/usr/lib/python3/dist-packages/pyfits/fitsrec.py is in python3-pyfits 1:3.2-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 | import copy
import operator
import warnings
import weakref
import numpy as np
from numpy import char as chararray
from pyfits.column import (ASCIITNULL, FITS2NUMPY, ASCII2NUMPY, ASCII2STR,
ColDefs, _AsciiColDefs, _FormatX, _FormatP, _VLF,
_get_index, _wrapx, _unwrapx, _makep,
_convert_ascii_format, Delayed)
from pyfits.util import decode_ascii, lazyproperty
from functools import reduce
class FITS_record(object):
"""
FITS record class.
`FITS_record` is used to access records of the `FITS_rec` object.
This will allow us to deal with scaled columns. It also handles
conversion/scaling of columns in ASCII tables. The `FITS_record`
class expects a `FITS_rec` object as input.
"""
def __init__(self, input, row=0, start=None, end=None, step=None,
base=None, **kwargs):
"""
Parameters
----------
input : array
The array to wrap.
row : int, optional
The starting logical row of the array.
start : int, optional
The starting column in the row associated with this object.
Used for subsetting the columns of the FITS_rec object.
end : int, optional
The ending column in the row associated with this object.
Used for subsetting the columns of the FITS_rec object.
"""
# For backward compatibility...
for arg in [('startColumn', 'start'), ('endColumn', 'end')]:
if arg[0] in kwargs:
warnings.warn('The %s argument to FITS_record is deprecated; '
'use %s instead' % arg, DeprecationWarning)
if arg[0] == 'startColumn':
start = kwargs[arg[0]]
elif arg[0] == 'endColumn':
end = kwargs[arg[0]]
self.array = input
self.row = row
if base:
width = len(base)
else:
width = self.array._nfields
s = slice(start, end, step).indices(width)
self.start, self.end, self.step = s
self.base = base
def __getitem__(self, key):
if isinstance(key, str):
indx = _get_index(self.array.names, key)
if indx < self.start or indx > self.end - 1:
raise KeyError("Key '%s' does not exist." % key)
elif isinstance(key, slice):
return type(self)(self.array, self.row, key.start, key.stop,
key.step, self)
else:
indx = self._get_index(key)
if indx > self.array._nfields - 1:
raise IndexError('Index out of bounds')
return self.array.field(indx)[self.row]
def __setitem__(self, key, value):
if isinstance(key, str):
indx = _get_index(self.array._coldefs.names, key)
if indx < self.start or indx > self.end - 1:
raise KeyError("Key '%s' does not exist." % key)
elif isinstance(key, slice):
for indx in range(slice.start, slice.stop, slice.step):
indx = self._get_indx(indx)
self.array.field(indx)[self.row] = value
else:
indx = self._get_index(key)
if indx > self.array._nfields - 1:
raise IndexError('Index out of bounds')
self.array.field(indx)[self.row] = value
def __getslice__(self, start, end):
return self[slice(start, end)]
def __len__(self):
return len(range(self.start, self.end, self.step))
def __repr__(self):
"""
Display a single row.
"""
outlist = []
for idx in range(len(self)):
outlist.append(repr(self[idx]))
return '(%s)' % ', '.join(outlist)
def field(self, field):
"""
Get the field data of the record.
"""
return self.__getitem__(field)
def setfield(self, field, value):
"""
Set the field data of the record.
"""
self.__setitem__(field, value)
@lazyproperty
def _bases(self):
bases = [weakref.proxy(self)]
base = self.base
while base:
bases.append(base)
base = base.base
return bases
def _get_index(self, indx):
indices = np.ogrid[:self.array._nfields]
for base in reversed(self._bases):
if base.step < 1:
s = slice(base.start, None, base.step)
else:
s = slice(base.start, base.end, base.step)
indices = indices[s]
return indices[indx]
class FITS_rec(np.recarray):
"""
FITS record array class.
`FITS_rec` is the data part of a table HDU's data part. This is a
layer over the `recarray`, so we can deal with scaled columns.
It inherits all of the standard methods from `numpy.ndarray`.
"""
_record_type = FITS_record
def __new__(subtype, input):
"""
Construct a FITS record array from a recarray.
"""
# input should be a record array
if input.dtype.subdtype is None:
self = np.recarray.__new__(subtype, input.shape, input.dtype,
buf=input.data)
else:
self = np.recarray.__new__(subtype, input.shape, input.dtype,
buf=input.data, strides=input.strides)
self._nfields = len(self.dtype.names)
self._convert = [None] * len(self.dtype.names)
self._heapoffset = 0
self._heapsize = 0
self._coldefs = None
self._gap = 0
self._uint = False
self.names = list(self.dtype.names)
self.formats = None
return self
def __array_finalize__(self, obj):
if obj is None:
return
if isinstance(obj, FITS_rec):
self._convert = obj._convert
self._heapoffset = obj._heapoffset
self._heapsize = obj._heapsize
self._coldefs = obj._coldefs
self._nfields = obj._nfields
self._gap = obj._gap
self._uint = obj._uint
self.names = obj.names
self.formats = obj.formats
else:
# This will allow regular ndarrays with fields, rather than
# just other FITS_rec objects
self._nfields = len(obj.dtype.names)
self._convert = [None] * len(obj.dtype.names)
self._heapoffset = getattr(obj, '_heapoffset', 0)
self._heapsize = getattr(obj, '_heapsize', 0)
self._coldefs = None
self._gap = getattr(obj, '_gap', 0)
self._uint = getattr(obj, '_uint', False)
# Bypass setattr-based assignment to fields; see #86
self.names = list(obj.dtype.names)
self.formats = None
attrs = ['_convert', '_coldefs', '_gap']
for attr in attrs:
if hasattr(obj, attr):
value = getattr(obj, attr, None)
if value is None:
warnings.warn('Setting attribute %s as None' % attr)
setattr(self, attr, value)
if self._coldefs is None:
self._coldefs = ColDefs(self)
self.formats = self._coldefs.formats
@classmethod
def from_columns(cls, columns, nrows=0, fill=False):
"""
Given a ColDefs object of unknown origin, initialize a new FITS_rec
object.
This was originally part of the new_table function in the table module
but was moved into a class method since most of its functionality
always had more to do with initializing a FITS_rec object than anything
else, and much of it also overlapped with FITS_rec._scale_back.
Parameters
----------
columns : sequence of Columns or a ColDefs
The columns from which to create the table data. If these
columns have data arrays attached that data may be used in
initializing the new table. Otherwise the input columns
will be used as a template for a new table with the requested
number of rows.
nrows : int
Number of rows in the new table. If the input columns have data
associated with them, the size of the largest input column is used.
Otherwise the default is 0.
fill : bool
If `True`, will fill all cells with zeros or blanks. If
`False`, copy the data from input, undefined cells will still
be filled with zeros/blanks.
"""
# read the delayed data
for idx in range(len(columns)):
arr = columns._arrays[idx]
if isinstance(arr, Delayed):
if arr.hdu.data is None:
columns._arrays[idx] = None
else:
columns._arrays[idx] = np.rec.recarray.field(arr.hdu.data,
arr.field)
# use the largest column shape as the shape of the record
if nrows == 0:
for arr in columns._arrays:
if arr is not None:
dim = arr.shape[0]
else:
dim = 0
if dim > nrows:
nrows = dim
raw_data = np.empty(columns.dtype.itemsize * nrows, dtype=np.uint8)
raw_data.fill(ord(columns._padding_byte))
data = np.recarray(nrows, dtype=columns.dtype, buf=raw_data).view(cls)
# Previously this assignment was made from hdu.columns, but that's a
# bug since if a _TableBaseHDU has a FITS_rec in its .data attribute
# the _TableBaseHDU.columns property is actually returned from
# .data._coldefs, so this assignment was circular! Don't make that
# mistake again.
# All of this is an artifact of the fragility of the FITS_rec class,
# and that it can't just be initialized by columns...
data._coldefs = columns
data.formats = columns.formats
# If fill is True we don't copy anything from the column arrays. We're
# just using them as a template, and returning a table filled with
# zeros/blanks
if fill:
return data
# Otherwise we have to fill the recarray with data from the input
# columns
for idx in range(len(columns)):
# For each column in the ColDef object, determine the number of
# rows in that column. This will be either the number of rows in
# the ndarray associated with the column, or the number of rows
# given in the call to this function, which ever is smaller. If
# the input FILL argument is true, the number of rows is set to
# zero so that no data is copied from the original input data.
arr = columns._arrays[idx]
if arr is None:
array_size = 0
else:
array_size = len(arr)
n = min(array_size, nrows)
# TODO: At least *some* of this logic is mostly redundant with the
# _convert_foo methods in this class; see if we can eliminate some
# of that duplication.
if not n:
# The input column had an empty array, so just use the fill
# value
continue
field = np.rec.recarray.field(data, idx)
fitsformat = columns.formats[idx]
recformat = columns._recformats[idx]
outarr = field[:n]
inarr = arr[:n]
if isinstance(recformat, _FormatX):
# Data is a bit array
if inarr.shape[-1] == recformat.repeat:
_wrapx(inarr, outarr, recformat.repeat)
continue
elif isinstance(recformat, _FormatP):
data._convert[idx] = _makep(inarr, field, recformat,
nrows=nrows)
continue
# TODO: Find a better way of determining that the column is meant
# to be FITS L formatted
elif recformat[-2:] == FITS2NUMPY['L'] and inarr.dtype == bool:
# column is boolean
# The raw data field should be filled with either 'T' or 'F'
# (not 0). Use 'F' as a default
field[:] = ord('F')
# Also save the original boolean array in data._converted so
# that it doesn't have to be re-converted
data._convert[idx] = np.zeros(field.shape, dtype=bool)
data._convert[idx][:n] = inarr
# TODO: Maybe this step isn't necessary at all if _scale_back
# will handle it?
inarr = np.where(inarr == False, ord('F'), ord('T'))
elif (columns[idx]._physical_values and
columns[idx]._pseudo_unsigned_ints):
# Temporary hack...
bzero = columns[idx].bzero
data._convert[idx] = np.zeros(field.shape, dtype=inarr.dtype)
data._convert[idx][:n] = inarr
if n < nrows:
# Pre-scale rows below the input data
field[n:] = -bzero
inarr = inarr - bzero
elif isinstance(columns, _AsciiColDefs):
# Regardless whether the format is character or numeric, if the
# input array contains characters then it's already in the raw
# format for ASCII tables
if fitsformat._pseudo_logical:
# Hack to support converting from 8-bit T/F characters
# Normally the column array is a chararray of 1 character
# strings, but we need to view it as a normal ndarray of
# 8-bit ints to fill it with ASCII codes for 'T' and 'F'
outarr = field.view(np.uint8, np.ndarray)[:n]
elif not isinstance(arr, chararray.chararray):
# Fill with the appropriate blanks for the column format
data._convert[idx] = np.zeros(nrows, dtype=arr.dtype)
outarr = data._convert[idx][:n]
outarr[:] = inarr
continue
if inarr.shape != outarr.shape:
if inarr.dtype != outarr.dtype:
inarr = inarr.view(outarr.dtype)
# This is a special case to handle input arrays with
# non-trivial TDIMn.
# By design each row of the outarray is 1-D, while each row of
# the input array may be n-D
if outarr.ndim > 1:
# The normal case where the first dimension is the rows
inarr_rowsize = inarr[0].size
inarr = inarr.reshape((n, inarr_rowsize))
outarr[:, :inarr_rowsize] = inarr
else:
# Special case for strings where the out array only has one
# dimension (the second dimension is rolled up into the
# strings
outarr[:n] = inarr.ravel()
else:
outarr[:] = inarr
return data
def __repr__(self):
return np.recarray.__repr__(self)
def __getattribute__(self, attr):
# See the comment in __setattr__
if attr in ('names', 'formats'):
return object.__getattribute__(self, attr)
else:
return super(FITS_rec, self).__getattribute__(attr)
def __setattr__(self, attr, value):
# Overrides the silly attribute-based assignment to fields supported by
# recarrays for our two built-in public attributes: names and formats
# Otherwise, the default behavior, bad as it is, is preserved. See
# ticket #86
if attr in ('names', 'formats'):
return object.__setattr__(self, attr, value)
else:
return super(FITS_rec, self).__setattr__(attr, value)
def __getitem__(self, key):
if isinstance(key, str):
return self.field(key)
elif isinstance(key, (slice, np.ndarray, tuple, list)):
# Have to view as a recarray then back as a FITS_rec, otherwise the
# circular reference fix/hack in FITS_rec.field() won't preserve
# the slice
subtype = type(self)
out = self.view(np.recarray).__getitem__(key).view(subtype)
out._coldefs = ColDefs(self._coldefs)
arrays = []
out._convert = [None] * len(self.dtype.names)
for idx in range(len(self.dtype.names)):
#
# Store the new arrays for the _coldefs object
#
arrays.append(self._coldefs._arrays[idx][key])
# touch all fields to expand the original ._convert list
# so the sliced FITS_rec will view the same scaled columns as
# the original
dummy = self.field(idx)
if self._convert[idx] is not None:
out._convert[idx] = \
np.ndarray.__getitem__(self._convert[idx], key)
del dummy
out._coldefs._arrays = arrays
out._coldefs._shape = len(arrays[0])
return out
# if not a slice, do this because Record has no __getstate__.
# also more efficient.
else:
if isinstance(key, int) and key >= len(self):
raise IndexError("Index out of bounds")
newrecord = self._record_type(self, key)
return newrecord
def __setitem__(self, row, value):
if isinstance(row, slice):
end = min(len(self), row.stop or len(self))
end = max(0, end)
start = max(0, row.start or 0)
end = min(end, start + len(value))
for idx in range(start, end):
self.__setitem__(idx, value[idx - start])
return
if isinstance(value, FITS_record):
for idx in range(self._nfields):
self.field(self.names[idx])[row] = value.field(self.names[idx])
elif isinstance(value, (tuple, list, np.void)):
if self._nfields == len(value):
for idx in range(self._nfields):
self.field(idx)[row] = value[idx]
else:
raise ValueError('Input tuple or list required to have %s '
'elements.' % self._nfields)
else:
raise TypeError('Assignment requires a FITS_record, tuple, or '
'list as input.')
def __getslice__(self, start, end):
return self[slice(start, end)]
def __setslice__(self, start, end, value):
self[slice(start, end)] = value
def copy(self, order='C'):
"""
The Numpy documentation lies; ndarray.copy is not equivalent to
np.copy. Differences include that it re-views the copied array
as self's ndarray subclass, as though it were taking a slice;
this means __array_finalize__ is called and the copy shares all
the array attributes (including ._convert!). So we need to make
a deep copy of all those attributes so that the two arrays truly do
not share any data.
"""
try:
new = super(FITS_rec, self).copy(order=order)
except TypeError:
# This will probably occur if the order argument is not supported,
# such as on Numpy 1.5; in other words we're just going to ask
# forgiveness rather than check the Numpy version explicitly.
new = super(FITS_rec, self).copy()
new.__dict__ = copy.deepcopy(self.__dict__)
return new
@property
def columns(self):
"""
A user-visible accessor for the coldefs. See ticket #44.
"""
return self._coldefs
def field(self, key):
"""
A view of a `Column`'s data as an array.
"""
indx = _get_index(self.names, key)
recformat = self._coldefs._recformats[indx]
# If field's base is a FITS_rec, we can run into trouble because it
# contains a reference to the ._coldefs object of the original data;
# this can lead to a circular reference; see ticket #49
base = self
while (isinstance(base, FITS_rec) and
isinstance(base.base, np.recarray)):
base = base.base
# base could still be a FITS_rec in some cases, so take care to
# use rec.recarray.field to avoid a potential infinite
# recursion
field = np.recarray.field(base, indx)
if self._convert[indx] is None:
if isinstance(recformat, _FormatP):
# for P format
converted = self._convert_p(indx, field, recformat)
else:
# Handle all other column data types which are fixed-width
# fields
converted = self._convert_other(indx, field, recformat)
self._convert[indx] = converted
return converted
return self._convert[indx]
def _convert_x(self, field, recformat):
"""Convert a raw table column to a bit array as specified by the
FITS X format.
"""
dummy = np.zeros(self.shape + (recformat.repeat,), dtype=np.bool_)
_unwrapx(field, dummy, recformat.repeat)
return dummy
def _convert_p(self, indx, field, recformat):
"""Convert a raw table column of FITS P or Q format descriptors
to a VLA column with the array data returned from the heap.
"""
dummy = _VLF([None] * len(self), dtype=recformat.dtype)
raw_data = self._get_raw_data()
if raw_data is None:
raise IOError(
"Could not find heap data for the %r variable-length "
"array column." % self.names[indx])
for idx in range(len(self)):
offset = field[idx, 1] + self._heapoffset
count = field[idx, 0]
if recformat.dtype == 'a':
dt = np.dtype(recformat.dtype + str(1))
arr_len = count * dt.itemsize
da = raw_data[offset:offset + arr_len].view(dt)
da = np.char.array(da.view(dtype=dt), itemsize=count)
dummy[idx] = decode_ascii(da)
else:
dt = np.dtype(recformat.dtype)
arr_len = count * dt.itemsize
dummy[idx] = raw_data[offset:offset + arr_len].view(dt)
dummy[idx].dtype = dummy[idx].dtype.newbyteorder('>')
# Each array in the field may now require additional
# scaling depending on the other scaling parameters
# TODO: The same scaling parameters apply to every
# array in the column so this is currently very slow; we
# really only need to check once whether any scaling will
# be necessary and skip this step if not
# TODO: Test that this works for X format; I don't think
# that it does--the recformat variable only applies to the P
# format not the X format
dummy[idx] = self._convert_other(indx, dummy[idx], recformat)
return dummy
def _convert_ascii(self, indx, field):
"""Special handling for ASCII table columns to convert columns
containing numeric types to actual numeric arrays from the string
representation.
"""
format = self._coldefs.formats[indx]
recformat = ASCII2NUMPY[format[0]]
# if the string = TNULL, return ASCIITNULL
nullval = str(self._coldefs.nulls[indx]).strip().encode('ascii')
if len(nullval) > format.width:
nullval = nullval[:format.width]
dummy = field.replace('D'.encode('ascii'), 'E'.encode('ascii'))
dummy = np.where(dummy.strip() == nullval, str(ASCIITNULL), dummy)
try:
dummy = np.array(dummy, dtype=recformat)
except ValueError as e:
raise ValueError(
'%s; the header may be missing the necessary TNULL%d '
'keyword or the table contains invalid data' % (e, indx + 1))
return dummy
def _convert_other(self, indx, field, recformat):
"""Perform conversions on any other fixed-width column data types.
This may not perform any conversion at all if it's not necessary, in
which case the original column array is returned.
"""
if isinstance(recformat, _FormatX):
# special handling for the X format
return self._convert_x(field, recformat)
(_str, _bool, _number, _scale, _zero, bscale, bzero, dim) = \
self._get_scale_factors(indx)
# ASCII table, convert strings to numbers
# TODO:
# For now, check that these are ASCII columns by checking the coldefs
# type; in the future all columns (for binary tables, ASCII tables, or
# otherwise) should "know" what type they are already and how to handle
# converting their data from FITS format to native format and vice
# versa...
if not _str and isinstance(self._coldefs, _AsciiColDefs):
field = self._convert_ascii(indx, field)
# Test that the dimensions given in dim are sensible; otherwise
# display a warning and ignore them
if dim:
# See if the dimensions already match, if not, make sure the
# number items will fit in the specified dimensions
if field.ndim > 1:
actual_shape = field[0].shape
if _str:
actual_shape = (field[0].itemsize,) + actual_shape
else:
actual_shape = len(field[0])
if dim == actual_shape:
# The array already has the correct dimensions, so we
# ignore dim and don't convert
dim = None
else:
nitems = reduce(operator.mul, dim)
if _str:
actual_nitems = field.itemsize
else:
actual_nitems = field.shape[1]
if nitems > actual_nitems:
warnings.warn(
'TDIM%d value %s does not fit with the size of '
'the array items (%d). TDIM%d will be ignored.'
% (indx + 1, self._coldefs.dims[indx],
actual_nitems, indx + 1))
dim = None
# further conversion for both ASCII and binary tables
# For now we've made columns responsible for *knowing* whether their
# data has been scaled, but we make the FITS_rec class responsible for
# actually doing the scaling
# TODO: This also needs to be fixed in the effort to make Columns
# responsible for scaling their arrays to/from FITS native values
column = self._coldefs[indx]
if (_number and (_scale or _zero) and not column._physical_values):
# This is to handle pseudo unsigned ints in table columns
# TODO: For now this only really works correctly for binary tables
# Should it work for ASCII tables as well?
if self._uint:
if bzero == 2**15 and 'I' in self._coldefs.formats[indx]:
field = np.array(field, dtype=np.uint16)
elif bzero == 2**31 and 'J' in self._coldefs.formats[indx]:
field = np.array(field, dtype=np.uint32)
elif bzero == 2**63 and 'K' in self._coldefs.formats[indx]:
field = np.array(field, dtype=np.uint64)
bzero64 = np.uint64(2 ** 63)
else:
field = np.array(field, dtype=np.float64)
else:
field = np.array(field, dtype=np.float64)
if _scale:
np.multiply(field, bscale, field)
if _zero:
if self._uint and 'K' in self._coldefs.formats[indx]:
# There is a chance of overflow, so be careful
test_overflow = field.copy()
try:
test_overflow += bzero64
except OverflowError:
warnings.warn(
"Overflow detected while applying TZERO{0:d}. "
"Returning unscaled data.".format(indx))
else:
field = test_overflow
else:
field += bzero
elif _bool and field.dtype != bool:
field = np.equal(field, ord('T'))
elif _str:
try:
field = decode_ascii(field)
except UnicodeDecodeError:
pass
if dim:
# Apply the new field item dimensions
nitems = reduce(operator.mul, dim)
if field.ndim > 1:
field = field[:, :nitems]
if _str:
fmt = field.dtype.char
dtype = ('|%s%d' % (fmt, dim[-1]), dim[:-1])
field.dtype = dtype
else:
field.shape = (field.shape[0],) + dim
return field
def _clone(self, shape):
"""
Overload this to make mask array indexing work properly.
"""
from pyfits.hdu.table import new_table
hdu = new_table(self._coldefs, nrows=shape[0])
return hdu.data
def _get_raw_data(self):
"""
Returns the base array of self that "raw data array" that is the
array in the format that it was first read from a file before it was
sliced or viewed as a different type in any way.
This is determined by walking through the bases until finding one that
has at least the same number of bytes as self, plus the heapsize. This
may be the immediate .base but is not always. This is used primarily
for variable-length array support which needs to be able to find the
heap (the raw data *may* be larger than nbytes + heapsize if it
contains a gap or padding).
May return ``None`` if no array resembling the "raw data" according to
the stated criteria can be found.
"""
raw_data_bytes = self.nbytes + self._heapsize
base = self
while hasattr(base, 'base') and base.base is not None:
base = base.base
if hasattr(base, 'nbytes') and base.nbytes >= raw_data_bytes:
return base
def _get_scale_factors(self, indx):
"""
Get the scaling flags and factors for one field.
`indx` is the index of the field.
"""
if isinstance(self._coldefs, _AsciiColDefs):
_str = self._coldefs.formats[indx][0] == 'A'
_bool = False # there is no boolean in ASCII table
else:
_str = 'a' in self._coldefs._recformats[indx]
# TODO: Determine a better way to determine if the column is bool
# formatted
_bool = self._coldefs._recformats[indx][-2:] == FITS2NUMPY['L']
_number = not (_bool or _str)
bscale = self._coldefs.bscales[indx]
bzero = self._coldefs.bzeros[indx]
_scale = bscale not in ('', None, 1)
_zero = bzero not in ('', None, 0)
# ensure bscale/bzero are numbers
if not _scale:
bscale = 1
if not _zero:
bzero = 0
dim = self._coldefs._dims[indx]
return (_str, _bool, _number, _scale, _zero, bscale, bzero, dim)
def _scale_back(self):
"""
Update the parent array, using the (latest) scaled array.
"""
for indx in range(len(self.dtype.names)):
recformat = self._coldefs._recformats[indx]
field = super(FITS_rec, self).field(indx)
if self._convert[indx] is None:
continue
if isinstance(recformat, _FormatX):
_wrapx(self._convert[indx], field, recformat.repeat)
continue
_str, _bool, _number, _scale, _zero, bscale, bzero, _ = \
self._get_scale_factors(indx)
# add the location offset of the heap area for each
# variable length column
if isinstance(recformat, _FormatP):
# Reset the heapsize and recompute it starting from the first P
# column
if indx == 0:
self._heapsize = 0
field[:] = 0 # reset
npts = [len(arr) for arr in self._convert[indx]]
# Irritatingly, this can return a different dtype than just
# doing np.dtype(recformat.dtype); but this returns the results
# that we want. For example if recformat.dtype is 'a' we want
# an array of characters.
dtype = np.array([], dtype=recformat.dtype).dtype
field[:len(npts), 0] = npts
field[1:, 1] = (np.add.accumulate(field[:-1, 0]) *
dtype.itemsize)
field[:, 1][:] += self._heapsize
self._heapsize += field[:, 0].sum() * dtype.itemsize
# conversion for both ASCII and binary tables
if _number or _str:
column = self._coldefs[indx]
if _number and (_scale or _zero) and column._physical_values:
dummy = self._convert[indx].copy()
if _zero:
dummy -= bzero
if _scale:
dummy /= bscale
# This will set the raw values in the recarray back to
# their non-physical storage values, so the column should
# be mark is not scaled
column._physical_values = False
elif _str:
dummy = self._convert[indx]
elif isinstance(self._coldefs, _AsciiColDefs):
dummy = self._convert[indx]
else:
continue
# ASCII table, convert numbers to strings
if isinstance(self._coldefs, _AsciiColDefs):
starts = self._coldefs.starts[:]
spans = self._coldefs.spans
format = self._coldefs.formats[indx].strip()
# The the index of the "end" column of the record, beyond
# which we can't write
end = super(FITS_rec, self).field(-1).itemsize
starts.append(end + starts[-1])
if indx > 0:
lead = (starts[indx] - starts[indx - 1] -
spans[indx - 1])
else:
lead = 0
if lead < 0:
warnings.warn(
'Column %r starting point overlaps the '
'previous column.' % (indx + 1))
trail = starts[indx + 1] - starts[indx] - spans[indx]
if trail < 0:
warnings.warn(
'Column %r ending point overlaps the next '
'column.' % (indx + 1))
# TODO: It would be nice if these string column formatting
# details were left to a specialized class, as is the case
# with FormatX and FormatP
if 'A' in format:
_pc = '%-'
else:
_pc = '%'
fmt = ''.join([_pc, format[1:], ASCII2STR[format[0]],
(' ' * trail)])
# not using numarray.strings's num2char because the
# result is not allowed to expand (as C/Python does).
for jdx in range(len(dummy)):
x = fmt % dummy[jdx]
if len(x) > starts[indx + 1] - starts[indx]:
raise ValueError(
"Value %r does not fit into the output's "
"itemsize of %s." % (x, spans[indx]))
else:
field[jdx] = x
# Replace exponent separator in floating point numbers
if 'D' in format:
field.replace('E', 'D')
# binary table
else:
if len(field) and isinstance(field[0], np.integer):
dummy = np.around(dummy)
elif isinstance(field, np.chararray):
# Ensure that blanks at the end of each string are
# converted to nulls instead of spaces, see Trac #15
# and #111
itemsize = dummy.itemsize
if dummy.dtype.kind == 'U':
pad = self._coldefs._padding_byte
else:
pad = self._coldefs._padding_byte.encode('ascii')
for idx in range(len(dummy)):
val = dummy[idx]
dummy[idx] = val + (pad * (itemsize - len(val)))
# Encode *after* handling the padding byte or else
# Numpy will complain about trying to append bytes to
# an array
if dummy.dtype.kind == 'U':
dummy = dummy.encode('ascii')
if field.shape == dummy.shape:
field[:] = dummy
else:
# Reshaping the data is necessary in cases where the
# TDIMn keyword was used to shape a column's entries
# into arrays
field[:] = dummy.ravel().view(field.dtype)
del dummy
# ASCII table does not have Boolean type
elif _bool:
field[:] = np.choose(self._convert[indx],
(np.array([ord('F')], dtype=np.int8)[0],
np.array([ord('T')], dtype=np.int8)[0]))
|