This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/image.py is in python3-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
"""
The image module supports basic image loading, rescaling and display
operations.

"""

import os
import warnings
import math

import numpy as np
from numpy import ma

from matplotlib import rcParams
import matplotlib.artist as martist
from matplotlib.artist import allow_rasterization
import matplotlib.colors as mcolors
import matplotlib.cm as cm
import matplotlib.cbook as cbook

# For clarity, names from _image are given explicitly in this module:
import matplotlib._image as _image
import matplotlib._png as _png

# For user convenience, the names from _image are also imported into
# the image namespace:
from matplotlib._image import *

from matplotlib.transforms import BboxBase, Bbox, IdentityTransform
import matplotlib.transforms as mtransforms
import collections


class _AxesImageBase(martist.Artist, cm.ScalarMappable):
    zorder = 0
    # map interpolation strings to module constants
    _interpd = {
        'none': _image.NEAREST,  # fall back to nearest when not supported
        'nearest': _image.NEAREST,
        'bilinear': _image.BILINEAR,
        'bicubic': _image.BICUBIC,
        'spline16': _image.SPLINE16,
        'spline36': _image.SPLINE36,
        'hanning': _image.HANNING,
        'hamming': _image.HAMMING,
        'hermite': _image.HERMITE,
        'kaiser': _image.KAISER,
        'quadric': _image.QUADRIC,
        'catrom': _image.CATROM,
        'gaussian': _image.GAUSSIAN,
        'bessel': _image.BESSEL,
        'mitchell': _image.MITCHELL,
        'sinc': _image.SINC,
        'lanczos': _image.LANCZOS,
        'blackman': _image.BLACKMAN,
    }

    # reverse interp dict
    _interpdr = dict([(v, k) for k, v in _interpd.items()])

    interpnames = list(_interpd.keys())

    def __str__(self):
        return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds)

    def __init__(self, ax,
                 cmap=None,
                 norm=None,
                 interpolation=None,
                 origin=None,
                 filternorm=1,
                 filterrad=4.0,
                 resample=False,
                 **kwargs
                 ):
        """
        interpolation and cmap default to their rc settings

        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        extent is data axes (left, right, bottom, top) for making image plots
        registered with data plots.  Default is to label the pixel
        centers with the zero-based row and column indices.

        Additional kwargs are matplotlib.artist properties

        """
        martist.Artist.__init__(self)
        cm.ScalarMappable.__init__(self, norm, cmap)

        if origin is None:
            origin = rcParams['image.origin']
        self.origin = origin
        self.set_filternorm(filternorm)
        self.set_filterrad(filterrad)
        self._filterrad = filterrad

        self.set_interpolation(interpolation)
        self.set_resample(resample)
        self.axes = ax

        self._imcache = None

        # this is an experimental attribute, if True, unsampled image
        # will be drawn using the affine transform that are
        # appropriately skewed so that the given position
        # corresponds to the actual position in the coordinate. -JJL
        self._image_skew_coordinate = None

        self.update(kwargs)

    def get_size(self):
        """Get the numrows, numcols of the input image"""
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        return self._A.shape[:2]

    def set_alpha(self, alpha):
        """
        Set the alpha value used for blending - not supported on
        all backends

        ACCEPTS: float
        """
        martist.Artist.set_alpha(self, alpha)
        self._imcache = None

    def changed(self):
        """
        Call this whenever the mappable is changed so observers can
        update state
        """
        self._imcache = None
        self._rgbacache = None
        cm.ScalarMappable.changed(self)

    def make_image(self, magnification=1.0):
        raise RuntimeError('The make_image method must be overridden.')

    def _get_unsampled_image(self, A, image_extents, viewlim):
        """
        convert numpy array A with given extents ([x1, x2, y1, y2] in
        data coordinate) into the Image, given the viewlim (should be a
        bbox instance).  Image will be clipped if the extents is
        significantly larger than the viewlim.
        """
        xmin, xmax, ymin, ymax = image_extents
        dxintv = xmax-xmin
        dyintv = ymax-ymin

        # the viewport scale factor
        if viewlim.width == 0.0 and dxintv == 0.0:
            sx = 1.0
        else:
            sx = dxintv/viewlim.width
        if viewlim.height == 0.0 and dyintv == 0.0:
            sy = 1.0
        else:
            sy = dyintv/viewlim.height
        numrows, numcols = A.shape[:2]
        if sx > 2:
            x0 = (viewlim.x0-xmin)/dxintv * numcols
            ix0 = max(0, int(x0 - self._filterrad))
            x1 = (viewlim.x1-xmin)/dxintv * numcols
            ix1 = min(numcols, int(x1 + self._filterrad))
            xslice = slice(ix0, ix1)
            xmin_old = xmin
            xmin = xmin_old + ix0*dxintv/numcols
            xmax = xmin_old + ix1*dxintv/numcols
            dxintv = xmax - xmin
            sx = dxintv/viewlim.width
        else:
            xslice = slice(0, numcols)

        if sy > 2:
            y0 = (viewlim.y0-ymin)/dyintv * numrows
            iy0 = max(0, int(y0 - self._filterrad))
            y1 = (viewlim.y1-ymin)/dyintv * numrows
            iy1 = min(numrows, int(y1 + self._filterrad))
            if self.origin == 'upper':
                yslice = slice(numrows-iy1, numrows-iy0)
            else:
                yslice = slice(iy0, iy1)
            ymin_old = ymin
            ymin = ymin_old + iy0*dyintv/numrows
            ymax = ymin_old + iy1*dyintv/numrows
            dyintv = ymax - ymin
            sy = dyintv/viewlim.height
        else:
            yslice = slice(0, numrows)

        if xslice != self._oldxslice or yslice != self._oldyslice:
            self._imcache = None
            self._oldxslice = xslice
            self._oldyslice = yslice

        if self._imcache is None:
            if self._A.dtype == np.uint8 and self._A.ndim == 3:
                im = _image.frombyte(self._A[yslice, xslice, :], 0)
                im.is_grayscale = False
            else:
                if self._rgbacache is None:
                    x = self.to_rgba(self._A, bytes=False)
                    # Avoid side effects: to_rgba can return its argument
                    # unchanged.
                    if np.may_share_memory(x, self._A):
                        x = x.copy()
                    # premultiply the colors
                    x[..., 0:3] *= x[..., 3:4]
                    x = (x * 255).astype(np.uint8)
                    self._rgbacache = x
                else:
                    x = self._rgbacache
                im = _image.frombyte(x[yslice, xslice, :], 0)
                if self._A.ndim == 2:
                    im.is_grayscale = self.cmap.is_gray()
                else:
                    im.is_grayscale = False
            self._imcache = im

            if self.origin == 'upper':
                im.flipud_in()
        else:
            im = self._imcache

        return im, xmin, ymin, dxintv, dyintv, sx, sy

    @staticmethod
    def _get_rotate_and_skew_transform(x1, y1, x2, y2, x3, y3):
        """
        Retuen a transform that does
         (x1, y1) -> (x1, y1)
         (x2, y2) -> (x2, y2)
         (x2, y1) -> (x3, y3)

        It was intended to derive a skew transform that preserve the
        lower-left corner (x1, y1) and top-right corner(x2,y2), but
        change the the lower-right-corner(x2, y1) to a new position
        (x3, y3).
        """
        tr1 = mtransforms.Affine2D()
        tr1.translate(-x1, -y1)
        x2a, y2a = tr1.transform_point((x2, y2))
        x3a, y3a = tr1.transform_point((x3, y3))

        inv_mat = 1. / (x2a*y3a-y2a*x3a) * np.mat([[y3a, -y2a], [-x3a, x2a]])

        a, b = (inv_mat * np.mat([[x2a], [x2a]])).flat
        c, d = (inv_mat * np.mat([[y2a], [0]])).flat

        tr2 = mtransforms.Affine2D.from_values(a, c, b, d, 0, 0)

        tr = (tr1 + tr2 +
              mtransforms.Affine2D().translate(x1, y1)).inverted().get_affine()

        return tr

    def _draw_unsampled_image(self, renderer, gc):
        """
        draw unsampled image. The renderer should support a draw_image method
        with scale parameter.
        """
        trans = self.get_transform()  # axes.transData

        # convert the coordinates to the intermediate coordinate (ic).
        # The transformation from the ic to the canvas is a pure
        # affine transform.

        # A straight-forward way is to use the non-affine part of the
        # original transform for conversion to the ic.

        # firs, convert the image extent to the ic
        x_llc, x_trc, y_llc, y_trc = self.get_extent()

        xy = trans.transform(np.array([(x_llc, y_llc),
                                       (x_trc, y_trc)]))

        _xx1, _yy1 = xy[0]
        _xx2, _yy2 = xy[1]

        extent_in_ic = _xx1, _xx2, _yy1, _yy2

        # define trans_ic_to_canvas : unless _image_skew_coordinate is
        # set, it is simply a affine part of the original transform.
        if self._image_skew_coordinate:
            # skew the image when required.
            x_lrc, y_lrc = self._image_skew_coordinate
            xy2 = trans.transform(np.array([(x_lrc, y_lrc)]))
            _xx3, _yy3 = xy2[0]

            tr_rotate_skew = self._get_rotate_and_skew_transform(_xx1, _yy1,
                                                                 _xx2, _yy2,
                                                                 _xx3, _yy3)
            trans_ic_to_canvas = tr_rotate_skew
        else:
            trans_ic_to_canvas = IdentityTransform()

        # Now, viewLim in the ic.  It can be rotated and can be
        # skewed. Make it big enough.
        x1, y1, x2, y2 = self.axes.bbox.extents
        trans_canvas_to_ic = trans_ic_to_canvas.inverted()
        xy_ = trans_canvas_to_ic.transform(np.array([(x1, y1),
                                                     (x2, y1),
                                                     (x2, y2),
                                                     (x1, y2)]))
        x1_, x2_ = min(xy_[:, 0]), max(xy_[:, 0])
        y1_, y2_ = min(xy_[:, 1]), max(xy_[:, 1])
        viewLim_in_ic = Bbox.from_extents(x1_, y1_, x2_, y2_)

        # get the image, sliced if necessary. This is done in the ic.
        im, xmin, ymin, dxintv, dyintv, sx, sy = \
            self._get_unsampled_image(self._A, extent_in_ic, viewLim_in_ic)

        if im is None:
            return  # I'm not if this check is required. -JJL

        fc = self.axes.patch.get_facecolor()
        bg = mcolors.colorConverter.to_rgba(fc, 0)
        im.set_bg(*bg)

        # image input dimensions
        im.reset_matrix()
        numrows, numcols = im.get_size()

        im.resize(numcols, numrows)  # just to create im.bufOut that
                                     # is required by backends. There
                                     # may be better solution -JJL

        im._url = self.get_url()
        im._gid = self.get_gid()

        renderer.draw_image(gc, xmin, ymin, im, dxintv, dyintv,
                            trans_ic_to_canvas)

    def _check_unsampled_image(self, renderer):
        """
        return True if the image is better to be drawn unsampled.
        The derived class needs to override it.
        """
        return False

    @allow_rasterization
    def draw(self, renderer, *args, **kwargs):
        if not self.get_visible():
            return
        if (self.axes.get_xscale() != 'linear' or
            self.axes.get_yscale() != 'linear'):
            warnings.warn("Images are not supported on non-linear axes.")

        l, b, widthDisplay, heightDisplay = self.axes.bbox.bounds
        gc = renderer.new_gc()
        gc.set_clip_rectangle(self.axes.bbox.frozen())
        gc.set_clip_path(self.get_clip_path())
        gc.set_alpha(self.get_alpha())

        if self._check_unsampled_image(renderer):
            self._draw_unsampled_image(renderer, gc)
        else:
            if self._image_skew_coordinate is not None:
                warnings.warn("Image will not be shown"
                              " correctly with this backend.")

            im = self.make_image(renderer.get_image_magnification())
            if im is None:
                return
            im._url = self.get_url()
            im._gid = self.get_gid()
            renderer.draw_image(gc, l, b, im)
        gc.restore()

    def contains(self, mouseevent):
        """
        Test whether the mouse event occured within the image.
        """
        if isinstance(self._contains, collections.Callable):
            return self._contains(self, mouseevent)
        # TODO: make sure this is consistent with patch and patch
        # collection on nonlinear transformed coordinates.
        # TODO: consider returning image coordinates (shouldn't
        # be too difficult given that the image is rectilinear
        x, y = mouseevent.xdata, mouseevent.ydata
        xmin, xmax, ymin, ymax = self.get_extent()
        if xmin > xmax:
            xmin, xmax = xmax, xmin
        if ymin > ymax:
            ymin, ymax = ymax, ymin
        #print x, y, xmin, xmax, ymin, ymax
        if x is not None and y is not None:
            inside = ((x >= xmin) and (x <= xmax) and
                      (y >= ymin) and (y <= ymax))
        else:
            inside = False

        return inside, {}

    def write_png(self, fname, noscale=False):
        """Write the image to png file with fname"""
        im = self.make_image()
        if im is None:
            return
        if noscale:
            numrows, numcols = im.get_size()
            im.reset_matrix()
            im.set_interpolation(0)
            im.resize(numcols, numrows)
        im.flipud_out()
        rows, cols, buffer = im.as_rgba_str()
        _png.write_png(buffer, cols, rows, fname)

    def set_data(self, A):
        """
        Set the image array

        ACCEPTS: numpy/PIL Image A
        """
        # check if data is PIL Image without importing Image
        if hasattr(A, 'getpixel'):
            self._A = pil_to_array(A)
        else:
            self._A = cbook.safe_masked_invalid(A)

        if (self._A.dtype != np.uint8 and
            not np.can_cast(self._A.dtype, np.float)):
            raise TypeError("Image data can not convert to float")

        if (self._A.ndim not in (2, 3) or
            (self._A.ndim == 3 and self._A.shape[-1] not in (3, 4))):
            raise TypeError("Invalid dimensions for image data")

        self._imcache = None
        self._rgbacache = None
        self._oldxslice = None
        self._oldyslice = None

    def set_array(self, A):
        """
        Retained for backwards compatibility - use set_data instead

        ACCEPTS: numpy array A or PIL Image"""
        # This also needs to be here to override the inherited
        # cm.ScalarMappable.set_array method so it is not invoked
        # by mistake.

        self.set_data(A)

    def get_interpolation(self):
        """
        Return the interpolation method the image uses when resizing.

        One of 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36',
        'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom',
        'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', or 'none'.

        """
        return self._interpolation

    def set_interpolation(self, s):
        """
        Set the interpolation method the image uses when resizing.

        if None, use a value from rc setting. If 'none', the image is
        shown as is without interpolating. 'none' is only supported in
        agg, ps and pdf backends and will fall back to 'nearest' mode
        for other backends.

        ACCEPTS: ['nearest' | 'bilinear' | 'bicubic' | 'spline16' |
          'spline36' | 'hanning' | 'hamming' | 'hermite' | 'kaiser' |
          'quadric' | 'catrom' | 'gaussian' | 'bessel' | 'mitchell' |
          'sinc' | 'lanczos' | 'none' |]

        """
        if s is None:
            s = rcParams['image.interpolation']
        s = s.lower()
        if s not in self._interpd:
            raise ValueError('Illegal interpolation string')
        self._interpolation = s

    def set_resample(self, v):
        """
        Set whether or not image resampling is used

        ACCEPTS: True|False
        """
        if v is None:
            v = rcParams['image.resample']
        self._resample = v

    def get_resample(self):
        """Return the image resample boolean"""
        return self._resample

    def set_filternorm(self, filternorm):
        """
        Set whether the resize filter norms the weights -- see
        help for imshow

        ACCEPTS: 0 or 1
        """
        if filternorm:
            self._filternorm = 1
        else:
            self._filternorm = 0

    def get_filternorm(self):
        """Return the filternorm setting"""
        return self._filternorm

    def set_filterrad(self, filterrad):
        """
        Set the resize filter radius only applicable to some
        interpolation schemes -- see help for imshow

        ACCEPTS: positive float
        """
        r = float(filterrad)
        assert(r > 0)
        self._filterrad = r

    def get_filterrad(self):
        """return the filterrad setting"""
        return self._filterrad


class AxesImage(_AxesImageBase):
    def __str__(self):
        return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds)

    def __init__(self, ax,
                 cmap=None,
                 norm=None,
                 interpolation=None,
                 origin=None,
                 extent=None,
                 filternorm=1,
                 filterrad=4.0,
                 resample=False,
                 **kwargs
                 ):

        """
        interpolation and cmap default to their rc settings

        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        extent is data axes (left, right, bottom, top) for making image plots
        registered with data plots.  Default is to label the pixel
        centers with the zero-based row and column indices.

        Additional kwargs are matplotlib.artist properties

        """

        self._extent = extent

        _AxesImageBase.__init__(self, ax,
                                cmap=cmap,
                                norm=norm,
                                interpolation=interpolation,
                                origin=origin,
                                filternorm=filternorm,
                                filterrad=filterrad,
                                resample=resample,
                                **kwargs
                                )

    def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image'
                               ' array or the image attribute')

        # image is created in the canvas coordinate.
        x1, x2, y1, y2 = self.get_extent()
        trans = self.get_transform()
        xy = trans.transform(np.array([(x1, y1),
                                       (x2, y2),
                                       ]))
        _x1, _y1 = xy[0]
        _x2, _y2 = xy[1]

        transformed_viewLim = mtransforms.TransformedBbox(self.axes.viewLim,
                                                          trans)

        im, xmin, ymin, dxintv, dyintv, sx, sy = \
            self._get_unsampled_image(self._A, [_x1, _x2, _y1, _y2],
                                      transformed_viewLim)

        fc = self.axes.patch.get_facecolor()
        bg = mcolors.colorConverter.to_rgba(fc, 0)
        im.set_bg(*bg)

        # image input dimensions
        im.reset_matrix()
        numrows, numcols = im.get_size()
        if numrows < 1 or numcols < 1:   # out of range
            return None
        im.set_interpolation(self._interpd[self._interpolation])

        im.set_resample(self._resample)

        # the viewport translation
        if dxintv == 0.0:
            tx = 0.0
        else:
            tx = (xmin-transformed_viewLim.x0)/dxintv * numcols
        if dyintv == 0.0:
            ty = 0.0
        else:
            ty = (ymin-transformed_viewLim.y0)/dyintv * numrows

        im.apply_translation(tx, ty)

        l, b, r, t = self.axes.bbox.extents
        widthDisplay = ((round(r*magnification) + 0.5) -
                        (round(l*magnification) - 0.5))
        heightDisplay = ((round(t*magnification) + 0.5) -
                         (round(b*magnification) - 0.5))

        # resize viewport to display
        rx = widthDisplay / numcols
        ry = heightDisplay / numrows
        im.apply_scaling(rx*sx, ry*sy)
        im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5),
                  norm=self._filternorm, radius=self._filterrad)
        return im

    def _check_unsampled_image(self, renderer):
        """
        return True if the image is better to be drawn unsampled.
        """
        if self.get_interpolation() == "none":
            if renderer.option_scale_image():
                return True
            else:
                warnings.warn("The backend (%s) does not support "
                              "interpolation='none'. The image will be "
                              "interpolated with 'nearest` "
                              "mode." % renderer.__class__)

        return False

    def set_extent(self, extent):
        """
        extent is data axes (left, right, bottom, top) for making image plots

        This updates ax.dataLim, and, if autoscaling, sets viewLim
        to tightly fit the image, regardless of dataLim.  Autoscaling
        state is not changed, so following this with ax.autoscale_view
        will redo the autoscaling in accord with dataLim.

        """
        self._extent = extent

        xmin, xmax, ymin, ymax = extent
        corners = (xmin, ymin), (xmax, ymax)
        self.axes.update_datalim(corners)
        if self.axes._autoscaleXon:
            self.axes.set_xlim((xmin, xmax), auto=None)
        if self.axes._autoscaleYon:
            self.axes.set_ylim((ymin, ymax), auto=None)

    def get_extent(self):
        """Get the image extent: left, right, bottom, top"""
        if self._extent is not None:
            return self._extent
        else:
            sz = self.get_size()
            #print 'sz', sz
            numrows, numcols = sz
            if self.origin == 'upper':
                return (-0.5, numcols-0.5, numrows-0.5, -0.5)
            else:
                return (-0.5, numcols-0.5, -0.5, numrows-0.5)


class NonUniformImage(AxesImage):
    def __init__(self, ax, **kwargs):
        """
        kwargs are identical to those for AxesImage, except
        that 'interpolation' defaults to 'nearest', and 'bilinear'
        is the only alternative.
        """
        interp = kwargs.pop('interpolation', 'nearest')
        AxesImage.__init__(self, ax,
                           **kwargs)
        self.set_interpolation(interp)

    def _check_unsampled_image(self, renderer):
        """
        return False. Do not use unsampled image.
        """
        return False

    def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        A = self._A
        if len(A.shape) == 2:
            if A.dtype != np.uint8:
                A = self.to_rgba(A, bytes=True)
                self.is_grayscale = self.cmap.is_gray()
            else:
                A = np.repeat(A[:, :, np.newaxis], 4, 2)
                A[:, :, 3] = 255
                self.is_grayscale = True
        else:
            if A.dtype != np.uint8:
                A = (255*A).astype(np.uint8)
            if A.shape[2] == 3:
                B = np.zeros(tuple(list(A.shape[0:2]) + [4]), np.uint8)
                B[:, :, 0:3] = A
                B[:, :, 3] = 255
                A = B
            self.is_grayscale = False

        x0, y0, v_width, v_height = self.axes.viewLim.bounds
        l, b, r, t = self.axes.bbox.extents
        width = (round(r) + 0.5) - (round(l) - 0.5)
        height = (round(t) + 0.5) - (round(b) - 0.5)
        width *= magnification
        height *= magnification
        im = _image.pcolor(self._Ax, self._Ay, A,
                           height, width,
                           (x0, x0+v_width, y0, y0+v_height),
                           self._interpd[self._interpolation])

        fc = self.axes.patch.get_facecolor()
        bg = mcolors.colorConverter.to_rgba(fc, 0)
        im.set_bg(*bg)
        im.is_grayscale = self.is_grayscale
        return im

    def set_data(self, x, y, A):
        """
        Set the grid for the pixel centers, and the pixel values.

          *x* and *y* are 1-D ndarrays of lengths N and M, respectively,
             specifying pixel centers

          *A* is an (M,N) ndarray or masked array of values to be
            colormapped, or a (M,N,3) RGB array, or a (M,N,4) RGBA
            array.
        """
        x = np.asarray(x, np.float32)
        y = np.asarray(y, np.float32)
        A = cbook.safe_masked_invalid(A)
        if len(x.shape) != 1 or len(y.shape) != 1\
           or A.shape[0:2] != (y.shape[0], x.shape[0]):
            raise TypeError("Axes don't match array shape")
        if len(A.shape) not in [2, 3]:
            raise TypeError("Can only plot 2D or 3D data")
        if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]:
            raise TypeError("3D arrays must have three (RGB) "
                            "or four (RGBA) color components")
        if len(A.shape) == 3 and A.shape[2] == 1:
            A.shape = A.shape[0:2]
        self._A = A
        self._Ax = x
        self._Ay = y
        self._imcache = None

        # I am adding this in accor with _AxesImageBase.set_data --
        # examples/pylab_examples/image_nonuniform.py was breaking on
        # the call to _get_unsampled_image when the oldxslice attr was
        # accessed - JDH 3/3/2010
        self._oldxslice = None
        self._oldyslice = None

    def set_array(self, *args):
        raise NotImplementedError('Method not supported')

    def set_interpolation(self, s):
        if s is not None and not s in ('nearest', 'bilinear'):
            raise NotImplementedError('Only nearest neighbor and '
                                      'bilinear interpolations are supported')
        AxesImage.set_interpolation(self, s)

    def get_extent(self):
        if self._A is None:
            raise RuntimeError('Must set data first')
        return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1]

    def set_filternorm(self, s):
        pass

    def set_filterrad(self, s):
        pass

    def set_norm(self, norm):
        if self._A is not None:
            raise RuntimeError('Cannot change colors after loading data')
        cm.ScalarMappable.set_norm(self, norm)

    def set_cmap(self, cmap):
        if self._A is not None:
            raise RuntimeError('Cannot change colors after loading data')
        cm.ScalarMappable.set_cmap(self, cmap)


class PcolorImage(martist.Artist, cm.ScalarMappable):
    """
    Make a pcolor-style plot with an irregular rectangular grid.

    This uses a variation of the original irregular image code,
    and it is used by pcolorfast for the corresponding grid type.
    """
    def __init__(self, ax,
                 x=None,
                 y=None,
                 A=None,
                 cmap=None,
                 norm=None,
                 **kwargs
                 ):
        """
        cmap defaults to its rc setting

        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        Additional kwargs are matplotlib.artist properties

        """
        martist.Artist.__init__(self)
        cm.ScalarMappable.__init__(self, norm, cmap)
        self.axes = ax
        self._rgbacache = None
        # There is little point in caching the image itself because
        # it needs to be remade if the bbox or viewlim change,
        # so caching does help with zoom/pan/resize.
        self.update(kwargs)
        self.set_data(x, y, A)

    def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array')
        fc = self.axes.patch.get_facecolor()
        bg = mcolors.colorConverter.to_rgba(fc, 0)
        bg = (np.array(bg)*255).astype(np.uint8)
        l, b, r, t = self.axes.bbox.extents
        width = (round(r) + 0.5) - (round(l) - 0.5)
        height = (round(t) + 0.5) - (round(b) - 0.5)
        width = width * magnification
        height = height * magnification
        if self._rgbacache is None:
            A = self.to_rgba(self._A, bytes=True)
            self._rgbacache = A
            if self._A.ndim == 2:
                self.is_grayscale = self.cmap.is_gray()
        else:
            A = self._rgbacache
        vl = self.axes.viewLim
        im = _image.pcolor2(self._Ax, self._Ay, A,
                            height,
                            width,
                            (vl.x0, vl.x1, vl.y0, vl.y1),
                            bg)
        im.is_grayscale = self.is_grayscale
        return im

    def changed(self):
        self._rgbacache = None
        cm.ScalarMappable.changed(self)

    @allow_rasterization
    def draw(self, renderer, *args, **kwargs):
        if not self.get_visible():
            return
        im = self.make_image(renderer.get_image_magnification())
        gc = renderer.new_gc()
        gc.set_clip_rectangle(self.axes.bbox.frozen())
        gc.set_clip_path(self.get_clip_path())
        gc.set_alpha(self.get_alpha())
        renderer.draw_image(gc,
                            round(self.axes.bbox.xmin),
                            round(self.axes.bbox.ymin),
                            im)
        gc.restore()

    def set_data(self, x, y, A):
        A = cbook.safe_masked_invalid(A)
        if x is None:
            x = np.arange(0, A.shape[1]+1, dtype=np.float64)
        else:
            x = np.asarray(x, np.float64).ravel()
        if y is None:
            y = np.arange(0, A.shape[0]+1, dtype=np.float64)
        else:
            y = np.asarray(y, np.float64).ravel()

        if A.shape[:2] != (y.size-1, x.size-1):
            print(A.shape)
            print(y.size)
            print(x.size)
            raise ValueError("Axes don't match array shape")
        if A.ndim not in [2, 3]:
            raise ValueError("A must be 2D or 3D")
        if A.ndim == 3 and A.shape[2] == 1:
            A.shape = A.shape[:2]
        self.is_grayscale = False
        if A.ndim == 3:
            if A.shape[2] in [3, 4]:
                if ((A[:, :, 0] == A[:, :, 1]).all() and
                    (A[:, :, 0] == A[:, :, 2]).all()):
                    self.is_grayscale = True
            else:
                raise ValueError("3D arrays must have RGB or RGBA as last dim")
        self._A = A
        self._Ax = x
        self._Ay = y
        self._rgbacache = None

    def set_array(self, *args):
        raise NotImplementedError('Method not supported')

    def set_alpha(self, alpha):
        """
        Set the alpha value used for blending - not supported on
        all backends

        ACCEPTS: float
        """
        martist.Artist.set_alpha(self, alpha)
        self.update_dict['array'] = True


class FigureImage(martist.Artist, cm.ScalarMappable):
    zorder = 0

    def __init__(self, fig,
                 cmap=None,
                 norm=None,
                 offsetx=0,
                 offsety=0,
                 origin=None,
                 **kwargs
                 ):

        """
        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        kwargs are an optional list of Artist keyword args
        """
        martist.Artist.__init__(self)
        cm.ScalarMappable.__init__(self, norm, cmap)
        if origin is None:
            origin = rcParams['image.origin']
        self.origin = origin
        self.figure = fig
        self.ox = offsetx
        self.oy = offsety
        self.update(kwargs)
        self.magnification = 1.0

    def contains(self, mouseevent):
        """Test whether the mouse event occured within the image."""
        if isinstance(self._contains, collections.Callable):
            return self._contains(self, mouseevent)
        xmin, xmax, ymin, ymax = self.get_extent()
        xdata, ydata = mouseevent.x, mouseevent.y
        #print xdata, ydata, xmin, xmax, ymin, ymax
        if xdata is not None and ydata is not None:
            inside = ((xdata >= xmin) and (xdata <= xmax) and
                      (ydata >= ymin) and (ydata <= ymax))
        else:
            inside = False

        return inside, {}

    def get_size(self):
        """Get the numrows, numcols of the input image"""
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        return self._A.shape[:2]

    def get_extent(self):
        """Get the image extent: left, right, bottom, top"""
        numrows, numcols = self.get_size()
        return (-0.5+self.ox, numcols-0.5+self.ox,
                -0.5+self.oy, numrows-0.5+self.oy)

    def set_data(self, A):
        """Set the image array."""
        cm.ScalarMappable.set_array(self, cbook.safe_masked_invalid(A))

    def set_array(self, A):
        """Deprecated; use set_data for consistency with other image types."""
        self.set_data(A)

    def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        x = self.to_rgba(self._A, bytes=True)
        self.magnification = magnification
        # if magnification is not one, we need to resize
        ismag = magnification != 1
        #if ismag: raise RuntimeError
        if ismag:
            isoutput = 0
        else:
            isoutput = 1
        im = _image.frombyte(x, isoutput)
        fc = self.figure.get_facecolor()
        im.set_bg(*mcolors.colorConverter.to_rgba(fc, 0))
        im.is_grayscale = (self.cmap.name == "gray" and
                           len(self._A.shape) == 2)

        if ismag:
            numrows, numcols = self.get_size()
            numrows *= magnification
            numcols *= magnification
            im.set_interpolation(_image.NEAREST)
            im.resize(numcols, numrows)
        if self.origin == 'upper':
            im.flipud_out()

        return im

    @allow_rasterization
    def draw(self, renderer, *args, **kwargs):
        if not self.get_visible():
            return
        # todo: we should be able to do some cacheing here
        im = self.make_image(renderer.get_image_magnification())
        gc = renderer.new_gc()
        gc.set_clip_rectangle(self.figure.bbox)
        gc.set_clip_path(self.get_clip_path())
        gc.set_alpha(self.get_alpha())
        renderer.draw_image(gc, round(self.ox), round(self.oy), im)
        gc.restore()

    def write_png(self, fname):
        """Write the image to png file with fname"""
        im = self.make_image()
        rows, cols, buffer = im.as_rgba_str()
        _png.write_png(buffer, cols, rows, fname)


class BboxImage(_AxesImageBase):
    """The Image class whose size is determined by the given bbox."""
    def __init__(self, bbox,
                 cmap=None,
                 norm=None,
                 interpolation=None,
                 origin=None,
                 filternorm=1,
                 filterrad=4.0,
                 resample=False,
                 interp_at_native=True,
                 **kwargs
                 ):

        """
        cmap is a colors.Colormap instance
        norm is a colors.Normalize instance to map luminance to 0-1

        interp_at_native is a flag that determines whether or not
        interpolation should still be applied when the image is
        displayed at its native resolution.  A common use case for this
        is when displaying an image for annotational purposes; it is
        treated similarly to Photoshop (interpolation is only used when
        displaying the image at non-native resolutions).


        kwargs are an optional list of Artist keyword args

        """
        _AxesImageBase.__init__(self, ax=None,
                                cmap=cmap,
                                norm=norm,
                                interpolation=interpolation,
                                origin=origin,
                                filternorm=filternorm,
                                filterrad=filterrad,
                                resample=resample,
                                **kwargs
                                )

        self.bbox = bbox
        self.interp_at_native = interp_at_native

    def get_window_extent(self, renderer=None):
        if renderer is None:
            renderer = self.get_figure()._cachedRenderer

        if isinstance(self.bbox, BboxBase):
            return self.bbox
        elif isinstance(self.bbox, collections.Callable):
            return self.bbox(renderer)
        else:
            raise ValueError("unknown type of bbox")

    def contains(self, mouseevent):
        """Test whether the mouse event occured within the image."""
        if isinstance(self._contains, collections.Callable):
            return self._contains(self, mouseevent)

        if not self.get_visible():  # or self.get_figure()._renderer is None:
            return False, {}

        x, y = mouseevent.x, mouseevent.y
        inside = self.get_window_extent().contains(x, y)

        return inside, {}

    def get_size(self):
        """Get the numrows, numcols of the input image"""
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        return self._A.shape[:2]

    def make_image(self, renderer, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image '
                               'array or the image attribute')

        if self._imcache is None:
            if self._A.dtype == np.uint8 and len(self._A.shape) == 3:
                im = _image.frombyte(self._A, 0)
                im.is_grayscale = False
            else:
                if self._rgbacache is None:
                    x = self.to_rgba(self._A, bytes=True)
                    self._rgbacache = x
                else:
                    x = self._rgbacache
                im = _image.frombyte(x, 0)
                if len(self._A.shape) == 2:
                    im.is_grayscale = self.cmap.is_gray()
                else:
                    im.is_grayscale = False
            self._imcache = im

            if self.origin == 'upper':
                im.flipud_in()
        else:
            im = self._imcache

        # image input dimensions
        im.reset_matrix()

        im.set_interpolation(self._interpd[self._interpolation])

        im.set_resample(self._resample)

        l, b, r, t = self.get_window_extent(renderer).extents  # bbox.extents
        widthDisplay = round(r) - round(l)
        heightDisplay = round(t) - round(b)
        widthDisplay *= magnification
        heightDisplay *= magnification

        numrows, numcols = self._A.shape[:2]

        if (not self.interp_at_native and
            widthDisplay == numcols and heightDisplay == numrows):
            im.set_interpolation(0)

        # resize viewport to display
        rx = widthDisplay / numcols
        ry = heightDisplay / numrows
        #im.apply_scaling(rx*sx, ry*sy)
        im.apply_scaling(rx, ry)
        #im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5),
        #          norm=self._filternorm, radius=self._filterrad)
        im.resize(int(widthDisplay), int(heightDisplay),
                  norm=self._filternorm, radius=self._filterrad)
        return im

    @allow_rasterization
    def draw(self, renderer, *args, **kwargs):
        if not self.get_visible():
            return
        # todo: we should be able to do some cacheing here
        image_mag = renderer.get_image_magnification()
        im = self.make_image(renderer, image_mag)
        l, b, r, t = self.get_window_extent(renderer).extents
        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_alpha(self.get_alpha())
        #gc.set_clip_path(self.get_clip_path())
        renderer.draw_image(gc, round(l), round(b), im)
        gc.restore()


def imread(fname, format=None):
    """
    Read an image from a file into an array.

    *fname* may be a string path or a Python file-like object.  If
    using a file object, it must be opened in binary mode.

    If *format* is provided, will try to read file of that type,
    otherwise the format is deduced from the filename.  If nothing can
    be deduced, PNG is tried.

    Return value is a :class:`numpy.array`.  For grayscale images, the
    return array is MxN.  For RGB images, the return value is MxNx3.
    For RGBA images the return value is MxNx4.

    matplotlib can only read PNGs natively, but if `PIL
    <http://www.pythonware.com/products/pil/>`_ is installed, it will
    use it to load the image and return an array (if possible) which
    can be used with :func:`~matplotlib.pyplot.imshow`.
    """

    def pilread(fname):
        """try to load the image with PIL or return None"""
        try:
            from PIL import Image
        except ImportError:
            return None
        if cbook.is_string_like(fname):
            # force close the file after reading the image
            with open(fname, "rb") as fh:
                image = Image.open(fh)
                return pil_to_array(image)
        else:
            image = Image.open(fname)
            return pil_to_array(image)

    handlers = {'png': _png.read_png, }
    if format is None:
        if cbook.is_string_like(fname):
            basename, ext = os.path.splitext(fname)
            ext = ext.lower()[1:]
        elif hasattr(fname, 'name'):
            basename, ext = os.path.splitext(fname.name)
            ext = ext.lower()[1:]
        else:
            ext = 'png'
    else:
        ext = format

    if ext not in iter(handlers.keys()):
        im = pilread(fname)
        if im is None:
            raise ValueError('Only know how to handle extensions: %s; '
                             'with PIL installed matplotlib can handle '
                             'more images' % list(handlers.keys()))
        return im

    handler = handlers[ext]

    # To handle Unicode filenames, we pass a file object to the PNG
    # reader extension, since Python handles them quite well, but it's
    # tricky in C.
    if cbook.is_string_like(fname):
        with open(fname, 'rb') as fd:
            return handler(fd)
    else:
        return handler(fname)


def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None,
           origin=None, dpi=100):
    """
    Save an array as in image file.

    The output formats available depend on the backend being used.

    Arguments:
      *fname*:
        A string containing a path to a filename, or a Python file-like object.
        If *format* is *None* and *fname* is a string, the output
        format is deduced from the extension of the filename.
      *arr*:
        An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.
    Keyword arguments:
      *vmin*/*vmax*: [ None | scalar ]
        *vmin* and *vmax* set the color scaling for the image by fixing the
        values that map to the colormap color limits. If either *vmin*
        or *vmax* is None, that limit is determined from the *arr*
        min/max value.
      *cmap*:
        cmap is a colors.Colormap instance, eg cm.jet.
        If None, default to the rc image.cmap value.
      *format*:
        One of the file extensions supported by the active
        backend.  Most backends support png, pdf, ps, eps and svg.
      *origin*
        [ 'upper' | 'lower' ] Indicates where the [0,0] index of
        the array is in the upper left or lower left corner of
        the axes. Defaults to the rc image.origin value.
      *dpi*
        The DPI to store in the metadata of the file.  This does not affect the
        resolution of the output image.
    """
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    from matplotlib.figure import Figure

    figsize = [x / float(dpi) for x in (arr.shape[1], arr.shape[0])]
    fig = Figure(figsize=figsize, dpi=dpi, frameon=False)
    canvas = FigureCanvas(fig)
    im = fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin)
    fig.savefig(fname, dpi=dpi, format=format, transparent=True)


def pil_to_array(pilImage):
    """
    Load a PIL image and return it as a numpy array.  For grayscale
    images, the return array is MxN.  For RGB images, the return value
    is MxNx3.  For RGBA images the return value is MxNx4
    """
    def toarray(im, dtype=np.uint8):
        """Teturn a 1D array of dtype."""
        x_str = im.tostring('raw', im.mode)
        x = np.fromstring(x_str, dtype)
        return x

    if pilImage.mode in ('RGBA', 'RGBX'):
        im = pilImage  # no need to convert images
    elif pilImage.mode == 'L':
        im = pilImage  # no need to luminance images
        # return MxN luminance array
        x = toarray(im)
        x.shape = im.size[1], im.size[0]
        return x
    elif pilImage.mode == 'RGB':
        #return MxNx3 RGB array
        im = pilImage  # no need to RGB images
        x = toarray(im)
        x.shape = im.size[1], im.size[0], 3
        return x
    elif pilImage.mode.startswith('I;16'):
        # return MxN luminance array of uint16
        im = pilImage
        if im.mode.endswith('B'):
            x = toarray(im, '>u2')
        else:
            x = toarray(im, '<u2')
        x.shape = im.size[1], im.size[0]
        return x.astype('=u2')
    else:  # try to convert to an rgba image
        try:
            im = pilImage.convert('RGBA')
        except ValueError:
            raise RuntimeError('Unknown image mode')

    # return MxNx4 RGBA array
    x = toarray(im)
    x.shape = im.size[1], im.size[0], 4
    return x


def thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear',
              preview=False):
    """
    make a thumbnail of image in *infile* with output filename
    *thumbfile*.

      *infile* the image file -- must be PNG or PIL readable if you
         have `PIL <http://www.pythonware.com/products/pil/>`_ installed

      *thumbfile*
        the thumbnail filename

      *scale*
        the scale factor for the thumbnail

      *interpolation*
        the interpolation scheme used in the resampling


      *preview*
        if True, the default backend (presumably a user interface
        backend) will be used which will cause a figure to be raised
        if :func:`~matplotlib.pyplot.show` is called.  If it is False,
        a pure image backend will be used depending on the extension,
        'png'->FigureCanvasAgg, 'pdf'->FigureCanvasPdf,
        'svg'->FigureCanvasSVG


    See examples/misc/image_thumbnail.py.

    .. htmlonly::

        :ref:`misc-image_thumbnail`

    Return value is the figure instance containing the thumbnail

    """
    basedir, basename = os.path.split(infile)
    baseout, extout = os.path.splitext(thumbfile)

    im = imread(infile)
    rows, cols, depth = im.shape

    # this doesn't really matter, it will cancel in the end, but we
    # need it for the mpl API
    dpi = 100

    height = float(rows)/dpi*scale
    width = float(cols)/dpi*scale

    extension = extout.lower()

    if preview:
        # let the UI backend do everything
        import matplotlib.pyplot as plt
        fig = plt.figure(figsize=(width, height), dpi=dpi)
    else:
        if extension == '.png':
            from matplotlib.backends.backend_agg \
                import FigureCanvasAgg as FigureCanvas
        elif extension == '.pdf':
            from matplotlib.backends.backend_pdf \
                import FigureCanvasPdf as FigureCanvas
        elif extension == '.svg':
            from matplotlib.backends.backend_svg \
                import FigureCanvasSVG as FigureCanvas
        else:
            raise ValueError("Can only handle "
                             "extensions 'png', 'svg' or 'pdf'")

        from matplotlib.figure import Figure
        fig = Figure(figsize=(width, height), dpi=dpi)
        canvas = FigureCanvas(fig)

    ax = fig.add_axes([0, 0, 1, 1], aspect='auto',
                      frameon=False, xticks=[], yticks=[])

    basename, ext = os.path.splitext(basename)
    ax.imshow(im, aspect='auto', resample=True, interpolation='bilinear')
    fig.savefig(thumbfile, dpi=dpi)
    return fig