This file is indexed.

/usr/lib/python3/dist-packages/ncepgrib2.py is in python3-grib 1.9.8-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
__version__ = '1.9.3'
import g2clib
import struct
import string
import math
import warnings
import operator
from datetime import datetime
try:
    from StringIO import StringIO
except ImportError:
    from io import BytesIO as StringIO

import numpy as np
from numpy import ma
try:
    import pyproj
except ImportError:
    try:
        from mpl_toolkits.basemap import pyproj
    except:
        raise ImportError("either pyproj or basemap required")

# Code Table 3.2: Shape of the Earth.
_earthparams={0:6367470.0,
1:'Spherical - radius specified in m by data producer',
2:(6378160.0,6356775.0),
3:'OblateSpheroid - major and minor axes specified in km by data producer',
4:(6378137.0,6356752.314),
5:'WGS84',
6:6371229.0,
7:'OblateSpheroid - major and minor axes specified in m by data producer',
8:6371200.0,
255:'Missing'}
for _n in range(192):
    if not _n in _earthparams: _earthparams[_n]='Reserved'
for _n in range(192,255):
    _earthparams[_n] = 'Reserved for local use'

_table0={1:('Melbourne (WMC)','ammc'),
2:('Melbourne - BMRC (WMC)',None),
3:('Melbourne (WMC)',None),
4:('Moscow (WMC)',None),
5:('Moscow (WMC)',None),
6:('Moscow (WMC)',None),
7:('US National Weather Service - NCEP (WMC)','kwbc'),
8:('US National Weather Service - NWSTG (WMC)',None),
9:('US National Weather Service - Other (WMC)',None),
10:('Cairo (RSMC/RAFC)',None),
11:('Cairo (RSMC/RAFC)',None),
12:('Dakar (RSMC/RAFC)',None),
13:('Dakar (RSMC/RAFC)',None),
14:('Nairobi (RSMC/RAFC)',None),
15:('Nairobi (RSMC/RAFC)',None),
16:('Casablanca',None),
17:('Tunis (RSMC)',None),
18:('Tunis-Casablanca (RSMC)',None),
19:('Tunis-Casablanca (RSMC)',None),
20:('Las Palmas (RAFC)',None),
21:('Algiers (RSMC)',None),
22:('ACMAD',None),
23:('Mozambique (NMC)',None),
24:('Pretoria (RSMC)',None),
25:('La Reunion (RSMC)',None),
26:('Khabarovsk (RSMC)',None),
27:('Khabarovsk (RSMC)',None),
28:('New Delhi (RSMC/RAFC)',None),
29:('New Delhi (RSMC/RAFC)',None),
30:('Novosibirsk (RSMC)',None),
31:('Novosibirsk (RSMC)',None),
32:('Tashkent (RSMC)',None),
33:('Jeddah (RSMC)',None),
34:('Japanese Meteorological Agency - Tokyo (RSMC)','rjtd'),
35:('Japanese Meteorological Agency - Tokyo (RSMC)',None),
36:('Bankok',None),
37:('Ulan Bator',None),
38:('Beijing (RSMC)','babj'),
39:('Beijing (RSMC)',None),
40:('Korean Meteorological Administration - Seoul','rksl'),
41:('Buenos Aires (RSMC/RAFC)',None),
42:('Buenos Aires (RSMC/RAFC)',None),
43:('Brasilia (RSMC/RAFC)',None),
44:('Brasilia (RSMC/RAFC)',None),
45:('Santiago',None),
46:('Brazilian Space Agency - INPE','sbsj'),
47:('Columbia (NMC)',None),
48:('Ecuador (NMC)',None),
49:('Peru (NMC)',None),
50:('Venezuela (NMC)',None),
51:('Miami (RSMC/RAFC)',None),
52:('Tropical Prediction Center (NHC), Miami (RSMC)',None),
53:('Canadian Meteorological Service - Montreal (RSMC)',None),
54:('Canadian Meteorological Service - Montreal (RSMC)','cwao'),
55:('San Francisco',None),
56:('ARINC Center',None),
57:('U.S. Air Force - Global Weather Center',None),
58:('US Navy - Fleet Numerical Oceanography Center','fnmo'),
59:('NOAA Forecast Systems Lab, Boulder CO',None),
60:('National Center for Atmospheric Research (NCAR), Boulder, CO',None),
61:('Service ARGOS - Landover, MD, USA',None),
62:('US Naval Oceanographic Office',None),
63:('Reserved',None),
64:('Honolulu',None),
65:('Darwin (RSMC)',None),
66:('Darwin (RSMC)',None),
67:('Melbourne (RSMC)',None),
68:('Reserved',None),
69:('Wellington (RSMC/RAFC)',None),
70:('Wellington (RSMC/RAFC)',None),
71:('Nadi (RSMC)',None),
72:('Singapore',None),
73:('Malaysia (NMC)',None),
74:('U.K. Met Office - Exeter (RSMC)','egrr'),
75:('U.K. Met Office - Exeter (RSMC)',None),
76:('Moscow (RSMC/RAFC)',None),
77:('Reserved',None),
78:('Offenbach (RSMC)','edzw'),
79:('Offenbach (RSMC)',None),
80:('Rome (RSMC)','cnmc'),
81:('Rome (RSMC)',None),
82:('Norrkoping',None),
83:('Norrkoping',None),
84:('French Weather Service - Toulouse','lfpw'),
85:('French Weather Service - Toulouse','lfpw'),
86:('Helsinki',None),
87:('Belgrade',None),
88:('Oslo',None),
89:('Prague',None),
90:('Episkopi',None),
91:('Ankara',None),
92:('Frankfurt/Main (RAFC)',None),
93:('London (WAFC)',None),
94:('Copenhagen',None),
95:('Rota',None),
96:('Athens',None),
97:('European Space Agency (ESA)',None),
98:('European Center for Medium-Range Weather Forecasts (RSMC)','ecmf'),
99:('De BiltNone), Netherlands',None),
100:('Brazzaville',None),
101:('Abidjan',None),
102:('Libyan Arab Jamahiriya (NMC)',None),
103:('Madagascar (NMC)',None),
104:('Mauritius (NMC)',None),
105:('Niger (NMC)',None),
106:('Seychelles (NMC)',None),
107:('Uganda (NMC)',None),
108:('Tanzania (NMC)',None),
109:('Zimbabwe (NMC)',None),
110:('Hong-Kong',None),
111:('Afghanistan (NMC)',None),
112:('Bahrain (NMC)',None),
113:('Bangladesh (NMC)',None),
114:('Bhutan (NMC)',None),
115:('Cambodia (NMC)',None),
116:("Democratic People's Republic of Korea (NMC)",None),
117:('Islamic Republic of Iran (NMC)',None),
118:('Iraq (NMC)',None),
119:('Kazakhstan (NMC)',None),
120:('Kuwait (NMC)',None),
121:('Kyrgyz Republic (NMC)',None),
122:("Lao People's Democratic Republic (NMC)",None),
123:('MacaoNone), China',None),
124:('Maldives (NMC)',None),
125:('Myanmar (NMC)',None),
126:('Nepal (NMC)',None),
127:('Oman (NMC)',None),
128:('Pakistan (NMC)',None),
129:('Qatar (NMC)',None),
130:('Republic of Yemen (NMC)',None),
131:('Sri Lanka (NMC)',None),
132:('Tajikistan (NMC)',None),
133:('Turkmenistan (NMC)',None),
134:('United Arab Emirates (NMC)',None),
135:('Uzbekistan (NMC)',None),
136:('Socialist Republic of Viet Nam (NMC)',None),
137:('Reserved',None),
138:('Reserved',None),
139:('Reserved',None),
140:('Bolivia (NMC)',None),
141:('Guyana (NMC)',None),
142:('Paraguay (NMC)',None),
143:('Suriname (NMC)',None),
144:('Uruguay (NMC)',None),
145:('French Guyana',None),
146:('Brazilian Navy Hydrographic Center',None),
147:('Reserved',None),
148:('Reserved',None),
149:('Reserved',None),
150:('Antigua and Barbuda (NMC)',None),
151:('Bahamas (NMC)',None),
152:('Barbados (NMC)',None),
153:('Belize (NMC)',None),
154:('British Caribbean Territories Center',None),
155:('San Jose',None),
156:('Cuba (NMC)',None),
157:('Dominica (NMC)',None),
158:('Dominican Republic (NMC)',None),
159:('El Salvador (NMC)',None),
160:('US NOAA/NESDIS',None),
161:('US NOAA Office of Oceanic and Atmospheric Research',None),
162:('Guatemala (NMC)',None),
163:('Haiti (NMC)',None),
164:('Honduras (NMC)',None),
165:('Jamaica (NMC)',None),
166:('Mexico',None),
167:('Netherlands Antilles and Aruba (NMC)',None),
168:('Nicaragua (NMC)',None),
169:('Panama (NMC)',None),
170:('Saint Lucia (NMC)',None),
171:('Trinidad and Tobago (NMC)',None),
172:('French Departments',None),
173:('Reserved',None),
174:('Reserved',None),
175:('Reserved',None),
176:('Reserved',None),
177:('Reserved',None),
178:('Reserved',None),
179:('Reserved',None),
180:('Reserved',None),
181:('Reserved',None),
182:('Reserved',None),
183:('Reserved',None),
184:('Reserved',None),
185:('Reserved',None),
186:('Reserved',None),
187:('Reserved',None),
188:('Reserved',None),
189:('Reserved',None),
190:('Cook Islands (NMC)',None),
191:('French Polynesia (NMC)',None),
192:('Tonga (NMC)',None),
193:('Vanuatu (NMC)',None),
194:('Brunei (NMC)',None),
195:('Indonesia (NMC)',None),
196:('Kiribati (NMC)',None),
197:('Federated States of Micronesia (NMC)',None),
198:('New Caledonia (NMC)',None),
199:('Niue',None),
200:('Papua New Guinea (NMC)',None),
201:('Philippines (NMC)',None),
202:('Samoa (NMC)',None),
203:('Solomon Islands (NMC)',None),
204:('Reserved',None),
205:('Reserved',None),
206:('Reserved',None),
207:('Reserved',None),
208:('Reserved',None),
209:('Reserved',None),
210:('Frascati',None),
211:('Lanion',None),
212:('Lisboa',None),
213:('Reykjavik',None),
214:('Madrid','lemm'),
215:('Zurich',None),
216:('Service ARGOS - ToulouseNone), FR',None),
217:('Bratislava',None),
218:('Budapest',None),
219:('Ljubljana',None),
220:('Warsaw',None),
221:('Zagreb',None),
222:('Albania (NMC)',None),
223:('Armenia (NMC)',None),
224:('Austria (NMC)',None),
225:('Azerbaijan (NMC)',None),
226:('Belarus (NMC)',None),
227:('Belgium (NMC)',None),
228:('Bosnia and Herzegovina (NMC)',None),
229:('Bulgaria (NMC)',None),
230:('Cyprus (NMC)',None),
231:('Estonia (NMC)',None),
232:('Georgia (NMC)',None),
233:('Dublin',None),
234:('Israel (NMC)',None),
235:('Jordan (NMC)',None),
236:('Latvia (NMC)',None),
237:('Lebanon (NMC)',None),
238:('Lithuania (NMC)',None),
239:('Luxembourg',None),
240:('Malta (NMC)',None),
241:('Monaco',None),
242:('Romania (NMC)',None),
243:('Syrian Arab Republic (NMC)',None),
244:('The former Yugoslav Republic of Macedonia (NMC)',None),
245:('Ukraine (NMC)',None),
246:('Republic of Moldova',None),
247:('Reserved',None),
248:('Reserved',None),
249:('Reserved',None),
250:('Reserved',None),
251:('Reserved',None),
252:('Reserved',None),
253:('Reserved',None),
254:('EUMETSAT Operations Center',None),
255:('Missing Value',None)}

def _dec2bin(val, maxbits = 8):
    """
    A decimal to binary converter. Returns bits in a list.
    """
    retval = []
    for i in range(maxbits - 1, -1, -1):
        bit = int(val / (2 ** i))
        val = (val % (2 ** i))
        retval.append(bit)
    return retval

def _putieeeint(r):
    """convert a float to a IEEE format 32 bit integer"""
    ra = np.array([r],'f')
    ia = np.empty(1,'i')
    g2clib.rtoi_ieee(ra,ia)
    return ia[0]

def _getieeeint(i):
    """convert an IEEE format 32 bit integer to a float"""
    ia = np.array([i],'i')
    ra = np.empty(1,'f')
    g2clib.itor_ieee(ia,ra)
    return ra[0]

def _isString(string):
    """Test if string is a string like object if not return 0 """
    try: string + ''
    except: return 0
    else: return 1

class Grib2Message:
    """
 Class for accessing data in a GRIB Edition 2 message.

 The L{Grib2Decode} function returns a list of these class instances,
 one for each grib message in the file.

 When a class instance is created, metadata in the GRIB2 file
 is decoded and used to set various instance variables.

 @ivar bitmap_indicator_flag: flag to indicate whether a bit-map is used (0 for yes, 255 for no).
 @ivar data_representation_template: data representation template from section 5.
 @ivar data_representation_template_number: data representation template number
 from section 5
 (U{Table 5.0
 <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table5-0.shtml>})
 @ivar has_local_use_section:  True if grib message contains a local use
 section. If True the actual local use section is contained in the
 C{_local_use_section} instance variable, as a raw byte string.
 @ivar discipline_code: product discipline code for grib message
 (U{Table 0.0
 <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table0-0.shtml>}).
 @ivar earthRmajor: major (equatorial) earth radius.
 @ivar earthRminor: minor (polar) earth radius.
 @ivar grid_definition_info: grid definition section information from section 3.
  See L{Grib2Encode.addgrid} for details.
 @ivar grid_definition_template: grid definition template from section 3.
 @ivar grid_definition_template_number: grid definition template number from section 3
 (U{Table 3.1
 <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-1.shtml>}).
 @ivar gridlength_in_x_direction: x (or longitudinal) direction grid length.
 @ivar gridlength_in_y_direction: y (or latitudinal) direction grid length.
 @ivar identification_section: data from identification section (section 1).
  See L{Grib2Encode.__init__} for details.
 @ivar latitude_first_gridpoint: latitude of first grid point on grid.
 @ivar latitude_last_gridpoint: latitude of last grid point on grid.
 @ivar longitude_first_gridpoint: longitude of first grid point on grid.
 @ivar longitude_last_gridpoint: longitude of last grid point on grid.
 @ivar originating_center: name of national/international originating center.
 @ivar center_wmo_code: 4 character wmo code for originating center.
 @ivar scanmodeflags: scanning mode flags from Table 3.4
 (U{Table 3.4
 <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-4.shtml>}).

  - bit 1:

    0 - Points in the first row or column scan in the +i (+x) direction

    1 - Points in the first row or column scan in the -i (-x) direction

  - bit 2:

    0 - Points in the first row or column scan in the -j (-y) direction

    1 - Points in the first row or column scan in the +j (+y) direction

  - bit 3:

    0 - Adjacent points in the i (x) direction are consecutive (row-major order).

    1 - Adjacent points in the j (y) direction are consecutive (column-major order).

  - bit 4:

    0 - All rows scan in the same direction

    1 - Adjacent rows scan in the opposite direction

 @ivar number_of_data_points_to_unpack: total number of data points in grib message.
 @ivar points_in_x_direction: number of points in the x (longitudinal) direction.
 @ivar points_in_y_direction: number of points in the y (latitudinal) direction.
 @ivar product_definition_template: product definition template from section 4.
 @ivar product_definition_template_number: product definition template number from section 4
 (U{Table 4.0
 <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table4-0.shtml>}).
 @ivar shape_of_earth: string describing the shape of the earth (e.g. 'Oblate Spheroid', 'Spheroid').
 @ivar spectral_truncation_parameters:  pentagonal truncation parameters that describe the
 spherical harmonic truncation (only relevant for grid_definition_template_numbers 50-52).
 For triangular truncation, all three of these numbers are the same.
 @ivar latitude_of_southern_pole: the geographic latitude in degrees of the southern
 pole of the coordinate system (for rotated lat/lon or gaussian grids).
 @ivar longitude_of_southern_pole: the geographic longitude in degrees of the southern
 pole of the coordinate system (for rotated lat/lon or gaussian grids).
 @ivar angle_of_pole_rotation: The angle of rotation in degrees about the new
 polar axis (measured clockwise when looking from the southern to the northern pole)
 of the coordinate system. For rotated lat/lon or gaussian grids.
 @ivar missing_value: primary missing value (for data_representation_template_numbers
 2 and 3).
 @ivar missing_value2: secondary missing value (for data_representation_template_numbers
 2 and 3).
 @ivar proj4_: instance variables with this prefix are used to set the map projection
 parameters for U{PROJ.4<http://proj.maptools.org>}.
    """
    def __init__(self,**kwargs):
        """
 create a Grib2Decode class instance given a GRIB Edition 2 filename.

 (used by L{Grib2Decode} function - not directly called by user)
        """
        for k,v in kwargs.items():
            setattr(self,k,v)
        # grid information
        gdsinfo = self.grid_definition_info
        gdtnum = self.grid_definition_template_number
        gdtmpl = self.grid_definition_template
        reggrid = gdsinfo[2] == 0 # gdsinfo[2]=0 means regular 2-d grid
        # shape of the earth.
        if gdtnum not in [50,51,52,1200]:
            earthR = _earthparams[gdtmpl[0]]
            if earthR == 'Reserved': earthR = None
        else:
            earthR = None
        if _isString(earthR) and (earthR.startswith('Reserved') or earthR=='Missing'):
            self.shape_of_earth = earthR
            self.earthRminor = None
            self.earthRmajor = None
        elif _isString(earthR) and earthR.startswith('Spherical'):
            self.shape_of_earth = earthR
            scaledearthR = gdtmpl[2]
            earthRscale = gdtmpl[1]
            self.earthRmajor = math.pow(10,-earthRscale)*scaledearthR
            self.earthRminor = self.earthRmajor
        elif _isString(earthR) and earthR.startswith('OblateSpheroid'):
            self.shape_of_earth = earthR
            scaledearthRmajor = gdtmpl[4]
            earthRmajorscale = gdtmpl[3]
            self.earthRmajor = math.pow(10,-earthRmajorscale)*scaledearthRmajor
            self.earthRmajor = self.earthRmajor*1000. # convert to m from km
            scaledearthRminor = gdtmpl[6]
            earthRminorscale = gdtmpl[5]
            self.earthRminor = math.pow(10,-earthRminorscale)*scaledearthRminor
            self.earthRminor = self.earthRminor*1000. # convert to m from km
        elif _isString(earthR) and earthR.startswith('WGS84'):
            self.shape_of_earth = earthR
            self.earthRmajor = 6378137.0
            self.earthRminor = 6356752.3142
        elif isinstance(earthR,tuple):
            self.shape_of_earth = 'OblateSpheroid'
            self.earthRmajor = earthR[0]
            self.earthRminor = earthR[1]
        else:
            if earthR is not None:
                self.shape_of_earth = 'Spherical'
                self.earthRmajor = earthR
                self.earthRminor = self.earthRmajor
        if reggrid and gdtnum not in [50,51,52,53,100,120,1000,1200]:
            self.points_in_x_direction = gdtmpl[7]
            self.points_in_y_direction = gdtmpl[8]
        if not reggrid and gdtnum == 40: # 'reduced' gaussian grid.
            self.points_in_y_direction = gdtmpl[8]
        if gdtnum in [0,1,203,205,32768]: # regular or rotated lat/lon grid
            scalefact = float(gdtmpl[9])
            divisor = float(gdtmpl[10])
            if scalefact == 0: scalefact = 1.
            if divisor <= 0: divisor = 1.e6
            self.latitude_first_gridpoint = scalefact*gdtmpl[11]/divisor
            self.longitude_first_gridpoint = scalefact*gdtmpl[12]/divisor
            self.latitude_last_gridpoint = scalefact*gdtmpl[14]/divisor
            self.longitude_last_gridpoint = scalefact*gdtmpl[15]/divisor
            self.gridlength_in_x_direction = scalefact*gdtmpl[16]/divisor
            self.gridlength_in_y_direction = scalefact*gdtmpl[17]/divisor
            if self.latitude_first_gridpoint > self.latitude_last_gridpoint:
                self.gridlength_in_y_direction = -self.gridlength_in_y_direction
            if self.longitude_first_gridpoint > self.longitude_last_gridpoint:
                self.gridlength_in_x_direction = -self.gridlength_in_x_direction
            self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
            if gdtnum == 1:
                self.latitude_of_southern_pole = scalefact*gdtmpl[19]/divisor
                self.longitude_of_southern_pole = scalefact*gdtmpl[20]/divisor
                self.angle_of_pole_rotation = gdtmpl[21]
        elif gdtnum == 10: # mercator
            self.latitude_first_gridpoint = gdtmpl[9]/1.e6
            self.longitude_first_gridpoint = gdtmpl[10]/1.e6
            self.latitude_last_gridpoint = gdtmpl[13]/1.e6
            self.longitude_last_gridpoint = gdtmpl[14]/1.e6
            self.gridlength_in_x_direction = gdtmpl[17]/1.e3
            self.gridlength_in_y_direction= gdtmpl[18]/1.e3
            self.proj4_lat_ts = gdtmpl[12]/1.e6
            self.proj4_lon_0 = 0.5*(self.longitude_first_gridpoint+self.longitude_last_gridpoint)
            self.proj4_proj = 'merc'
            self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
        elif gdtnum == 20: # stereographic
            projflag = _dec2bin(gdtmpl[16])[0]
            self.latitude_first_gridpoint = gdtmpl[9]/1.e6
            self.longitude_first_gridpoint = gdtmpl[10]/1.e6
            self.proj4_lat_ts = gdtmpl[12]/1.e6
            if projflag == 0:
                self.proj4_lat_0 = 90
            elif projflag == 1:
                self.proj4_lat_0 = -90
            else:
                raise ValueError('Invalid projection center flag = %s'%projflag)
            self.proj4_lon_0 = gdtmpl[13]/1.e6
            self.gridlength_in_x_direction = gdtmpl[14]/1000.
            self.gridlength_in_y_direction = gdtmpl[15]/1000.
            self.proj4_proj = 'stere'
            self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
        elif gdtnum == 30: # lambert conformal
            self.latitude_first_gridpoint = gdtmpl[9]/1.e6
            self.longitude_first_gridpoint = gdtmpl[10]/1.e6
            self.gridlength_in_x_direction = gdtmpl[14]/1000.
            self.gridlength_in_y_direction = gdtmpl[15]/1000.
            self.proj4_lat_1 = gdtmpl[18]/1.e6
            self.proj4_lat_2 = gdtmpl[19]/1.e6
            self.proj4_lat_0 = gdtmpl[12]/1.e6
            self.proj4_lon_0 = gdtmpl[13]/1.e6
            self.proj4_proj = 'lcc'
            self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
        elif gdtnum == 31: # albers equal area.
            self.latitude_first_gridpoint = gdtmpl[9]/1.e6
            self.longitude_first_gridpoint = gdtmpl[10]/1.e6
            self.gridlength_in_x_direction = gdtmpl[14]/1000.
            self.gridlength_in_y_direction = gdtmpl[15]/1000.
            self.proj4_lat_1 = gdtmpl[18]/1.e6
            self.proj4_lat_2 = gdtmpl[19]/1.e6
            self.proj4_lat_0 = gdtmpl[12]/1.e6
            self.proj4_lon_0 = gdtmpl[13]/1.e6
            self.proj4_proj = 'aea'
            self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
        elif gdtnum == 40 or gdtnum == 41: # gaussian grid.
            scalefact = float(gdtmpl[9])
            divisor = float(gdtmpl[10])
            if scalefact == 0: scalefact = 1.
            if divisor <= 0: divisor = 1.e6
            self.points_between_pole_and_equator = gdtmpl[17]
            self.latitude_first_gridpoint = scalefact*gdtmpl[11]/divisor
            self.longitude_first_gridpoint = scalefact*gdtmpl[12]/divisor
            self.latitude_last_gridpoint = scalefact*gdtmpl[14]/divisor
            self.longitude_last_gridpoint = scalefact*gdtmpl[15]/divisor
            if reggrid:
                self.gridlength_in_x_direction = scalefact*gdtmpl[16]/divisor
                if self.longitude_first_gridpoint > self.longitude_last_gridpoint:
                    self.gridlength_in_x_direction = -self.gridlength_in_x_direction
            self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
            if gdtnum == 41:
                self.latitude_of_southern_pole = scalefact*gdtmpl[19]/divisor
                self.longitude_of_southern_pole = scalefact*gdtmpl[20]/divisor
                self.angle_of_pole_rotation = gdtmpl[21]
        elif gdtnum == 50: # spectral coefficients.
            self.spectral_truncation_parameters = (gdtmpl[0],gdtmpl[1],gdtmpl[2])
            self.scanmodeflags = [None,None,None,None] # doesn't apply
        elif gdtnum == 90: # near-sided vertical perspective satellite projection
            self.proj4_lat_0 = gdtmpl[9]/1.e6
            self.proj4_lon_0 = gdtmpl[10]/1.e6
            self.proj4_h = self.earthRmajor * (gdtmpl[18]/1.e6)
            dx = gdtmpl[12]
            dy = gdtmpl[13]
            # if lat_0 is equator, it's a geostationary view.
            if self.proj4_lat_0 == 0.: # if lat_0 is equator, it's a
                self.proj4_proj = 'geos'
            # general case of 'near-side perspective projection' (untested)
            else:
                self.proj4_proj = 'nsper'
                msg = """
only geostationary perspective is supported.
lat/lon values returned by grid method may be incorrect."""
                warnings.warn(msg)
            # latitude of horizon on central meridian
            lonmax = 90.-(180./np.pi)*np.arcsin(self.earthRmajor/self.proj4_h)
            # longitude of horizon on equator
            latmax = 90.-(180./np.pi)*np.arcsin(self.earthRminor/self.proj4_h)
            # truncate to nearest thousandth of a degree (to make sure
            # they aren't slightly over the horizon)
            latmax = int(1000*latmax)/1000.
            lonmax = int(1000*lonmax)/1000.
            # h is measured from surface of earth at equator.
            self.proj4_h = self.proj4_h - self.earthRmajor
            # width and height of visible projection
            P = pyproj.Proj(proj=self.proj4_proj,\
                            a=self.earthRmajor,b=self.earthRminor,\
                            lat_0=0,lon_0=0,h=self.proj4_h)
            x1,y1 = P(0.,latmax); x2,y2 = P(lonmax,0.)
            width = 2*x2; height = 2*y1
            self.gridlength_in_x_direction = width/dx
            self.gridlength_in_y_direction = height/dy
            self.scanmodeflags = _dec2bin(gdtmpl[16])[0:4]
        elif gdtnum == 110: # azimuthal equidistant.
            self.proj4_lat_0 = gdtmpl[9]/1.e6
            self.proj4_lon_0 = gdtmpl[10]/1.e6
            self.gridlength_in_x_direction = gdtmpl[12]/1000.
            self.gridlength_in_y_direction = gdtmpl[13]/1000.
            self.proj4_proj = 'aeqd'
            self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
        elif gdtnum == 204: # curvilinear orthogonal
            self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
        # missing value.
        drtnum = self.data_representation_template_number
        drtmpl = self.data_representation_template
        if (drtnum == 2 or drtnum == 3) and drtmpl[6] != 0:
            self.missing_value = _getieeeint(drtmpl[7])
            if drtmpl[6] == 2:
                self.missing_value2 = _getieeeint(drtmpl[8])

    def __repr__(self):
        strings = []
        keys = self.__dict__.keys()
        keys.sort()
        for k in keys:
            if not k.startswith('_'):
                strings.append('%s = %s\n'%(k,self.__dict__[k]))
        return ''.join(strings)

    def data(self,fill_value=9.9692099683868690e+36,masked_array=True,expand=True,order=None):
        """
 returns an unpacked data grid.  Can also be accomplished with L{values}
 property.

 @keyword fill_value: missing or masked data is filled with this value
 (default 9.9692099683868690e+36).

 @keyword masked_array: if True, return masked array if there is bitmap
 for missing or masked data (default True).

 @keyword expand:  if True (default), ECMWF 'reduced' gaussian grids are
 expanded to regular gaussian grids.

 @keyword order: if 1, linear interpolation is used for expanding reduced
 gaussian grids.  if 0, nearest neighbor interpolation is used. Default
 is 0 if grid has missing or bitmapped values, 1 otherwise.

 @return: C{B{data}}, a float32 numpy regular or masked array
 with shape (nlats,lons) containing the requested grid.
        """
        # make sure scan mode is supported.
        # if there is no 'scanmodeflags', then grid is not supported.
        from redtoreg import _redtoreg
        if not hasattr(self,'scanmodeflags'):
            raise ValueError('unsupported grid definition template number %s'%self.grid_definition_template_number)
        else:
            if self.scanmodeflags[2]:
                storageorder='F'
            else:
                storageorder='C'
        bitmapflag = self.bitmap_indicator_flag
        drtnum = self.data_representation_template_number
        drtmpl = self.data_representation_template
        # default order=0 is missing values or bitmap exists.
        if order is None:
            if ((drtnum == 3 or drtnum == 2) and drtmpl[6] != 0) or bitmapflag == 0:
                order = 0
            else:
                order = 1
        try:
            f = open(self._grib_filename,'rb')
        except (TypeError,IOError):
            f = StringIO(self._grib_filename)
        f.seek(self._grib_message_byteoffset)
        gribmsg = f.read(self._grib_message_length)
        f.close()
        gdtnum = self.grid_definition_template_number
        gdtmpl = self.grid_definition_template
        ndpts = self.number_of_data_points_to_unpack
        gdsinfo = self.grid_definition_info
        ngrdpts = gdsinfo[1]
        ipos = self._section7_byte_offset
        fld1=g2clib.unpack7(gribmsg,gdtnum,gdtmpl,drtnum,drtmpl,ndpts,ipos,np.empty,storageorder=storageorder)
        # apply bitmap.
        if bitmapflag == 0:
            bitmap=self._bitmap
            fld = fill_value*np.ones(ngrdpts,'f')
            np.put(fld,np.nonzero(bitmap),fld1)
            if masked_array:
                fld = ma.masked_values(fld,fill_value)
        # missing values instead of bitmap
        elif masked_array and hasattr(self,'missing_value'):
            if hasattr(self, 'missing_value2'):
                mask = np.logical_or(fld1 == self.missing_value, fld1 == self.missing_value2)
            else:
                mask = fld1 == self.missing_value
            fld = ma.array(fld1,mask=mask)
        else:
            fld = fld1
        nx = None; ny = None
        if hasattr(self,'points_in_x_direction'):
            nx = self.points_in_x_direction
        if hasattr(self,'points_in_y_direction'):
            ny = self.points_in_y_direction
        if nx is not None and ny is not None: # rectangular grid.
            if ma.isMA(fld):
                fld = ma.reshape(fld,(ny,nx))
            else:
                fld = np.reshape(fld,(ny,nx))
        else:
            if gdsinfo[2] and gdtnum == 40: # ECMWF 'reduced' global gaussian grid.
                if expand:
                    nx = 2*ny
                    lonsperlat = self.grid_definition_list
                    if ma.isMA(fld):
                        fld = ma.filled(fld)
                        fld = _redtoreg(nx, lonsperlat.astype(np.long),\
                                fld.astype(np.double), fill_value)
                        fld = ma.masked_values(fld,fill_value)
                    else:
                        fld = _redtoreg(nx, lonsperlat.astype(np.long),\
                                fld.astype(np.double), fill_value)
        # check scan modes for rect grids.
        if nx is not None and ny is not None:
            # rows scan in the -x direction (so flip)
            #if self.scanmodeflags[0]:
            #    fldsave = fld.astype('f') # casting makes a copy
            #    fld[:,:] = fldsave[:,::-1]
            # columns scan in the -y direction (so flip)
            #if not self.scanmodeflags[1]:
            #    fldsave = fld.astype('f') # casting makes a copy
            #    fld[:,:] = fldsave[::-1,:]
            # adjacent rows scan in opposite direction.
            # (flip every other row)
            if self.scanmodeflags[3]:
                fldsave = fld.astype('f') # casting makes a copy
                fld[1::2,:] = fldsave[1::2,::-1]
        return fld

    values = property(data)

    def latlons(self):
        """alias for L{grid}"""
        return self.grid()

    def grid(self):
        """
 return lats,lons (in degrees) of grid.
 currently can handle reg. lat/lon, global gaussian, mercator, stereographic,
 lambert conformal, albers equal-area, space-view and azimuthal
 equidistant grids.  L{latlons} method does the same thing.

 @return: C{B{lats},B{lons}}, float32 numpy arrays
 containing latitudes and longitudes of grid (in degrees).
        """
        from pygrib import gaulats
        gdsinfo = self.grid_definition_info
        gdtnum = self.grid_definition_template_number
        gdtmpl = self.grid_definition_template
        reggrid = gdsinfo[2] == 0 # gdsinfo[2]=0 means regular 2-d grid
        projparams = {}
        projparams['a']=self.earthRmajor
        projparams['b']=self.earthRminor
        if gdtnum == 0: # regular lat/lon grid
            lon1, lat1 = self.longitude_first_gridpoint, self.latitude_first_gridpoint
            lon2, lat2 = self.longitude_last_gridpoint, self.latitude_last_gridpoint
            delon = self.gridlength_in_x_direction
            delat = self.gridlength_in_y_direction
            lats = np.arange(lat1,lat2+delat,delat)
            lons = np.arange(lon1,lon2+delon,delon)
            # flip if scan mode says to.
            #if self.scanmodeflags[0]:
            #    lons = lons[::-1]
            #if not self.scanmodeflags[1]:
            #    lats = lats[::-1]
            projparams['proj'] = 'cyl'
            lons,lats = np.meshgrid(lons,lats) # make 2-d arrays.
        elif gdtnum == 40: # gaussian grid (only works for global!)
            lon1, lat1 = self.longitude_first_gridpoint, self.latitude_first_gridpoint
            lon2, lat2 = self.longitude_last_gridpoint, self.latitude_last_gridpoint
            nlats = self.points_in_y_direction
            if not reggrid: # ECMWF 'reduced' gaussian grid.
                nlons = 2*nlats
                delon = 360./nlons
            else:
                nlons = self.points_in_x_direction
                delon = self.gridlength_in_x_direction
            lons = np.arange(lon1,lon2+delon,delon)
            # compute gaussian lats (north to south)
            lats = gaulats(nlats)
            if lat1 < lat2:  # reverse them if necessary
                lats = lats[::-1]
            # flip if scan mode says to.
            #if self.scanmodeflags[0]:
            #    lons = lons[::-1]
            #if not self.scanmodeflags[1]:
            #    lats = lats[::-1]
            projparams['proj'] = 'cyl'
            lons,lats = np.meshgrid(lons,lats) # make 2-d arrays
        # mercator, lambert conformal, stereographic, albers equal area, azimuthal equidistant
        elif gdtnum in [10,20,30,31,110]:
            nx = self.points_in_x_direction
            ny = self.points_in_y_direction
            dx = self.gridlength_in_x_direction
            dy = self.gridlength_in_y_direction
            lon1, lat1 = self.longitude_first_gridpoint, self.latitude_first_gridpoint
            if gdtnum == 10: # mercator.
                projparams['lat_ts']=self.proj4_lat_ts
                projparams['proj']=self.proj4_proj
                projparams['lon_0']=self.proj4_lon_0
                pj = pyproj.Proj(projparams)
                llcrnrx, llcrnry = pj(lon1,lat1)
                x = llcrnrx+dx*np.arange(nx)
                y = llcrnry+dy*np.arange(ny)
                x, y = np.meshgrid(x, y)
                lons, lats = pj(x, y, inverse=True)
            elif gdtnum == 20:  # stereographic
                projparams['lat_ts']=self.proj4_lat_ts
                projparams['proj']=self.proj4_proj
                projparams['lat_0']=self.proj4_lat_0
                projparams['lon_0']=self.proj4_lon_0
                pj = pyproj.Proj(projparams)
                llcrnrx, llcrnry = pj(lon1,lat1)
                x = llcrnrx+dx*np.arange(nx)
                y = llcrnry+dy*np.arange(ny)
                x, y = np.meshgrid(x, y)
                lons, lats = pj(x, y, inverse=True)
            elif gdtnum in [30,31]: # lambert, albers
                projparams['lat_1']=self.proj4_lat_1
                projparams['lat_2']=self.proj4_lat_2
                projparams['proj']=self.proj4_proj
                projparams['lon_0']=self.proj4_lon_0
                pj = pyproj.Proj(projparams)
                llcrnrx, llcrnry = pj(lon1,lat1)
                x = llcrnrx+dx*np.arange(nx)
                y = llcrnry+dy*np.arange(ny)
                x, y = np.meshgrid(x, y)
                lons, lats = pj(x, y, inverse=True)
            elif gdtnum == 110: # azimuthal equidistant
                projparams['proj']=self.proj4_proj
                projparams['lat_0']=self.proj4_lat_0
                projparams['lon_0']=self.proj4_lon_0
                pj = pyproj.Proj(projparams)
                llcrnrx, llcrnry = pj(lon1,lat1)
                x = llcrnrx+dx*np.arange(nx)
                y = llcrnry+dy*np.arange(ny)
                x, y = np.meshgrid(x, y)
                lons, lats = pj(x, y, inverse=True)
        elif gdtnum == 90: # satellite projection.
            nx = self.points_in_x_direction
            ny = self.points_in_y_direction
            dx = self.gridlength_in_x_direction
            dy = self.gridlength_in_y_direction
            projparams['proj']=self.proj4_proj
            projparams['lon_0']=self.proj4_lon_0
            projparams['lat_0']=self.proj4_lat_0
            projparams['h']=self.proj4_h
            pj = pyproj.Proj(projparams)
            x = dx*np.indices((ny,nx),'f')[1,:,:]
            x = x - 0.5*x.max()
            y = dy*np.indices((ny,nx),'f')[0,:,:]
            y = y - 0.5*y.max()
            lons, lats = pj(x,y,inverse=True)
            # set lons,lats to 1.e30 where undefined
            abslons = np.fabs(lons); abslats = np.fabs(lats)
            lons = np.where(abslons < 1.e20, lons, 1.e30)
            lats = np.where(abslats < 1.e20, lats, 1.e30)
        else:
            raise ValueError('unsupported grid')
        self.projparams = projparams
        return lats.astype('f'), lons.astype('f')

def Grib2Decode(filename,gribmsg=False):
    """
 Read the contents of a GRIB2 file.

 @param filename: name of GRIB2 file (default, gribmsg=False) or binary string
 representing a grib message (if gribmsg=True).

 @return:  a list of L{Grib2Message} instances representing all of the
 grib messages in the file.  Messages with multiple fields are split
 into separate messages (so that each L{Grib2Message} instance contains
 just one data field). The metadata in each GRIB2 message can be
 accessed via L{Grib2Message} instance variables, the actual data
 can be read using L{Grib2Message.data}, and the lat/lon values of the grid
 can be accesses using L{Grib2Message.grid}. If there is only one grib
 message, just the L{Grib2Message} instance is returned, instead of a list
 with one element.
    """
    if gribmsg:
        f = StringIO(filename)
    else:
        f = open(filename,'rb')
    nmsg = 0
    # loop over grib messages, read section 0, get entire grib message.
    disciplines = []
    startingpos = []
    msglen = []
    while 1:
        # find next occurence of string 'GRIB' (or EOF).
        nbyte = f.tell()
        while 1:
            f.seek(nbyte)
            start = f.read(4).decode('ascii','ignore')
            if start == '' or start == 'GRIB': break
            nbyte = nbyte + 1
        if start == '': break # at EOF
        # otherwise, start (='GRIB') contains indicator message (section 0)
        startpos = f.tell()-4
        f.seek(2,1)  # next two octets are reserved
        # get discipline info.
        disciplines.append(struct.unpack('>B',f.read(1))[0])
        # check to see it's a grib edition 2 file.
        vers = struct.unpack('>B',f.read(1))[0]
        if vers != 2:
            raise IOError('not a GRIB2 file (version number %d)' % vers)
        lengrib = struct.unpack('>q',f.read(8))[0]
        msglen.append(lengrib)
        startingpos.append(startpos)
        # read in entire grib message.
        f.seek(startpos)
        gribmsg = f.read(lengrib)
        # make sure the message ends with '7777'
        end = gribmsg[-4:lengrib].decode('ascii','ignore')
        if end != '7777':
           raise IOError('partial GRIB message (no "7777" at end)')
        # do next message.
        nmsg=nmsg+1
    # if no grib messages found, nmsg is still 0 and it's not GRIB.
    if nmsg==0:
       raise IOError('not a GRIB file')
    # now for each grib message, find number of fields.
    numfields = []
    f.seek(0) # rewind file.
    for n in range(nmsg):
        f.seek(startingpos[n])
        gribmsg = f.read(msglen[n])
        pos = 0
        numflds = 0
        while 1:
            if gribmsg[pos:pos+4].decode('ascii','ignore') == 'GRIB':
                sectnum = 0
                lensect = 16
            elif gribmsg[pos:pos+4].decode('ascii','ignore') == '7777':
                break
            else:
                lensect = struct.unpack('>i',gribmsg[pos:pos+4])[0]
                sectnum = struct.unpack('>B',gribmsg[pos+4:pos+5])[0]
                if sectnum == 4: numflds=numflds+1
                #if sectnum == 2: numlocal=numlocal+1
            pos = pos + lensect
            #print sectnum,lensect,pos
        #print n+1,len(gribmsg),numfields,numlocal
        numfields.append(numflds)
    # decode each section in grib message (sections 1 and above).
    gdtnum = [] # grid defn template number from sxn 3
    gdtmpl = [] # grid defn template from sxn 3
    gdeflist = [] # optional grid definition list from sxn 3
    gdsinfo = [] # grid definition section info from sxn3
    pdtmpl = [] # product defn template from sxn 4
    pdtnum = [] # product defn template number from sxn 4
    coordlist = [] # vertical coordinate info from sxn 4
    drtmpl = [] # data representation template from sxn 5
    drtnum = [] # data representation template number from sxn 5
    ndpts = [] # number of data points to be unpacked (from sxn 5)
    bitmapflag = [] # bit-map indicator flag from sxn 6
    bitmap = [] # bitmap from sxn 6.
    pos7 = [] # byte offset for section 7.
    localsxn = [] # local use sections.
    msgstart = [] # byte offset in file for message start.
    msglength = [] # length of the message in bytes.
    message = [] # the actual grib message.
    identsect = [] # identification section (section 1).
    discipline = [] # discipline code.
    for n in range(nmsg):
        spos = startingpos[n]
        lengrib = msglen[n]
        #gribmsg = gribmsgs[n]
        f.seek(spos)
        gribmsg = f.read(lengrib)
        discipl = disciplines[n]
        lensect0 = 16
        # get length of section 1 and section number.
        #lensect1 = struct.unpack('>i',gribmsg[lensect0:lensect0+4])[0]
        #sectnum1 = struct.unpack('>B',gribmsg[lensect0+4])[0]
        #print 'sectnum1, lensect1 = ',sectnum1,lensect1
        # unpack section 1, octets 1-21 (13 parameters).  This section
        # can occur only once per grib message.
        #idsect,pos = _unpack1(gribmsg,lensect0) # python version
        idsect,pos = g2clib.unpack1(gribmsg,lensect0,np.empty) # c version
        # loop over rest of sections in message.
        gdtnums = []
        gdtmpls = []
        gdeflists = []
        gdsinfos = []
        pdtmpls = []
        coordlists = []
        pdtnums = []
        drtmpls = []
        drtnums = []
        ndptslist = []
        bitmapflags = []
        bitmaps = []
        sxn7pos = []
        localsxns = []
        while 1:
            # check to see if this is the end of the message.
            if gribmsg[pos:pos+4].decode('ascii','ignore') == '7777': break
            lensect = struct.unpack('>i',gribmsg[pos:pos+4])[0]
            sectnum = struct.unpack('>B',gribmsg[pos+4:pos+5])[0]
            # section 2, local use section.
            if sectnum == 2:
                # "local use section", used by NDFD to store WX
                # strings.  This section is returned as a raw
                # bytestring for further dataset-specific parsing,
                # not as a numpy array.
                localsxns.append(gribmsg[pos+5:pos+lensect])
                pos = pos + lensect
            # section 3, grid definition section.
            elif sectnum == 3:
                gds,gdtempl,deflist,pos = g2clib.unpack3(gribmsg,pos,np.empty)
                gdtnums.append(gds[4])
                gdtmpls.append(gdtempl)
                gdeflists.append(deflist)
                gdsinfos.append(gds)
            # section, product definition section.
            elif sectnum == 4:
                pdtempl,pdtn,coordlst,pos = g2clib.unpack4(gribmsg,pos,np.empty)
                pdtmpls.append(pdtempl)
                coordlists.append(coordlst)
                pdtnums.append(pdtn)
            # section 5, data representation section.
            elif sectnum == 5:
                drtempl,drtn,npts,pos = g2clib.unpack5(gribmsg,pos,np.empty)
                drtmpls.append(drtempl)
                drtnums.append(drtn)
                ndptslist.append(npts)
            # section 6, bit-map section.
            elif sectnum == 6:
                bmap,bmapflag = g2clib.unpack6(gribmsg,gds[1],pos,np.empty)
                #bitmapflag = struct.unpack('>B',gribmsg[pos+5])[0]
                if bmapflag == 0:
                    bitmaps.append(bmap.astype('b'))
                # use last defined bitmap.
                elif bmapflag == 254:
                    bmapflag = 0
                    for bmp in bitmaps[::-1]:
                        if bmp is not None: bitmaps.append(bmp)
                else:
                    bitmaps.append(None)
                bitmapflags.append(bmapflag)
                pos = pos + lensect
            # section 7, data section (nothing done here,
            # data unpacked when getfld method is invoked).
            else:
                if sectnum != 7:
                   msg = 'unknown section = %i' % sectnum
                   raise ValueError(msg)
                sxn7pos.append(pos)
                pos = pos + lensect
        # extend by repeating last value for all remaining fields.
        gdtnum.append(_repeatlast(numfields[n],gdtnums))
        gdtmpl.append(_repeatlast(numfields[n],gdtmpls))
        gdeflist.append(_repeatlast(numfields[n],gdeflists))
        gdsinfo.append(_repeatlast(numfields[n],gdsinfos))
        pdtmpl.append(_repeatlast(numfields[n],pdtmpls))
        pdtnum.append(_repeatlast(numfields[n],pdtnums))
        coordlist.append(_repeatlast(numfields[n],coordlists))
        drtmpl.append(_repeatlast(numfields[n],drtmpls))
        drtnum.append(_repeatlast(numfields[n],drtnums))
        ndpts.append(_repeatlast(numfields[n],ndptslist))
        bitmapflag.append(_repeatlast(numfields[n],bitmapflags))
        bitmap.append(_repeatlast(numfields[n],bitmaps))
        pos7.append(_repeatlast(numfields[n],sxn7pos))
        if len(localsxns) == 0:
            localsxns = [None]
        localsxn.append(_repeatlast(numfields[n],localsxns))
        msgstart.append(_repeatlast(numfields[n],[spos]))
        msglength.append(_repeatlast(numfields[n],[lengrib]))
        identsect.append(_repeatlast(numfields[n],[idsect]))
        discipline.append(_repeatlast(numfields[n],[discipl]))

    gdtnum = _flatten(gdtnum)
    gdtmpl = _flatten(gdtmpl)
    gdeflist = _flatten(gdeflist)
    gdsinfo = _flatten(gdsinfo)
    pdtmpl = _flatten(pdtmpl)
    pdtnum = _flatten(pdtnum)
    coordlist = _flatten(coordlist)
    drtmpl = _flatten(drtmpl)
    drtnum = _flatten(drtnum)
    ndpts = _flatten(ndpts)
    bitmapflag = _flatten(bitmapflag)
    bitmap = _flatten(bitmap)
    pos7 = _flatten(pos7)
    localsxn = _flatten(localsxn)
    msgstart = _flatten(msgstart)
    msglength = _flatten(msglength)
    identsect = _flatten(identsect)
    discipline = _flatten(discipline)

    gribs = []
    for n in range(len(msgstart)):
        kwargs = {}
        kwargs['originating_center']=_table0[identsect[n][0]][0]
        wmo_code = _table0[identsect[n][0]][1]
        if wmo_code is not None:
            kwargs['center_wmo_code']=wmo_code
        kwargs['grid_definition_template_number']=gdtnum[n]
        kwargs['grid_definition_template']=gdtmpl[n]
        if gdeflist[n] != []:
            kwargs['grid_definition_list']=gdeflist[n]
        kwargs['grid_definition_info']=gdsinfo[n]
        kwargs['discipline_code']=discipline[n]
        kwargs['product_definition_template_number']=pdtnum[n]
        kwargs['product_definition_template']=pdtmpl[n]
        kwargs['data_representation_template_number']=drtnum[n]
        kwargs['data_representation_template']=drtmpl[n]
        if coordlist[n] != []:
            kwargs['extra_vertical_coordinate_info']=coordlist[n]
        kwargs['number_of_data_points_to_unpack']=ndpts[n]
        kwargs['bitmap_indicator_flag']=bitmapflag[n]
        if bitmap[n] is not []:
            kwargs['_bitmap']=bitmap[n]
        kwargs['_section7_byte_offset']=pos7[n]
        kwargs['_grib_message_byteoffset']=msgstart[n]
        kwargs['_grib_message_length']=msglength[n]
        kwargs['_grib_filename']=filename
        kwargs['identification_section']=identsect[n]
        kwargs['_grib_message_number']=n+1
        if localsxn[n] is not None:
            kwargs['has_local_use_section'] = True
            kwargs['_local_use_section']=localsxn[n]
        else:
            kwargs['has_local_use_section'] = False
        gribs.append(Grib2Message(**kwargs))
    f.close()
    if len(gribs) == 1:
        return gribs[0]
    else:
        return gribs

def dump(filename, grbs):
    """
 write the given L{Grib2Message} instances to a grib file.

 @param filename: file to write grib data to.
 @param grbs: a list of L{Grib2Message} instances.
    """
    gribfile = open(filename,'wb')
    for grb in grbs:
        try:
            f = open(grb._grib_filename,'rb')
        except TypeError:
            f = StringIO(grb._grib_filename)
        f.seek(grb._grib_message_byteoffset)
        gribmsg = f.read(grb._grib_message_length)
        f.close()
        gribfile.write(gribmsg)
    gribfile.close()

# private methods and functions below here.

def _getdate(idsect):
    """return yyyy,mm,dd,min,ss from section 1"""
    yyyy=idsect[5]
    mm=idsect[6]
    dd=idsect[7]
    hh=idsect[8]
    min=idsect[9]
    ss=idsect[10]
    return yyyy,mm,dd,hh,min,ss

def _unpack1(gribmsg,pos):
    """unpack section 1 given starting point in bytes
    used to test pyrex interface to g2_unpack1"""
    idsect = []
    pos = pos + 5
    idsect.append(struct.unpack('>h',gribmsg[pos:pos+2])[0])
    pos = pos + 2
    idsect.append(struct.unpack('>h',gribmsg[pos:pos+2])[0])
    pos = pos + 2
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>h',gribmsg[pos:pos+2])[0])
    pos = pos + 2
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
    pos = pos + 1
    return np.array(idsect,'i'),pos

def _repeatlast(numfields,listin):
    """repeat last item in listin, until len(listin) = numfields"""
    if len(listin) < numfields:
        last = listin[-1]
        for n in range(len(listin),numfields):
            listin.append(last)
    return listin

def _flatten(lst):
    try:
        flist = functools.reduce(operator.add,lst)
    except NameError: # no reduce in python 3.
        import functools
        flist = functools.reduce(operator.add,lst)
    return flist


class Grib2Encode:
    """
 Class for encoding data into a GRIB2 message.
  - Creating a class instance (L{__init__}) initializes the message and adds
    sections 0 and 1 (the indicator and identification sections),
  - method L{addgrid} adds a grid definition (section 3) to the messsage.
  - method L{addfield} adds sections 4-7 to the message (the product
    definition, data representation, bitmap and data sections).
  - method L{end} adds the end section (section 8) and terminates the message.


 A GRIB Edition 2 message is a machine independent format for storing
 one or more gridded data fields.  Each GRIB2 message consists of the
 following sections:
  - SECTION 0: Indicator Section - only one per message
  - SECTION 1: Identification Section - only one per message
  - SECTION 2: (Local Use Section) - optional
  - SECTION 3: Grid Definition Section
  - SECTION 4: Product Definition Section
  - SECTION 5: Data Representation Section
  - SECTION 6: Bit-map Section
  - SECTION 7: Data Section
  - SECTION 8: End Section

 Sequences of GRIB sections 2 to 7, 3 to 7, or sections 4 to 7 may be repeated
 within a single GRIB message.  All sections within such repeated sequences
 must be present and shall appear in the numerical order noted above.
 Unrepeated sections remain in effect until redefined.

 Note:  Writing section 2 (the 'local use section') is
 not yet supported.

 @ivar msg: A binary string containing the GRIB2 message.
 After the message has been terminated by calling
 the L{end} method, this string can be written to a file.
    """

    def __init__(self, discipline, idsect):
        """
 create a Grib2Enecode class instance given the GRIB2 discipline
 parameter and the identification section (sections 0 and 1).

 The GRIB2 message is stored as a binary string in instance variable L{msg}.

 L{addgrid}, L{addfield} and L{end} class methods must be called to complete
 the GRIB2 message.

 @param discipline:  Discipline or GRIB Master Table Number (Code Table 0.0).
 (0 for meteorlogical, 1 for hydrological, 2 for land surface, 3 for space,
 10 for oceanographic products).

 @param idsect:  Sequence containing identification section (section 1).
  - idsect[0]=Id of orginating centre (Common Code
    U{Table C-1<http://www.nws.noaa.gov/tg/GRIB_C1.htm>})
  - idsect[1]=Id of orginating sub-centre (local table)
  - idsect[2]=GRIB Master Tables Version Number (Code
    U{Table 1.0
    <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-0.shtml>})
  - idsect[3]=GRIB Local Tables Version Number (Code
    U{Table 1.1
    <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-1.shtml>})
  - idsect[4]=Significance of Reference Time (Code
    U{Table 1.2
    <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-2.shtml>})
  - idsect[5]=Reference Time - Year (4 digits)
  - idsect[6]=Reference Time - Month
  - idsect[7]=Reference Time - Day
  - idsect[8]=Reference Time - Hour
  - idsect[9]=Reference Time - Minute
  - idsect[10]=Reference Time - Second
  - idsect[11]=Production status of data (Code
    U{Table 1.3
    <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-3.shtml>})
  - idsect[12]=Type of processed data (Code
    U{Table
    1.4<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-4.shtml>})
        """
        self.msg,msglen=g2clib.grib2_create(np.array([discipline,2],np.int32),np.array(idsect,np.int32))

    def addgrid(self,gdsinfo,gdtmpl,deflist=None):
        """
 Add a grid definition section (section 3) to the GRIB2 message.

 @param gdsinfo: Sequence containing information needed for the grid definition section.
  - gdsinfo[0] = Source of grid definition (see Code
    U{Table 3.0
    <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-0.shtml>})
  - gdsinfo[1] = Number of grid points in the defined grid.
  - gdsinfo[2] = Number of octets needed for each additional grid points defn.
    Used to define number of points in each row for non-reg grids (=0 for
    regular grid).
  - gdsinfo[3] = Interp. of list for optional points defn (Code
    U{Table 3.11
    <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-11.shtml>})
  - gdsinfo[4] = Grid Definition Template Number (Code
    U{Table 3.1
    <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-1.shtml>})

 @param gdtmpl: Contains the data values for the specified Grid Definition
 Template ( NN=gdsinfo[4] ).  Each element of this integer
 array contains an entry (in the order specified) of Grid
 Definition Template 3.NN

 @param deflist: (Used if gdsinfo[2] != 0)  Sequence containing the
 number of grid points contained in each row (or column)
 of a non-regular grid.
        """
        if deflist is not None:
            dflist = np.array(deflist,'i')
        else:
            dflist = None
        self.scanmodeflags = None
        gdtnum = gdsinfo[4]
        if gdtnum in [0,1,2,3,40,41,42,43,44,203,205,32768,32769]:
            self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
        elif gdtnum == 10: # mercator
            self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
        elif gdtnum == 20: # stereographic
            self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
        elif gdtnum == 30: # lambert conformal
            self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
        elif gdtnum == 31: # albers equal area.
            self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
        elif gdtnum == 90: # near-sided vertical perspective satellite projection
            self.scanmodeflags = _dec2bin(gdtmpl[16])[0:4]
        elif gdtnum == 110: # azimuthal equidistant.
            self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
        elif gdtnum == 120:
            self.scanmodeflags = _dec2bin(gdtmpl[6])[0:4]
        elif gdtnum == 204: # curvilinear orthogonal
            self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
        elif gdtnum in [1000,1100]:
            self.scanmodeflags = _dec2bin(gdtmpl[12])[0:4]
        self.msg,msglen=g2clib.grib2_addgrid(self.msg,np.array(gdsinfo,'i'),np.array(gdtmpl,'i'),dflist)

    def addfield(self,pdtnum,pdtmpl,drtnum,drtmpl,field,coordlist=None):
        """
 Add a product definition section, data representation section,
 bitmap section and data section to the GRIB2 message (sections 4-7).
 Must be called after grid definition section is created with L{addgrid}.

 @param pdtnum: Product Definition Template Number (see Code U{Table
 4.0<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table4-0.shtml>})

 @param pdtmpl: Sequence with the data values for the specified Product Definition
 Template (N=pdtnum).  Each element of this integer
 array contains an entry (in the order specified) of Product
 Definition Template 4.N

 @param drtnum: Data Representation Template Number (see Code
 U{Table 5.0
 <http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table5-0.shtml>})

 @param drtmpl: Sequence with the data values for the specified Data Representation
 Template (N=drtnum).  Each element of this integer
 array contains an entry (in the order specified) of Data
 Representation Template 5.N
 Note that some values in this template (eg. reference
 values, number of bits, etc...) may be changed by the
 data packing algorithms.
 Use this to specify scaling factors and order of
 spatial differencing, if desired.

 @param field:  numpy array of data points to pack.
 If field is a masked array, then a bitmap is created from
 the mask.

 @param coordlist: Sequence containing floating point values intended to document
 the vertical discretization with model data
 on hybrid coordinate vertical levels. Default None.
        """
        if not hasattr(self,'scanmodeflags'):
            raise ValueError('addgrid must be called before addfield')
        # reorder array to be consistent with
        # specified scan order.
        if self.scanmodeflags is not None:
            #if self.scanmodeflags[0]:
            ## rows scan in the -x direction (so flip)
            #    fieldsave = field.astype('f') # casting makes a copy
            #    field[:,:] = fieldsave[:,::-1]
            ## columns scan in the -y direction (so flip)
            #if not self.scanmodeflags[1]:
            #    fieldsave = field.astype('f') # casting makes a copy
            #    field[:,:] = fieldsave[::-1,:]
            # adjacent rows scan in opposite direction.
            # (flip every other row)
            if self.scanmodeflags[3]:
                fieldsave = field.astype('f') # casting makes a copy
                field[1::2,:] = fieldsave[1::2,::-1]
        fld = field.astype('f')
        if ma.isMA(field):
            bmap = 1 - np.ravel(field.mask.astype('i'))
            bitmapflag  = 0
        else:
            bitmapflag = 255
            bmap = None
        if coordlist is not None:
            crdlist = np.array(coordlist,'f')
        else:
            crdlist = None
        self.msg,msglen=g2clib.grib2_addfield(self.msg,pdtnum,np.array(pdtmpl,'i'),crdlist,drtnum,np.array(drtmpl,'i'),np.ravel(fld),bitmapflag,bmap)

    def end(self):
        """
 Add an end section (section 8) to the GRIB2 message.
 A GRIB2 message is not complete without an end section.
 Once an end section is added, the GRIB2 message can be
 output to a file.
        """
        self.msg,msglen=g2clib.grib2_end(self.msg)