` / :yref:`Interaction` instance, should return either 2d coordinates as a 2-tuple, or None if the Body should be discarded." 
		pass
	def planar(self,pos,vec):
		"Given position and vector value, project the vector value to the flat plane and return its 2 in-plane components."
	def normal(self,pos,vec):
		"Given position and vector value, return lenght of the vector normal to the flat plane."

class HelixFlatten(Flatten):
	"""Class converting 3d point to 2d based on projection from helix.
	The y-axis in the projection corresponds to the rotation axis"""
	def __init__(self,useRef,thetaRange,dH_dTheta,axis=2,periodStart=0):
		"""
		:param bool useRef:       use reference positions rather than actual positions
		:param (θmin,θmax) thetaRange: bodies outside this range will be discarded
		:param float dH_dTheta:   inclination of the spiral (per radian)
		:param {0,1,2} axis:      axis of rotation of the spiral
		:param float periodStart: height of the spiral for zero angle
		"""
		self.useRef,self.thetaRange,self.dH_dTheta,self.axis,self.periodStart=useRef,thetaRange,dH_dTheta,axis,periodStart
		self.ax1,self.ax2=(axis+1)%3,(axis+2)%3
	def _getPos(self,b):
		return b.state.refPos if self.useRef else b.state.pos
	def __call__(self,b):
		import yade.utils
		xy,theta=yade.utils.spiralProject(_getPos(b),self.dH_dTheta,self.axis,self.periodStart)
		if theta<thetaRange[0] or theta>thetaRange[1]: return None
		return xy
	def planar(self,b,vec):
		from math import sqrt
		pos=_getPos(b)
		pos[self.axis]=0; pos.Normalize()
		return pos.Dot(vec),vec[axis]
	def normal(self,pos,vec):
		ax=Vector3(0,0,0); ax[axis]=1; pos=_getPos(b)
		circum=ax.Cross(pos); circum.Normalize()
		return circum.Dot(vec)
		

class CylinderFlatten(Flatten):
	"""Class for converting 3d point to 2d based on projection onto plane from circle.
	The y-axis in the projection corresponds to the rotation axis; the x-axis is distance form the axis.
	"""
	def __init__(self,useRef,axis=2):
		"""
		:param useRef: (bool) use reference positions rather than actual positions
		:param axis: axis of the cylinder, ∈{0,1,2}
		"""
		if axis not in (0,1,2): raise IndexError("axis must be one of 0,1,2 (not %d)"%axis)
		self.useRef,self.axis=useRef,axis
	def _getPos(self,b):
		return b.state.refPos if self.useRef else b.state.pos
	def __call__(self,b):
		p=_getPos(b)
		pp=(p[(self.axis+1)%3],p[(self.axis+2)%3])
		import math.sqrt
		return math.sqrt(pp[0]**2+pp[2]**2),p[self.axis]
	def planar(self,b,vec):
		pos=_getPos(b)
		from math import sqrt
		pos[self.axis]=0; pos.Normalize()
		return pos.Dot(vec),vec[axis]
	def normal(self,b,vec):
		pos=_getPos(b)
		ax=Vector3(0,0,0); ax[axis]=1
		circum=ax.Cross(pos); circum.Normalize()
		return circum.Dot(vec)
		

class AxisFlatten(Flatten):
	def __init__(self,useRef=False,axis=2):
		"""
		:param bool useRef: use reference positions rather than actual positions (only meaningful when operating on Bodies)
		:param {0,1,2}	axis: axis normal to the plane; the return value will be simply position with this component dropped.
		"""
		if axis not in (0,1,2): raise IndexError("axis must be one of 0,1,2 (not %d)"%axis)
		self.useRef,self.axis=useRef,axis
		self.ax1,self.ax2=(self.axis+1)%3,(self.axis+2)%3
	def __call__(self,b):
		p=((b.state.refPos if self.useRef else b.state.pos) if isinstance(b,Body) else b.geom.contactPoint)
		return (p[self.ax1],p[self.ax2])
	def planar(self,pos,vec):
		return vec[self.ax1],vec[self.ax2]
	def normal(self,pos,vec):
		return vec[self.axis]

def data(extractor,flattener,intr=False,onlyDynamic=True,stDev=None,relThreshold=3.,perArea=0,div=(50,50),margin=(0,0),radius=1):
	"""Filter all bodies/interactions, project them to 2d and extract required scalar value;
	return either discrete array of positions and values, or smoothed data, depending on whether the stDev
	value is specified.

	The ``intr`` parameter determines whether we operate on bodies or interactions;
	the extractor provided should expect to receive body/interaction.

	:param callable extractor: receives :yref:`Body` (or :yref:`Interaction`, if ``intr`` is ``True``) instance, should return scalar, a 2-tuple (vector fields) or None (to skip that body/interaction)
	:param callable flattener: :yref:`yade.post2d.Flatten` instance, receiving body/interaction, returns its 2d coordinates or ``None`` (to skip that body/interaction)
	:param bool intr: operate on interactions rather than bodies
	:param bool onlyDynamic: skip all non-dynamic bodies
	:param float/None stDev: standard deviation for averaging, enables smoothing; ``None`` (default) means raw mode, where discrete points are returned
	:param float relThreshold: threshold for the gaussian weight function relative to stDev (smooth mode only)
	:param int perArea: if 1, compute weightedSum/weightedArea rather than weighted average (weightedSum/sumWeights); the first is useful to compute average stress; if 2, compute averages on subdivision elements, not using weight function
	:param (int,int) div: number of cells for the gaussian grid (smooth mode only)
	:param (float,float) margin: x,y margins around bounding box for data (smooth mode only)
	:param float/callable radius: Fallback value for radius (for raw plotting) for non-spherical bodies or interactions; if a callable, receives body/interaction and returns radius
	:return: dictionary
	
	Returned dictionary always containing keys 'type' (one of 'rawScalar','rawVector','smoothScalar','smoothVector', depending on value of smooth and on return value from extractor), 'x', 'y', 'bbox'.
	
	Raw data further contains 'radii'.
	
	Scalar fields contain 'val' (value from *extractor*), vector fields have 'valX' and 'valY' (2 components returned by the *extractor*).
	"""
	from miniEigen import Vector3
	xx,yy,dd1,dd2,rr=[],[],[],[],[]
	nDim=0
	objects=O.interactions if intr else O.bodies
	for b in objects:
		if not intr and onlyDynamic and not b.dynamic: continue
		xy,d=flattener(b),extractor(b)
		if xy==None or d==None: continue
		if nDim==0: nDim=1 if isinstance(d,float) else 2
		if nDim==1: dd1.append(d);
		elif len(d)==2:
			dd1.append(d[0]); dd2.append(d[1])
		elif len(d)==3:
			d1,d2=flattener.planar(b,Vector3(d))
			dd1.append(d1); dd2.append(d2)
		else:
			raise RuntimeError("Extractor must return float or 2 or 3 (not %d) floats"%nDim)
		if stDev==None: # radii are needed in the raw mode exclusively
			if not intr and isinstance(b.shape,Sphere): r=b.shape.radius
			else: r=(radius(b) if callable(radius) else radius)
			rr.append(r)
		xx.append(xy[0]); yy.append(xy[1]);
	if stDev==None:
		bbox=(min(xx),min(yy)),(max(xx),max(yy))
		if nDim==1: return {'type':'rawScalar','x':xx,'y':yy,'val':dd1,'radii':rr,'bbox':bbox}
		else: return {'type':'rawVector','x':xx,'y':yy,'valX':dd1,'valY':dd2,'radii':rr,'bbox':bbox}
	
	from yade.WeightedAverage2d import GaussAverage
	import numpy
	lo,hi=(min(xx),min(yy)),(max(xx),max(yy))
	llo=lo[0]-margin[0],lo[1]-margin[1]; hhi=hi[0]+margin[0],hi[1]+margin[1]
	ga=GaussAverage(llo,hhi,div,stDev,relThreshold)
	ga2=GaussAverage(llo,hhi,div,stDev,relThreshold)
	for i in range(0,len(xx)):
		ga.add(dd1[i],(xx[i],yy[i]))
		if nDim>1: ga2.add(dd2[i],(xx[i],yy[i]))
	step=[(hhi[i]-llo[i])/float(div[i]) for i in [0,1]]
	xxx,yyy=[numpy.arange(llo[i]+.5*step[i],hhi[i],step[i]) for i in [0,1]]
	ddd=numpy.zeros((len(yyy),len(xxx)),float)
	ddd2=numpy.zeros((len(yyy),len(xxx)),float)
	# set the type of average we are going to use
	if perArea==0:
		def compAvg(gauss,coord,cellCoord): return float(gauss.avg(coord))
	elif perArea==1:
		def compAvg(gauss,coord,cellCoord): return gauss.avgPerUnitArea(coord)
	elif perArea==2:
		def compAvg(gauss,coord,cellCoord):
			s=gauss.cellSum(cellCoord);
			return (s/gauss.cellArea) if s>0 else float('nan')
	elif perArea==3:
		def compAvg(gauss,coord,cellCoord):
			s=gauss.cellSum(cellCoord);
			return s if s>0 else float('nan')
	else: raise RuntimeError('Invalid value of *perArea*, must be one of 0,1,2,3.')
	#
	for cx in range(0,div[0]):
		for cy in range(0,div[1]):
			ddd[cy,cx]=compAvg(ga,(xxx[cx],yyy[cy]),(cx,cy))
			if nDim>1: ddd2[cy,cx]=compAvg(ga2,(xxx[cx],yyy[cy]),(cx,cy))
	if nDim==1: return {'type':'smoothScalar','x':xxx,'y':yyy,'val':ddd,'bbox':(llo,hhi),'perArea':perArea,'grid':ga} 
	else: return {'type':'smoothVector','x':xxx,'y':yyy,'valX':ddd,'valY':ddd2,'bbox':(llo,hhi),'grid':ga,'grid2':ga2}
	
def plot(data,axes=None,alpha=.5,clabel=True,cbar=False,aspect='equal',**kw):
	"""Given output from post2d.data, plot the scalar as discrete or smooth plot.

	For raw discrete data, plot filled circles with radii of particles, colored by the scalar value.

	For smooth discrete data, plot image with optional contours and contour labels.

	For vector data (raw or smooth), plot quiver (vector field), with arrows colored by the magnitude.

	:param axes: matplotlib.axes\ instance where the figure will be plotted; if None, will be created from scratch.
	:param data: value returned by :yref:`yade.post2d.data`
	:param bool clabel: show contour labels (smooth mode only), or annotate cells with numbers inside (with perArea==2)
	:param bool cbar: show colorbar (equivalent to calling pylab.colorbar(mappable) on the returned mappable)

	:return: tuple of ``(axes,mappable)``; mappable can be used in further calls to pylab.colorbar.
	"""
	import pylab,math
	if not axes: axes=pylab.gca()
	if data['type']=='rawScalar':
		from matplotlib.patches import Circle
		import matplotlib.collections,numpy
		patches=[]
		for x,y,d,r in zip(data['x'],data['y'],data['val'],data['radii']):
			patches.append(Circle(xy=(x,y),radius=r))
		coll=matplotlib.collections.PatchCollection(patches,linewidths=0.,**kw)
		coll.set_array(numpy.array(data['val']))
		bb=coll.get_datalim(coll.get_transform())
		axes.add_collection(coll)
		axes.set_xlim(bb.xmin,bb.xmax); axes.set_ylim(bb.ymin,bb.ymax)
		if cbar: axes.get_figure().colorbar(coll)
		axes.grid(True); axes.set_aspect(aspect)
		return axes,coll
	elif data['type']=='smoothScalar':
		loHi=data['bbox']
		if data['perArea'] in (0,1):
			img=axes.imshow(data['val'],extent=(loHi[0][0],loHi[1][0],loHi[0][1],loHi[1][1]),origin='lower',aspect=aspect,**kw)
			ct=axes.contour(data['x'],data['y'],data['val'],colors='k',origin='lower',extend='both')
			if clabel: axes.clabel(ct,inline=1,fontsize=10)
		else:
			img=axes.imshow(data['val'],extent=(loHi[0][0],loHi[1][0],loHi[0][1],loHi[1][1]),origin='lower',aspect=aspect,interpolation='nearest',**kw)
			xStep=(data['x'][1]-data['x'][0]) if len(data['x'])>1 else 0
			for y,valLine in zip(data['y'],data['val']):
				for x,val in zip(data['x'],valLine): axes.text(x-.4*xStep,y,('-' if math.isnan(val) else '%5g'%val),size=4)
		axes.update_datalim(loHi)
		axes.set_xlim(loHi[0][0],loHi[1][0]); axes.set_ylim(loHi[0][1],loHi[1][1])
		if cbar: axes.get_figure().colorbar(img)
		axes.grid(True if data['perArea'] in (0,1) else False); axes.set_aspect(aspect)
		return axes,img
	elif data['type'] in ('rawVector','smoothVector'):
		import numpy
		loHi=data['bbox']
		valX,valY=numpy.array(data['valX']),numpy.array(data['valY']) # rawVector data are plain python lists
		scalars=numpy.sqrt(valX**2+valY**2)
		# numpy.sqrt computes element-wise sqrt
		quiv=axes.quiver(data['x'],data['y'],data['valX'],data['valY'],scalars,**kw)
		#axes.update_datalim(loHi)
		axes.set_xlim(loHi[0][0],loHi[1][0]); axes.set_ylim(loHi[0][1],loHi[1][1])
		if cbar: axes.get_figure().colorbar(coll)
		axes.grid(True); axes.set_aspect(aspect)
		return axes,quiv