This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/cm.py is in python3-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
This module provides a large set of colormaps, functions for
registering new colormaps and for getting a colormap by name,
and a mixin class for adding color mapping functionality.

"""


import os

import numpy as np
from numpy import ma
import matplotlib as mpl
import matplotlib.colors as colors
import matplotlib.cbook as cbook
from matplotlib._cm import datad
from matplotlib._cm import cubehelix
import collections

cmap_d = dict()

# reverse all the colormaps.
# reversed colormaps have '_r' appended to the name.


def _reverser(f):
    def freversed(x):
        return f(1 - x)
    return freversed


def revcmap(data):
    """Can only handle specification *data* in dictionary format."""
    data_r = {}
    for key, val in data.items():
        if isinstance(val, collections.Callable):
            valnew = _reverser(val)
                # This doesn't work: lambda x: val(1-x)
                # The same "val" (the first one) is used
                # each time, so the colors are identical
                # and the result is shades of gray.
        else:
            # Flip x and exchange the y values facing x = 0 and x = 1.
            valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)]
        data_r[key] = valnew
    return data_r


def _reverse_cmap_spec(spec):
    """Reverses cmap specification *spec*, can handle both dict and tuple
    type specs."""

    if 'red' in spec:
        return revcmap(spec)
    else:
        revspec = list(reversed(spec))
        if len(revspec[0]) == 2:    # e.g., (1, (1.0, 0.0, 1.0))
            revspec = [(1.0 - a, b) for a, b in revspec]
        return revspec


def _generate_cmap(name, lutsize):
    """Generates the requested cmap from it's name *name*.  The lut size is
    *lutsize*."""

    spec = datad[name]

    # Generate the colormap object.
    if 'red' in spec:
        return colors.LinearSegmentedColormap(name, spec, lutsize)
    else:
        return colors.LinearSegmentedColormap.from_list(name, spec, lutsize)

LUTSIZE = mpl.rcParams['image.lut']

_cmapnames = list(datad.keys())  # need this list because datad is changed in loop

# Generate the reversed specifications ...

for cmapname in _cmapnames:
    spec = datad[cmapname]
    spec_reversed = _reverse_cmap_spec(spec)
    datad[cmapname + '_r'] = spec_reversed

# Precache the cmaps with ``lutsize = LUTSIZE`` ...

# Use datad.keys() to also add the reversed ones added in the section above:
for cmapname in datad.keys():
    cmap_d[cmapname] = _generate_cmap(cmapname, LUTSIZE)

locals().update(cmap_d)

# Continue with definitions ...


def register_cmap(name=None, cmap=None, data=None, lut=None):
    """
    Add a colormap to the set recognized by :func:`get_cmap`.

    It can be used in two ways::

        register_cmap(name='swirly', cmap=swirly_cmap)

        register_cmap(name='choppy', data=choppydata, lut=128)

    In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap`
    instance.  The *name* is optional; if absent, the name will
    be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*.

    In the second case, the three arguments are passed to
    the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer,
    and the resulting colormap is registered.

    """
    if name is None:
        try:
            name = cmap.name
        except AttributeError:
            raise ValueError("Arguments must include a name or a Colormap")

    if not cbook.is_string_like(name):
        raise ValueError("Colormap name must be a string")

    if isinstance(cmap, colors.Colormap):
        cmap_d[name] = cmap
        return

    # For the remainder, let exceptions propagate.
    if lut is None:
        lut = mpl.rcParams['image.lut']
    cmap = colors.LinearSegmentedColormap(name, data, lut)
    cmap_d[name] = cmap


def get_cmap(name=None, lut=None):
    """
    Get a colormap instance, defaulting to rc values if *name* is None.

    Colormaps added with :func:`register_cmap` take precedence over
    built-in colormaps.

    If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be
    returned.

    If *lut* is not None it must be an integer giving the number of
    entries desired in the lookup table, and *name* must be a
    standard mpl colormap name with a corresponding data dictionary
    in *datad*.
    """
    if name is None:
        name = mpl.rcParams['image.cmap']

    if isinstance(name, colors.Colormap):
        return name

    if name in cmap_d:
        if lut is None:
            return cmap_d[name]
        elif name in datad:
            return _generate_cmap(name, lut)

    raise ValueError("Colormap %s is not recognized" % name)


class ScalarMappable:
    """
    This is a mixin class to support scalar data to RGBA mapping.
    The ScalarMappable makes use of data normalization before returning
    RGBA colors from the given colormap.

    """
    def __init__(self, norm=None, cmap=None):
        r"""

        Parameters
        ----------
        norm : :class:`matplotlib.colors.Normalize` instance
            The normalizing object which scales data, typically into the
            interval ``[0, 1]``.
        cmap : str or :class:`~matplotlib.colors.Colormap` instance
            The colormap used to map normalized data values to RGBA colors.

        """

        self.callbacksSM = cbook.CallbackRegistry()

        if cmap is None:
            cmap = get_cmap()
        if norm is None:
            norm = colors.Normalize()

        self._A = None
        #: The Normalization instance of this ScalarMappable.
        self.norm = norm
        #: The Colormap instance of this ScalarMappable.
        self.cmap = get_cmap(cmap)
        #: The last colorbar associated with this ScalarMappable. May be None.
        self.colorbar = None
        self.update_dict = {'array': False}

    @cbook.deprecated('1.3', alternative='the colorbar attribute')
    def set_colorbar(self, im, ax):
        """set the colorbar and axes instances associated with mappable"""
        self.colorbar = im

    def to_rgba(self, x, alpha=None, bytes=False):
        """
        Return a normalized rgba array corresponding to *x*.

        In the normal case, *x* is a 1-D or 2-D sequence of scalars, and
        the corresponding ndarray of rgba values will be returned,
        based on the norm and colormap set for this ScalarMappable.

        There is one special case, for handling images that are already
        rgb or rgba, such as might have been read from an image file.
        If *x* is an ndarray with 3 dimensions,
        and the last dimension is either 3 or 4, then it will be
        treated as an rgb or rgba array, and no mapping will be done.
        If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
        will be used to fill in the transparency.  If the last dimension
        is 4, the *alpha* kwarg is ignored; it does not
        replace the pre-existing alpha.  A ValueError will be raised
        if the third dimension is other than 3 or 4.

        In either case, if *bytes* is *False* (default), the rgba
        array will be floats in the 0-1 range; if it is *True*,
        the returned rgba array will be uint8 in the 0 to 255 range.

        Note: this method assumes the input is well-behaved; it does
        not check for anomalies such as *x* being a masked rgba
        array, or being an integer type other than uint8, or being
        a floating point rgba array with values outside the 0-1 range.
        """
        # First check for special case, image input:
        try:
            if x.ndim == 3:
                if x.shape[2] == 3:
                    if alpha is None:
                        alpha = 1
                    if x.dtype == np.uint8:
                        alpha = np.uint8(alpha * 255)
                    m, n = x.shape[:2]
                    xx = np.empty(shape=(m, n, 4), dtype=x.dtype)
                    xx[:, :, :3] = x
                    xx[:, :, 3] = alpha
                elif x.shape[2] == 4:
                    xx = x
                else:
                    raise ValueError("third dimension must be 3 or 4")
                if bytes and xx.dtype != np.uint8:
                    xx = (xx * 255).astype(np.uint8)
                if not bytes and xx.dtype == np.uint8:
                    xx = xx.astype(float) / 255
                return xx
        except AttributeError:
            # e.g., x is not an ndarray; so try mapping it
            pass

        # This is the normal case, mapping a scalar array:
        x = ma.asarray(x)
        x = self.norm(x)
        x = self.cmap(x, alpha=alpha, bytes=bytes)
        return x

    def set_array(self, A):
        'Set the image array from numpy array *A*'
        self._A = A
        self.update_dict['array'] = True

    def get_array(self):
        'Return the array'
        return self._A

    def get_cmap(self):
        'return the colormap'
        return self.cmap

    def get_clim(self):
        'return the min, max of the color limits for image scaling'
        return self.norm.vmin, self.norm.vmax

    def set_clim(self, vmin=None, vmax=None):
        """
        set the norm limits for image scaling; if *vmin* is a length2
        sequence, interpret it as ``(vmin, vmax)`` which is used to
        support setp

        ACCEPTS: a length 2 sequence of floats
        """
        if (vmin is not None and vmax is None and
                cbook.iterable(vmin) and len(vmin) == 2):
            vmin, vmax = vmin

        if vmin is not None:
            self.norm.vmin = vmin
        if vmax is not None:
            self.norm.vmax = vmax
        self.changed()

    def set_cmap(self, cmap):
        """
        set the colormap for luminance data

        ACCEPTS: a colormap or registered colormap name
        """
        cmap = get_cmap(cmap)
        self.cmap = cmap
        self.changed()

    def set_norm(self, norm):
        'set the normalization instance'
        if norm is None:
            norm = colors.Normalize()
        self.norm = norm
        self.changed()

    def autoscale(self):
        """
        Autoscale the scalar limits on the norm instance using the
        current array
        """
        if self._A is None:
            raise TypeError('You must first set_array for mappable')
        self.norm.autoscale(self._A)
        self.changed()

    def autoscale_None(self):
        """
        Autoscale the scalar limits on the norm instance using the
        current array, changing only limits that are None
        """
        if self._A is None:
            raise TypeError('You must first set_array for mappable')
        self.norm.autoscale_None(self._A)
        self.changed()

    def add_checker(self, checker):
        """
        Add an entry to a dictionary of boolean flags
        that are set to True when the mappable is changed.
        """
        self.update_dict[checker] = False

    def check_update(self, checker):
        """
        If mappable has changed since the last check,
        return True; else return False
        """
        if self.update_dict[checker]:
            self.update_dict[checker] = False
            return True
        return False

    def changed(self):
        """
        Call this whenever the mappable is changed to notify all the
        callbackSM listeners to the 'changed' signal
        """
        self.callbacksSM.process('changed', self)

        for key in self.update_dict:
            self.update_dict[key] = True