/usr/lib/python2.7/dist-packages/yade/post2d.py is in python-yade 1.07.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | # encoding: utf-8
# 2009 © Václav Šmilauer <eudoxos@arcig.cz>
"""
Module for 2d postprocessing, containing classes to project points from 3d to 2d in various ways,
providing basic but flexible framework for extracting arbitrary scalar values from bodies/interactions
and plotting the results. There are 2 basic components: flatteners and extractors.
The algorithms operate on bodies (default) or interactions, depending on the ``intr`` parameter
of post2d.data.
Flatteners
==========
Instance of classes that convert 3d (model) coordinates to 2d (plot) coordinates. Their interface is
defined by the :yref:`yade.post2d.Flatten` class (``__call__``, ``planar``, ``normal``).
Extractors
==========
Callable objects returning scalar or vector value, given a body/interaction object.
If a 3d vector is returned, Flattener.planar is called, which should return only in-plane
components of the vector.
Example
=======
This example can be found in examples/concrete/uniax-post.py ::
from yade import post2d
import pylab # the matlab-like interface of matplotlib
O.load('/tmp/uniax-tension.xml.bz2')
# flattener that project to the xz plane
flattener=post2d.AxisFlatten(useRef=False,axis=1)
# return scalar given a Body instance
extractDmg=lambda b: b.state.normDmg
# will call flattener.planar implicitly
# the same as: extractVelocity=lambda b: flattener.planar(b,b.state.vel)
extractVelocity=lambda b: b.state.vel
# create new figure
pylab.figure()
# plot raw damage
post2d.plot(post2d.data(extractDmg,flattener))
# plot smooth damage into new figure
pylab.figure(); ax,map=post2d.plot(post2d.data(extractDmg,flattener,stDev=2e-3))
# show color scale
pylab.colorbar(map,orientation='horizontal')
# raw velocity (vector field) plot
pylab.figure(); post2d.plot(post2d.data(extractVelocity,flattener))
# smooth velocity plot; data are sampled at regular grid
pylab.figure(); ax,map=post2d.plot(post2d.data(extractVelocity,flattener,stDev=1e-3))
# save last (current) figure to file
pylab.gcf().savefig('/tmp/foo.png')
# show the figures
pylab.show()
"""
from yade.wrapper import *
try:
from minieigen import *
except ImportError:
from miniEigen import *
class Flatten:
"""Abstract class for converting 3d point into 2d. Used by post2d.data2d."""
def __init__(self): pass
def __call__(self,b):
"Given a :yref:`Body` / :yref:`Interaction` instance, should return either 2d coordinates as a 2-tuple, or None if the Body should be discarded."
pass
def planar(self,pos,vec):
"Given position and vector value, project the vector value to the flat plane and return its 2 in-plane components."
def normal(self,pos,vec):
"Given position and vector value, return lenght of the vector normal to the flat plane."
class HelixFlatten(Flatten):
"""Class converting 3d point to 2d based on projection from helix.
The y-axis in the projection corresponds to the rotation axis"""
def __init__(self,useRef,thetaRange,dH_dTheta,axis=2,periodStart=0):
"""
:param bool useRef: use reference positions rather than actual positions
:param (θmin,θmax) thetaRange: bodies outside this range will be discarded
:param float dH_dTheta: inclination of the spiral (per radian)
:param {0,1,2} axis: axis of rotation of the spiral
:param float periodStart: height of the spiral for zero angle
"""
self.useRef,self.thetaRange,self.dH_dTheta,self.axis,self.periodStart=useRef,thetaRange,dH_dTheta,axis,periodStart
self.ax1,self.ax2=(axis+1)%3,(axis+2)%3
def _getPos(self,b):
return b.state.refPos if self.useRef else b.state.pos
def __call__(self,b):
import yade.utils
xy,theta=yade.utils.spiralProject(_getPos(b),self.dH_dTheta,self.axis,self.periodStart)
if theta<thetaRange[0] or theta>thetaRange[1]: return None
return xy
def planar(self,b,vec):
from math import sqrt
pos=_getPos(b)
pos[self.axis]=0; pos.Normalize()
return pos.Dot(vec),vec[axis]
def normal(self,pos,vec):
ax=Vector3(0,0,0); ax[axis]=1; pos=_getPos(b)
circum=ax.Cross(pos); circum.Normalize()
return circum.Dot(vec)
class CylinderFlatten(Flatten):
"""Class for converting 3d point to 2d based on projection onto plane from circle.
The y-axis in the projection corresponds to the rotation axis; the x-axis is distance form the axis.
"""
def __init__(self,useRef,axis=2):
"""
:param useRef: (bool) use reference positions rather than actual positions
:param axis: axis of the cylinder, ∈{0,1,2}
"""
if axis not in (0,1,2): raise IndexError("axis must be one of 0,1,2 (not %d)"%axis)
self.useRef,self.axis=useRef,axis
def _getPos(self,b):
return b.state.refPos if self.useRef else b.state.pos
def __call__(self,b):
p=_getPos(b)
pp=(p[(self.axis+1)%3],p[(self.axis+2)%3])
import math.sqrt
return math.sqrt(pp[0]**2+pp[2]**2),p[self.axis]
def planar(self,b,vec):
pos=_getPos(b)
from math import sqrt
pos[self.axis]=0; pos.Normalize()
return pos.Dot(vec),vec[axis]
def normal(self,b,vec):
pos=_getPos(b)
ax=Vector3(0,0,0); ax[axis]=1
circum=ax.Cross(pos); circum.Normalize()
return circum.Dot(vec)
class AxisFlatten(Flatten):
def __init__(self,useRef=False,axis=2):
"""
:param bool useRef: use reference positions rather than actual positions (only meaningful when operating on Bodies)
:param {0,1,2} axis: axis normal to the plane; the return value will be simply position with this component dropped.
"""
if axis not in (0,1,2): raise IndexError("axis must be one of 0,1,2 (not %d)"%axis)
self.useRef,self.axis=useRef,axis
self.ax1,self.ax2=(self.axis+1)%3,(self.axis+2)%3
def __call__(self,b):
p=((b.state.refPos if self.useRef else b.state.pos) if isinstance(b,Body) else b.geom.contactPoint)
return (p[self.ax1],p[self.ax2])
def planar(self,pos,vec):
return vec[self.ax1],vec[self.ax2]
def normal(self,pos,vec):
return vec[self.axis]
def data(extractor,flattener,intr=False,onlyDynamic=True,stDev=None,relThreshold=3.,perArea=0,div=(50,50),margin=(0,0),radius=1):
"""Filter all bodies/interactions, project them to 2d and extract required scalar value;
return either discrete array of positions and values, or smoothed data, depending on whether the stDev
value is specified.
The ``intr`` parameter determines whether we operate on bodies or interactions;
the extractor provided should expect to receive body/interaction.
:param callable extractor: receives :yref:`Body` (or :yref:`Interaction`, if ``intr`` is ``True``) instance, should return scalar, a 2-tuple (vector fields) or None (to skip that body/interaction)
:param callable flattener: :yref:`yade.post2d.Flatten` instance, receiving body/interaction, returns its 2d coordinates or ``None`` (to skip that body/interaction)
:param bool intr: operate on interactions rather than bodies
:param bool onlyDynamic: skip all non-dynamic bodies
:param float/None stDev: standard deviation for averaging, enables smoothing; ``None`` (default) means raw mode, where discrete points are returned
:param float relThreshold: threshold for the gaussian weight function relative to stDev (smooth mode only)
:param int perArea: if 1, compute weightedSum/weightedArea rather than weighted average (weightedSum/sumWeights); the first is useful to compute average stress; if 2, compute averages on subdivision elements, not using weight function
:param (int,int) div: number of cells for the gaussian grid (smooth mode only)
:param (float,float) margin: x,y margins around bounding box for data (smooth mode only)
:param float/callable radius: Fallback value for radius (for raw plotting) for non-spherical bodies or interactions; if a callable, receives body/interaction and returns radius
:return: dictionary
Returned dictionary always containing keys 'type' (one of 'rawScalar','rawVector','smoothScalar','smoothVector', depending on value of smooth and on return value from extractor), 'x', 'y', 'bbox'.
Raw data further contains 'radii'.
Scalar fields contain 'val' (value from *extractor*), vector fields have 'valX' and 'valY' (2 components returned by the *extractor*).
"""
from miniEigen import Vector3
xx,yy,dd1,dd2,rr=[],[],[],[],[]
nDim=0
objects=O.interactions if intr else O.bodies
for b in objects:
if not intr and onlyDynamic and not b.dynamic: continue
xy,d=flattener(b),extractor(b)
if xy==None or d==None: continue
if nDim==0: nDim=1 if isinstance(d,float) else 2
if nDim==1: dd1.append(d);
elif len(d)==2:
dd1.append(d[0]); dd2.append(d[1])
elif len(d)==3:
d1,d2=flattener.planar(b,Vector3(d))
dd1.append(d1); dd2.append(d2)
else:
raise RuntimeError("Extractor must return float or 2 or 3 (not %d) floats"%nDim)
if stDev==None: # radii are needed in the raw mode exclusively
if not intr and isinstance(b.shape,Sphere): r=b.shape.radius
else: r=(radius(b) if callable(radius) else radius)
rr.append(r)
xx.append(xy[0]); yy.append(xy[1]);
if stDev==None:
bbox=(min(xx),min(yy)),(max(xx),max(yy))
if nDim==1: return {'type':'rawScalar','x':xx,'y':yy,'val':dd1,'radii':rr,'bbox':bbox}
else: return {'type':'rawVector','x':xx,'y':yy,'valX':dd1,'valY':dd2,'radii':rr,'bbox':bbox}
from yade.WeightedAverage2d import GaussAverage
import numpy
lo,hi=(min(xx),min(yy)),(max(xx),max(yy))
llo=lo[0]-margin[0],lo[1]-margin[1]; hhi=hi[0]+margin[0],hi[1]+margin[1]
ga=GaussAverage(llo,hhi,div,stDev,relThreshold)
ga2=GaussAverage(llo,hhi,div,stDev,relThreshold)
for i in range(0,len(xx)):
ga.add(dd1[i],(xx[i],yy[i]))
if nDim>1: ga2.add(dd2[i],(xx[i],yy[i]))
step=[(hhi[i]-llo[i])/float(div[i]) for i in [0,1]]
xxx,yyy=[numpy.arange(llo[i]+.5*step[i],hhi[i],step[i]) for i in [0,1]]
ddd=numpy.zeros((len(yyy),len(xxx)),float)
ddd2=numpy.zeros((len(yyy),len(xxx)),float)
# set the type of average we are going to use
if perArea==0:
def compAvg(gauss,coord,cellCoord): return float(gauss.avg(coord))
elif perArea==1:
def compAvg(gauss,coord,cellCoord): return gauss.avgPerUnitArea(coord)
elif perArea==2:
def compAvg(gauss,coord,cellCoord):
s=gauss.cellSum(cellCoord);
return (s/gauss.cellArea) if s>0 else float('nan')
elif perArea==3:
def compAvg(gauss,coord,cellCoord):
s=gauss.cellSum(cellCoord);
return s if s>0 else float('nan')
else: raise RuntimeError('Invalid value of *perArea*, must be one of 0,1,2,3.')
#
for cx in range(0,div[0]):
for cy in range(0,div[1]):
ddd[cy,cx]=compAvg(ga,(xxx[cx],yyy[cy]),(cx,cy))
if nDim>1: ddd2[cy,cx]=compAvg(ga2,(xxx[cx],yyy[cy]),(cx,cy))
if nDim==1: return {'type':'smoothScalar','x':xxx,'y':yyy,'val':ddd,'bbox':(llo,hhi),'perArea':perArea,'grid':ga}
else: return {'type':'smoothVector','x':xxx,'y':yyy,'valX':ddd,'valY':ddd2,'bbox':(llo,hhi),'grid':ga,'grid2':ga2}
def plot(data,axes=None,alpha=.5,clabel=True,cbar=False,aspect='equal',**kw):
"""Given output from post2d.data, plot the scalar as discrete or smooth plot.
For raw discrete data, plot filled circles with radii of particles, colored by the scalar value.
For smooth discrete data, plot image with optional contours and contour labels.
For vector data (raw or smooth), plot quiver (vector field), with arrows colored by the magnitude.
:param axes: matplotlib.axes\ instance where the figure will be plotted; if None, will be created from scratch.
:param data: value returned by :yref:`yade.post2d.data`
:param bool clabel: show contour labels (smooth mode only), or annotate cells with numbers inside (with perArea==2)
:param bool cbar: show colorbar (equivalent to calling pylab.colorbar(mappable) on the returned mappable)
:return: tuple of ``(axes,mappable)``; mappable can be used in further calls to pylab.colorbar.
"""
import pylab,math
if not axes: axes=pylab.gca()
if data['type']=='rawScalar':
from matplotlib.patches import Circle
import matplotlib.collections,numpy
patches=[]
for x,y,d,r in zip(data['x'],data['y'],data['val'],data['radii']):
patches.append(Circle(xy=(x,y),radius=r))
coll=matplotlib.collections.PatchCollection(patches,linewidths=0.,**kw)
coll.set_array(numpy.array(data['val']))
bb=coll.get_datalim(coll.get_transform())
axes.add_collection(coll)
axes.set_xlim(bb.xmin,bb.xmax); axes.set_ylim(bb.ymin,bb.ymax)
if cbar: axes.get_figure().colorbar(coll)
axes.grid(True); axes.set_aspect(aspect)
return axes,coll
elif data['type']=='smoothScalar':
loHi=data['bbox']
if data['perArea'] in (0,1):
img=axes.imshow(data['val'],extent=(loHi[0][0],loHi[1][0],loHi[0][1],loHi[1][1]),origin='lower',aspect=aspect,**kw)
ct=axes.contour(data['x'],data['y'],data['val'],colors='k',origin='lower',extend='both')
if clabel: axes.clabel(ct,inline=1,fontsize=10)
else:
img=axes.imshow(data['val'],extent=(loHi[0][0],loHi[1][0],loHi[0][1],loHi[1][1]),origin='lower',aspect=aspect,interpolation='nearest',**kw)
xStep=(data['x'][1]-data['x'][0]) if len(data['x'])>1 else 0
for y,valLine in zip(data['y'],data['val']):
for x,val in zip(data['x'],valLine): axes.text(x-.4*xStep,y,('-' if math.isnan(val) else '%5g'%val),size=4)
axes.update_datalim(loHi)
axes.set_xlim(loHi[0][0],loHi[1][0]); axes.set_ylim(loHi[0][1],loHi[1][1])
if cbar: axes.get_figure().colorbar(img)
axes.grid(True if data['perArea'] in (0,1) else False); axes.set_aspect(aspect)
return axes,img
elif data['type'] in ('rawVector','smoothVector'):
import numpy
loHi=data['bbox']
valX,valY=numpy.array(data['valX']),numpy.array(data['valY']) # rawVector data are plain python lists
scalars=numpy.sqrt(valX**2+valY**2)
# numpy.sqrt computes element-wise sqrt
quiv=axes.quiver(data['x'],data['y'],data['valX'],data['valY'],scalars,**kw)
#axes.update_datalim(loHi)
axes.set_xlim(loHi[0][0],loHi[1][0]); axes.set_ylim(loHi[0][1],loHi[1][1])
if cbar: axes.get_figure().colorbar(coll)
axes.grid(True); axes.set_aspect(aspect)
return axes,quiv
|