This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/tests/test_mlab.py is in python3-matplotlib 1.3.1-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import sys

import numpy as np
import matplotlib.mlab as mlab
import tempfile
import unittest


class general_test(unittest.TestCase):
    def test_colinear_pca(self):
        a = mlab.PCA._get_colinear()
        pca = mlab.PCA(a)

        np.testing.assert_allclose(pca.fracs[2:], 0., atol=1e-8)
        np.testing.assert_allclose(pca.Y[:, 2:], 0., atol=1e-8)

    def test_prctile(self):
        # test odd lengths
        x = [1, 2, 3]
        self.assertEqual(mlab.prctile(x, 50), np.median(x))

        # test even lengths
        x = [1, 2, 3, 4]
        self.assertEqual(mlab.prctile(x, 50), np.median(x))

        # derived from email sent by jason-sage to MPL-user on 20090914
        ob1 = [1, 1, 2, 2, 1, 2, 4, 3, 2, 2, 2, 3,
               4, 5, 6, 7, 8, 9, 7, 6, 4, 5, 5]
        p = [0, 75, 100]
        expected = [1, 5.5, 9]

        # test vectorized
        actual = mlab.prctile(ob1, p)
        np.testing.assert_allclose(expected, actual)

        # test scalar
        for pi, expectedi in zip(p, expected):
            actuali = mlab.prctile(ob1, pi)
            np.testing.assert_allclose(expectedi, actuali)


class csv_testcase(unittest.TestCase):
    def setUp(self):
        if sys.version_info[0] == 2:
            self.fd = tempfile.TemporaryFile(suffix='csv', mode="wb+")
        else:
            self.fd = tempfile.TemporaryFile(suffix='csv', mode="w+",
                                             newline='')

    def tearDown(self):
        self.fd.close()

    def test_recarray_csv_roundtrip(self):
        expected = np.recarray((99,),
                               [('x', np.float),
                                ('y', np.float),
                                ('t', np.float)])
        # initialising all values: uninitialised memory sometimes produces
        # floats that do not round-trip to string and back.
        expected['x'][:] = np.linspace(-1e9, -1, 99)
        expected['y'][:] = np.linspace(1, 1e9, 99)
        expected['t'][:] = np.linspace(0, 0.01, 99)

        mlab.rec2csv(expected, self.fd)
        self.fd.seek(0)
        actual = mlab.csv2rec(self.fd)

        np.testing.assert_allclose(expected['x'], actual['x'])
        np.testing.assert_allclose(expected['y'], actual['y'])
        np.testing.assert_allclose(expected['t'], actual['t'])

    def test_rec2csv_bad_shape_ValueError(self):
        bad = np.recarray((99, 4), [('x', np.float), ('y', np.float)])

        # the bad recarray should trigger a ValueError for having ndim > 1.
        self.assertRaises(ValueError, mlab.rec2csv, bad, self.fd)


class spectral_testcase(unittest.TestCase):
    def setUp(self):
        self.Fs = 100.

        self.fstims = [self.Fs/4, self.Fs/5, self.Fs/10]

        self.x = np.arange(0, 10000, 1/self.Fs)
        self.NFFT = 1000*int(1/min(self.fstims) * self.Fs)
        self.noverlap = int(self.NFFT/2)
        self.pad_to = int(2**np.ceil(np.log2(self.NFFT)))

        self.freqss = np.linspace(0, self.Fs/2, num=self.pad_to//2+1)
        self.freqsd = np.linspace(-self.Fs/2, self.Fs/2, num=self.pad_to,
                                  endpoint=False)

        self.t = self.x[self.NFFT//2::self.NFFT-self.noverlap]

        self.y = [np.zeros(self.x.size)]
        for i, fstim in enumerate(self.fstims):
            self.y.append(np.sin(fstim * self.x * np.pi * 2))
        self.y.append(np.sum(self.y, axis=0))

        # get the list of frequencies in each test
        self.fstimsall = [[]] + [[f] for f in self.fstims] + [self.fstims]

    def test_psd(self):
        for y, fstims in zip(self.y, self.fstimsall):
            Pxx1, freqs1 = mlab.psd(y, NFFT=self.NFFT,
                                    Fs=self.Fs,
                                    noverlap=self.noverlap,
                                    pad_to=self.pad_to,
                                    sides='default')
            np.testing.assert_array_equal(freqs1, self.freqss)
            for fstim in fstims:
                i = np.abs(freqs1 - fstim).argmin()
                self.assertTrue(Pxx1[i] > Pxx1[i+1])
                self.assertTrue(Pxx1[i] > Pxx1[i-1])

            Pxx2, freqs2 = mlab.psd(y, NFFT=self.NFFT,
                                    Fs=self.Fs,
                                    noverlap=self.noverlap,
                                    pad_to=self.pad_to,
                                    sides='onesided')
            np.testing.assert_array_equal(freqs2, self.freqss)
            for fstim in fstims:
                i = np.abs(freqs2 - fstim).argmin()
                self.assertTrue(Pxx2[i] > Pxx2[i+1])
                self.assertTrue(Pxx2[i] > Pxx2[i-1])

            Pxx3, freqs3 = mlab.psd(y, NFFT=self.NFFT,
                                    Fs=self.Fs,
                                    noverlap=self.noverlap,
                                    pad_to=self.pad_to,
                                    sides='twosided')
            np.testing.assert_array_equal(freqs3, self.freqsd)
            for fstim in fstims:
                i = np.abs(freqs3 - fstim).argmin()
                self.assertTrue(Pxx3[i] > Pxx3[i+1])
                self.assertTrue(Pxx3[i] > Pxx3[i-1])

    def test_specgram(self):
        for y, fstims in zip(self.y, self.fstimsall):
            Pxx1, freqs1, t1 = mlab.specgram(y, NFFT=self.NFFT,
                                             Fs=self.Fs,
                                             noverlap=self.noverlap,
                                             pad_to=self.pad_to,
                                             sides='default')
            Pxx1m = np.mean(Pxx1, axis=1)
            np.testing.assert_array_equal(freqs1, self.freqss)
            np.testing.assert_array_equal(t1, self.t)
            # since we are using a single freq, all time slices should be
            # about the same
            np.testing.assert_allclose(np.diff(Pxx1, axis=1).max(), 0,
                                       atol=1e-08)
            for fstim in fstims:
                i = np.abs(freqs1 - fstim).argmin()
                self.assertTrue(Pxx1m[i] > Pxx1m[i+1])
                self.assertTrue(Pxx1m[i] > Pxx1m[i-1])

            Pxx2, freqs2, t2 = mlab.specgram(y, NFFT=self.NFFT,
                                             Fs=self.Fs,
                                             noverlap=self.noverlap,
                                             pad_to=self.pad_to,
                                             sides='onesided')
            Pxx2m = np.mean(Pxx2, axis=1)
            np.testing.assert_array_equal(freqs2, self.freqss)
            np.testing.assert_array_equal(t2, self.t)
            np.testing.assert_allclose(np.diff(Pxx2, axis=1).max(), 0,
                                       atol=1e-08)
            for fstim in fstims:
                i = np.abs(freqs2 - fstim).argmin()
                self.assertTrue(Pxx2m[i] > Pxx2m[i+1])
                self.assertTrue(Pxx2m[i] > Pxx2m[i-1])

            Pxx3, freqs3, t3 = mlab.specgram(y, NFFT=self.NFFT,
                                             Fs=self.Fs,
                                             noverlap=self.noverlap,
                                             pad_to=self.pad_to,
                                             sides='twosided')
            Pxx3m = np.mean(Pxx3, axis=1)
            np.testing.assert_array_equal(freqs3, self.freqsd)
            np.testing.assert_array_equal(t3, self.t)
            np.testing.assert_allclose(np.diff(Pxx3, axis=1).max(), 0,
                                       atol=1e-08)
            for fstim in fstims:
                i = np.abs(freqs3 - fstim).argmin()
                self.assertTrue(Pxx3m[i] > Pxx3m[i+1])
                self.assertTrue(Pxx3m[i] > Pxx3m[i-1])


if __name__ == '__main__':
    unittest.main()