This file is indexed.

/usr/lib/swi-prolog/doc/Manual/arith.html is in swi-prolog-nox 6.6.4-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>SWI-Prolog 7.1.10 Reference Manual: Section 4.27</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="charconv.html">
<link rel="next" href="miscarith.html">

<style type="text/css">

/* Style sheet for SWI-Prolog latex2html
*/

dd.defbody
{ margin-bottom: 1em;
}

dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}

dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }

.bib dd
{ margin-bottom: 1em;
}

.bib dt
{ float: left;
margin-right: 1.3ex;
}

pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}

div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}

div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}

div.author
{ text-align: center;
font-style: italic;
}

div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}

div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}

div.toc-h1
{ font-size: 200%;
font-weight: bold;
}

div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}

div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}

div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}

span.sec-nr
{
}

span.sec-title
{
}

span.pred-ext
{ font-weight: bold;
}

span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}

div.caption
{ width: 80%;
margin: auto;
text-align:center;
}

/* Footnotes */
.fn {
color: red;
font-size: 70%;
}

.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}

sup:hover span.fn-text
{ display: block;
}

/* Lists */

dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}

/* PlDoc Tags */

dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}

dl.tags dd
{ margin-left: 3ex;
}

td.param
{ font-style: italic;
font-weight: bold;
}

/* Index */

dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}

/* Tables */

table.center
{ margin: auto;
}

table.latex
{ border-collapse:collapse;
}

table.latex tr
{ vertical-align: text-top;
}

table.latex td,th
{ padding: 2px 1em;
}

table.latex tr.hline td,th
{ border-top: 1px solid black;
}

table.frame-box
{ border: 2px solid black;
}

</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="charconv.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="miscarith.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:arith"><a id="sec:4.27"><span class="sec-nr">4.27</span> <span class="sec-title">Arithmetic</span></a></h2>

<a id="sec:arith"></a>

<p>Arithmetic can be divided into some special purpose integer 
predicates and a series of general predicates for integer, floating 
point and rational arithmetic as appropriate. The general arithmetic 
predicates all handle <var>expressions</var>. An expression is either a 
simple number or a <var>function</var>. The arguments of a function are 
expressions. The functions are described in <a class="sec" href="arith.html">section 
4.27.2.3</a>.

<p><h3 id="sec:logic-int-arith"><a id="sec:4.27.1"><span class="sec-nr">4.27.1</span> <span class="sec-title">Special 
purpose integer arithmetic</span></a></h3>

<a id="sec:logic-int-arith"></a>

<p>The predicates in this section provide more logical operations 
between integers. They are not covered by the ISO standard, although 
they are `part of the community' and found as either library or built-in 
in many other Prolog systems.

<dl class="latex">
<dt class="pubdef"><a id="between/3"><strong>between</strong>(<var>+Low, 
+High, ?Value</var>)</a></dt>
<dd class="defbody">
<var>Low</var> and <var>High</var> are integers, <var><var>High</var> &gt;=<var>Low</var></var>. 
If
<var>Value</var> is an integer, <var><var>Low</var> =&lt;<var>Value</var> 
=&lt;<var>High</var></var>. When <var>Value</var> is a variable it is 
successively bound to all integers between <var>Low</var> and <var>High</var>. 
If <var>High</var> is <code>inf</code> or
<code>infinite</code><sup class="fn">78<span class="fn-text">We prefer <code>infinite</code>, 
but some other Prolog systems already use <code>inf</code> for infinity; 
we accept both for the time being.</span></sup>
<a id="idx:between3:1163"></a><a class="pred" href="arith.html#between/3">between/3</a> 
is true iff <var><var>Value</var> &gt;=<var>Low</var></var>, a feature 
that is particularly interesting for generating integers from a certain 
value.</dd>
<dt class="pubdef"><a id="succ/2"><strong>succ</strong>(<var>?Int1, 
?Int2</var>)</a></dt>
<dd class="defbody">
True if <var><var>Int2</var> = <var>Int1</var> + 1</var> and <var><var>Int1</var> 
&gt;= 0</var>. At least one of the arguments must be instantiated to a 
natural number. This predicate raises the domain error <code>not_less_than_zero</code> 
if called with a negative integer. E.g. <code>succ(X, 0)</code> fails 
silently and <code>succ(X, -1)</code> raises a domain error.<sup class="fn">79<span class="fn-text">The 
behaviour to deal with natural numbers only was defined by Richard 
O'Keefe to support the common count-down-to-zero in a natural way. Up to 
5.1.8, <a id="idx:succ2:1164"></a><a class="pred" href="arith.html#succ/2">succ/2</a> 
also accepted negative integers.</span></sup></dd>
<dt class="pubdef"><a id="plus/3"><strong>plus</strong>(<var>?Int1, 
?Int2, ?Int3</var>)</a></dt>
<dd class="defbody">
True if <var><var>Int3</var> = <var>Int1</var> + <var>Int2</var></var>. 
At least two of the three arguments must be instantiated to integers.
</dd>
</dl>

<p><h3 id="sec:arithpreds"><a id="sec:4.27.2"><span class="sec-nr">4.27.2</span> <span class="sec-title">General 
purpose arithmetic</span></a></h3>

<a id="sec:arithpreds"></a>

<p>The general arithmetic predicates are optionally compiled (see
<a id="idx:setprologflag2:1165"></a><a class="pred" href="flags.html#set_prolog_flag/2">set_prolog_flag/2</a> 
and the <strong>-O</strong> command line option). Compiled arithmetic 
reduces global stack requirements and improves performance. 
Unfortunately compiled arithmetic cannot be traced, which is why it is 
optional.

<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id=">/2"><var>+Expr1</var> <strong>&gt;</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
True if expression <var>Expr1</var> evaluates to a larger number than <var>Expr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="</2"><var>+Expr1</var> <strong>&lt;</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
True if expression <var>Expr1</var> evaluates to a smaller number than <var>Expr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="=</2"><var>+Expr1</var> <strong>=&lt;</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
True if expression <var>Expr1</var> evaluates to a smaller or equal 
number to <var>Expr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id=">=/2"><var>+Expr1</var> <strong>&gt;=</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
True if expression <var>Expr1</var> evaluates to a larger or equal 
number to <var>Expr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="=\=/2"><var>+Expr1</var> <strong>=\=</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
True if expression <var>Expr1</var> evaluates to a number non-equal to
<var>Expr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="=:=/2"><var>+Expr1</var> <strong>=:=</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
True if expression <var>Expr1</var> evaluates to a number equal to <var> 
Expr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="is/2"><var>-Number</var> <strong>is</strong> <var>+Expr</var></a></dt>
<dd class="defbody">
True when <var>Number</var> is the value to which <var>Expr</var> 
evaluates. Typically, <a id="idx:is2:1166"></a><a class="pred" href="arith.html#is/2">is/2</a> 
should be used with unbound left operand. If equality is to be tested, <a class="pred" href="arith.html#=:=/2">=:=/2</a> 
should be used. For example:

<p><table class="latex frame-void center">
<tr><td><code>?- 1 is sin(pi/2).</code> </td><td>Fails! sin(pi/2) 
evaluates to the float 1.0, which does not unify with the integer 1. </td></tr>
<tr><td><code>?- 1 =:= sin(pi/2).</code> </td><td>Succeeds as expected.</td></tr>
</table>
</dd>
</dl>

<p><h4 id="sec:artypes"><a id="sec:4.27.2.1"><span class="sec-nr">4.27.2.1</span> <span class="sec-title">Arithmetic 
types</span></a></h4>

<a id="sec:artypes"></a>

<p><a id="idx:integerunbounded:1167"></a><a id="idx:rationalnumber:1168"></a><a id="idx:numberrational:1169"></a>SWI-Prolog 
defines the following numeric types:

<p>
<ul class="latex">
<li><i>integer</i><br>
If SWI-Prolog is built using the <em>GNU multiple precision arithmetic 
library</em> <a id="idx:GMP:1170"></a>(GMP), integer arithmetic is <em>unbounded</em>, 
which means that the size of integers is limited by available memory 
only. Without GMP, SWI-Prolog integers are 64-bits, regardless of the 
native integer size of the platform. The type of integer support can be 
detected using the Prolog flags <a class="flag" href="flags.html#flag:bounded">bounded</a>, <a class="flag" href="flags.html#flag:min_integer">min_integer</a> 
and
<a class="flag" href="flags.html#flag:max_integer">max_integer</a>. As 
the use of GMP is default, most of the following descriptions assume 
unbounded integer arithmetic.

<p>Internally, SWI-Prolog has three integer representations. Small 
integers (defined by the Prolog flag <a class="flag" href="flags.html#flag:max_tagged_integer">max_tagged_integer</a>) 
are encoded directly. Larger integers are represented as 64-bit values 
on the global stack. Integers that do not fit in 64 bits are represented 
as serialised GNU MPZ structures on the global stack.

<p>
<li><i>rational number</i><br>
Rational numbers (<var>Q</var>) are quotients of two integers. Rational 
arithmetic is only provided if GMP is used (see above). Rational numbers 
are currently not supported by a Prolog type. They are represented by 
the compound term <code>rdiv(N,M)</code>. Rational numbers that are 
returned from <a id="idx:is2:1171"></a><a class="pred" href="arith.html#is/2">is/2</a> 
are <em>canonical</em>, which means <var>M</var> is positive and <var>N</var> 
and
<var>M</var> have no common divisors. Rational numbers are introduced in 
the computation using the <a class="function" href="arith.html#f-rational/1">rational/1</a>, <a class="function" href="arith.html#f-rationalize/1">rationalize/1</a> 
or the <a class="function" href="arith.html#f-rdiv/2">rdiv/2</a> 
(rational division) function. Using the same functor for rational 
division and for representing rational numbers allows for passing 
rational numbers between computations as well as for using <a id="idx:format3:1172"></a><a class="pred" href="format.html#format/3">format/3</a> 
for printing.

<p>In the long term, it is likely that rational numbers will become
<em>atomic</em> as well as a subtype of <em>number</em>. User code that 
creates or inspects the <code>rdiv(M,N)</code> terms will not be 
portable to future versions. Rationals are created using one of the 
functions mentioned above and inspected using <a id="idx:rational3:1173"></a><a class="pred" href="typetest.html#rational/3">rational/3</a>.

<p>
<li><i>float</i><br>
Floating point numbers are represented using the C type <code>double</code>. 
On most of today's platforms these are 64-bit IEEE floating point 
numbers.
</ul>

<p>Arithmetic functions that require integer arguments accept, in 
addition to integers, rational numbers with (canonical) denominator `1'. 
If the required argument is a float the argument is converted to float. 
Note that conversion of integers to floating point numbers may raise an 
overflow exception. In all other cases, arguments are converted to the 
same type using the order below.
<blockquote> integer <var>-&gt;</var> rational number <var>-&gt;</var> 
floating point number
</blockquote>

<p><h4 id="sec:rational"><a id="sec:4.27.2.2"><span class="sec-nr">4.27.2.2</span> <span class="sec-title">Rational 
number examples</span></a></h4>

<a id="sec:rational"></a>

<p>The use of rational numbers with unbounded integers allows for exact 
integer or <em>fixed point</em> arithmetic under addition, subtraction, 
multiplication and division. To exploit rational arithmetic <a class="function" href="arith.html#f-rdiv/2">rdiv/2</a> 
should be used instead of `/' and floating point numbers must be 
converted to rational using <a class="function" href="arith.html#f-rational/1">rational/1</a>. 
Omitting the <a class="function" href="arith.html#f-rational/1">rational/1</a> 
on floats will convert a rational operand to float and continue the 
arithmetic using floating point numbers. Here are some examples.

<p><table class="latex frame-void center">
<tr><td>A is 2 rdiv 6</td><td>A = 1 rdiv 3 </td></tr>
<tr><td>A is 4 rdiv 3 + 1</td><td>A = 7 rdiv 3 </td></tr>
<tr><td>A is 4 rdiv 3 + 1.5</td><td>A = 2.83333 </td></tr>
<tr><td>A is 4 rdiv 3 + rational(1.5)</td><td>A = 17 rdiv 6 </td></tr>
</table>

<p>Note that floats cannot represent all decimal numbers exactly. The 
function <a class="function" href="arith.html#f-rational/1">rational/1</a> 
creates an <em>exact</em> equivalent of the float, while <a class="function" href="arith.html#f-rationalize/1">rationalize/1</a> 
creates a rational number that is within the float rounding error from 
the original float. Please check the documentation of these functions 
for details and examples.

<p>Rational numbers can be printed as decimal numbers with arbitrary 
precision using the <a id="idx:format3:1174"></a><a class="pred" href="format.html#format/3">format/3</a> 
floating point conversion:

<pre class="code">
?- A is 4 rdiv 3 + rational(1.5),
   format('~50f~n', [A]).
2.83333333333333333333333333333333333333333333333333

A = 17 rdiv 6
</pre>

<p><h4 id="sec:functions"><a id="sec:4.27.2.3"><span class="sec-nr">4.27.2.3</span> <span class="sec-title">Arithmetic 
Functions</span></a></h4>

<a id="sec:functions"></a>

<p>Arithmetic functions are terms which are evaluated by the arithmetic 
predicates described in <a class="sec" href="arith.html">section 4.27.2</a>. 
There are four types of arguments to functions:

<p><table class="latex frame-void center">
<tr><td><var>Expr</var> </td><td>Arbitrary expression, returning either 
a floating point value or an integer. </td></tr>
<tr><td><var>IntExpr</var> </td><td>Arbitrary expression that must 
evaluate to an integer. </td></tr>
<tr><td><var>RatExpr</var> </td><td>Arbitrary expression that must 
evaluate to a rational number. </td></tr>
<tr><td><var>FloatExpr</var> </td><td>Arbitrary expression that must 
evaluate to a floating point.</td></tr>
</table>

<p>For systems using bounded integer arithmetic (default is unbounded, 
see <a class="sec" href="arith.html">section 4.27.2.1</a> for details), 
integer operations that would cause overflow automatically convert to 
floating point arithmetic.

<p>SWI-Prolog provides many extensions to the set of floating point 
functions defined by the ISO standard. The current policy is to provide 
such functions on `as-needed' basis if the function is widely supported 
elsewhere and notably if it is part of the
<a class="url" href="http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf">C99</a> 
mathematical library. In addition, we try to maintain compatibility with <a class="url" href="http://www.dcc.fc.up.pt/~vsc/Yap/">YAP</a>.

<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f--/1"><strong>-</strong> <var>+Expr</var></a></dt>
<dd class="defbody">
<var><var>Result</var> = -<var>Expr</var></var></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-+/1"><strong>+</strong> <var>+Expr</var></a></dt>
<dd class="defbody">
<var><var>Result</var> = <var>Expr</var></var>. Note that if <code><code>+</code></code> 
is followed by a number, the parser discards the <code><code>+</code></code>. 
I.e. <code>?- integer(+1)</code> succeeds.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-+/2"><var>+Expr1</var> <strong>+</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
<var><var>Result</var> = <var>Expr1</var> + <var>Expr2</var></var></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f--/2"><var>+Expr1</var> <strong>-</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
<var><var>Result</var> = <var>Expr1</var> - <var>Expr2</var></var></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-*/2"><var>+Expr1</var> <strong>*</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
<var><var>Result</var> = <var>Expr1</var> &times; <var>Expr2</var></var></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-//2"><var>+Expr1</var> <strong>/</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
<var><var>Result</var> = <var>Expr1</var>/<var>Expr2</var></var>. If the 
flag <a class="flag" href="flags.html#flag:iso">iso</a> is <code>true</code>, 
both arguments are converted to float and the return value is a float. 
Otherwise (default), if both arguments are integers the operation 
returns an integer if the division is exact. If at least one of the 
arguments is rational and the other argument is integer, the operation 
returns a rational number. In all other cases the return value is a 
float. See also <a class="function" href="arith.html#f-///2">///2</a> 
and <a class="function" href="arith.html#f-rdiv/2">rdiv/2</a>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-mod/2"><var>+IntExpr1</var> <strong>mod</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Modulo, defined as <var>Result</var> = <var>IntExpr1</var> - (<var>IntExpr1</var> 
div <var>IntExpr2</var>) <var> &times; </var> <var>IntExpr2</var>, where <code>div</code> 
is
<em>floored</em> division.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-rem/2"><var>+IntExpr1</var> <strong>rem</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Remainder of integer division. Behaves as if defined by
<var>Result</var> is <var>IntExpr1</var> - (<var>IntExpr1</var> // <var>IntExpr2</var>) <var> &times; </var> <var>IntExpr2</var></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-///2"><var>+IntExpr1</var> <strong>//</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Integer division, defined as <var>Result</var> is <var>rnd_I</var>(<var>Expr1</var>/<var>Expr2</var>) 
. The function <var>rnd_I</var> is the default rounding used by the C 
compiler and available through the Prolog flag
<a class="flag" href="flags.html#flag:integer_rounding_function">integer_rounding_function</a>. 
In the C99 standard, C-rounding is defined as <code>towards_zero</code>.<sup class="fn">80<span class="fn-text">Future 
versions might guarantee rounding towards zero.</span></sup></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-div/2"><strong>div</strong>(<var>+IntExpr1, 
+IntExpr2</var>)</a></dt>
<dd class="defbody">
Integer division, defined as <var>Result</var> is (<var>IntExpr1</var> - <var>IntExpr1</var> <var>mod</var> <var>IntExpr2</var>) 
// <var>IntExpr2</var>. In other words, this is integer division that 
rounds towards -infinity. This function guarantees behaviour that is 
consistent with
<a class="function" href="arith.html#f-mod/2">mod/2</a>, i.e., the 
following holds for every pair of integers
<var>X,Y</var> where <code>Y =\= 0</code>.

<pre class="code">
        Q is div(X, Y),
        M is mod(X, Y),
        X =:= Y*Q+M.
</pre>

</dd>
<dt class="pubdef"><a id="f-rdiv/2"><var>+RatExpr</var> <strong>rdiv</strong> <var>+RatExpr</var></a></dt>
<dd class="defbody">
Rational number division. This function is only available if SWI-Prolog 
has been compiled with rational number support. See
<a class="sec" href="arith.html">section 4.27.2.2</a> for details.</dd>
<dt class="pubdef"><a id="f-gcd/2"><var>+IntExpr1</var> <strong>gcd</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Result is the greatest common divisor of <var>IntExpr1</var>, <var>IntExpr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-abs/1"><strong>abs</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Evaluate <var>Expr</var> and return the absolute value of it.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-sign/1"><strong>sign</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Evaluate to -1 if <var><var>Expr</var> &lt; 0</var>, 1 if <var><var>Expr</var> 
&gt; 0</var> and 0 if
<var><var>Expr</var> = 0</var>. If <var>Expr</var> evaluates to a float, 
the return value is a float (e.g., -1.0, 0.0 or 1.0). In particular, 
note that sign(-0.0) evaluates to 0.0. See also <a class="function" href="arith.html#f-copysign/1">copysign/1</a></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-copysign/1"><strong>copysign</strong>(<var>+Expr1, 
+Expr2</var>)</a></dt>
<dd class="defbody">
Evaluate to <var>X</var>, where the absolute value of <var>X</var> 
equals the absolute value of <var>Expr1</var> and the sign of <var>X</var> 
matches the sign of <var>Expr2</var>. This function is based on 
copysign() from C99, which works on double precision floats and deals 
with handling the sign of special floating point values such as -0.0. 
Our implementation follows C99 if both arguments are floats. Otherwise, <a class="function" href="arith.html#f-copysign/1">copysign/1</a> 
evaluates to <var>Expr1</var> if the sign of both expressions matches or 
-<var>Expr1</var> if the signs do not match. Here, we use the extended 
notion of signs for floating point numbers, where the sign of -0.0 and 
other special floats is negative.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-max/2"><strong>max</strong>(<var>+Expr1, 
+Expr2</var>)</a></dt>
<dd class="defbody">
Evaluate to the larger of <var>Expr1</var> and <var>Expr2</var>. Both 
arguments are compared after converting to the same type, but the return 
value is in the original type. For example, max(2.5, 3) compares the two 
values after converting to float, but returns the integer 3.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-min/2"><strong>min</strong>(<var>+Expr1, 
+Expr2</var>)</a></dt>
<dd class="defbody">
Evaluate to the smaller of <var>Expr1</var> and <var>Expr2</var>. See
<a class="function" href="arith.html#f-max/2">max/2</a> for a 
description of type handling.</dd>
<dt class="pubdef"><a id="f-./2"><strong>.</strong>(<var>+Int,[]</var>)</a></dt>
<dd class="defbody">
A list of one element evaluates to the element. This implies <code>"a"</code> 
evaluates to the character code of the letter `a' (97) using the 
traditional mapping of double quoted string to a list of character 
codes. Arithmetic evaluation also translates a string object (see
<a class="sec" href="strings.html">section 4.24</a>) of one character 
length into the character code for that character. This implies that 
expression <code>"a"</code> also works of the Prolog flag <a class="flag" href="flags.html#flag:double_quotes">double_quotes</a> 
is set to <code>string</code>. The recommended way to specify the 
character code of the letter `a' is
<code>0'a</code>.</dd>
<dt class="pubdef"><a id="f-random/1"><strong>random</strong>(<var>+IntExpr</var>)</a></dt>
<dd class="defbody">
Evaluate to a random integer <var>i</var> for which <var>0 =&lt; i &lt; <var>IntExpr</var></var>. 
The system has two implementations. If it is compiled with support for 
unbounded arithmetic (default) it uses the GMP library random functions. 
In this case, each thread keeps its own random state. The default 
algorithm is the <em>Mersenne Twister</em> algorithm. The seed is set 
when the first random number in a thread is generated. If available, it 
is set from <code>/dev/random</code>. Otherwise it is set from the 
system clock. If unbounded arithmetic is not supported, random numbers 
are shared between threads and the seed is initialised from the clock 
when SWI-Prolog was started. The predicate <a id="idx:setrandom1:1175"></a><a class="pred" href="miscarith.html#set_random/1">set_random/1</a> 
can be used to control the random number generator.</dd>
<dt class="pubdef"><a id="f-random_float/0"><strong>random_float</strong></a></dt>
<dd class="defbody">
Evaluate to a random float <var>I</var> for which <var>0.0 &lt; i &lt; 
1.0</var>. This function shares the random state with <a class="function" href="arith.html#f-random/1">random/1</a>. 
All remarks with the function <a class="function" href="arith.html#f-random/1">random/1</a> 
also apply for <a class="function" href="arith.html#f-random_float/0">random_float/0</a>. 
Note that both sides of the domain are <em>open</em>. This avoids 
evaluation errors on, e.g., <a class="function" href="arith.html#f-log/1">log/1</a> 
or <a class="function" href="arith.html#f-//2">//2</a> while no 
practical application can expect 0.0.<sup class="fn">81<span class="fn-text">Richard 
O'Keefe said: ``If you <em>are</em> generating IEEE doubles with the 
claimed uniformity, then 0 has a 1 in <var>2^53 = 1 in 
9,007,199,254,740,992</var> chance of turning up. No program that 
expects [0.0,1.0) is going to be surprised when 0.0 fails to turn up in 
a few millions of millions of trials, now is it? But a program that 
expects (0.0,1.0) could be devastated if 0.0 did turn up.''</span></sup></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-round/1"><strong>round</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Evaluate <var>Expr</var> and round the result to the nearest integer.</dd>
<dt class="pubdef"><a id="f-integer/1"><strong>integer</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Same as <a class="function" href="arith.html#f-round/1">round/1</a> 
(backward compatibility).</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-float/1"><strong>float</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Translate the result to a floating point number. Normally, Prolog will 
use integers whenever possible. When used around the 2nd argument of
<a id="idx:is2:1176"></a><a class="pred" href="arith.html#is/2">is/2</a>, 
the result will be returned as a floating point number. In other 
contexts, the operation has no effect.</dd>
<dt class="pubdef"><a id="f-rational/1"><strong>rational</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Convert the <var>Expr</var> to a rational number or integer. The 
function returns the input on integers and rational numbers. For 
floating point numbers, the returned rational number <em>exactly</em> 
represents the float. As floats cannot exactly represent all decimal 
numbers the results may be surprising. In the examples below, doubles 
can represent 0.25 and the result is as expected, in contrast to the 
result of <code>rational(0.1)</code>. The function <a class="function" href="arith.html#f-rationalize/1">rationalize/1</a> 
remedies this. See <a class="sec" href="arith.html">section 4.27.2.2</a> 
for more information on rational number support.

<pre class="code">
?- A is rational(0.25).

A is 1 rdiv 4
?- A is rational(0.1).
A = 3602879701896397 rdiv 36028797018963968
</pre>

</dd>
<dt class="pubdef"><a id="f-rationalize/1"><strong>rationalize</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Convert the <var>Expr</var> to a rational number or integer. The 
function is similar to <a class="function" href="arith.html#f-rational/1">rational/1</a>, 
but the result is only accurate within the rounding error of floating 
point numbers, generally producing a much smaller denominator.<sup class="fn">82<span class="fn-text">The 
names <a class="function" href="arith.html#f-rational/1">rational/1</a> 
and <a class="function" href="arith.html#f-rationalize/1">rationalize/1</a> 
as well as their semantics are inspired by Common Lisp.</span></sup>

<pre class="code">
?- A is rationalize(0.25).

A = 1 rdiv 4
?- A is rationalize(0.1).

A = 1 rdiv 10
</pre>

</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-float_fractional_part/1"><strong>float_fractional_part</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Fractional part of a floating point number. Negative if <var>Expr</var> 
is negative, rational if <var>Expr</var> is rational and 0 if <var>Expr</var> 
is integer. The following relation is always true:
<var>X is float_fractional_part(X) + float_integer_part(X)</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-float_integer_part/1"><strong>float_integer_part</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Integer part of floating point number. Negative if <var>Expr</var> is 
negative, <var>Expr</var> if <var>Expr</var> is integer.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-truncate/1"><strong>truncate</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Truncate <var>Expr</var> to an integer. If <var><var>Expr</var> &gt;= 0</var> 
this is the same as <code>floor(Expr)</code>. For <var><var>Expr</var> &lt; 
0</var> this is the same as
<code>ceil(Expr)</code>. That is, <a id="idx:truncate1:1177"></a><span class="pred-ext">truncate/1</span> 
rounds towards zero.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-floor/1"><strong>floor</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Evaluate <var>Expr</var> and return the largest integer smaller or equal 
to the result of the evaluation.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-ceiling/1"><strong>ceiling</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Evaluate <var>Expr</var> and return the smallest integer larger or equal 
to the result of the evaluation.</dd>
<dt class="pubdef"><a id="f-ceil/1"><strong>ceil</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Same as <a class="function" href="arith.html#f-ceiling/1">ceiling/1</a> 
(backward compatibility).</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f->>/2"><var>+IntExpr1</var> <strong>&gt;&gt;</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Bitwise shift <var>IntExpr1</var> by <var>IntExpr2</var> bits to the 
right. The operation performs <em>arithmetic shift</em>, which implies 
that the inserted most significant bits are copies of the original most 
significant bits.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-<</2"><var>+IntExpr1</var> <strong>&lt;&lt;</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Bitwise shift <var>IntExpr1</var> by <var>IntExpr2</var> bits to the 
left.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-\//2"><var>+IntExpr1</var> <strong>\/</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Bitwise `or' <var>IntExpr1</var> and <var>IntExpr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-/\/2"><var>+IntExpr1</var> <strong>/\</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Bitwise `and' <var>IntExpr1</var> and <var>IntExpr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-xor/2"><var>+IntExpr1</var> <strong>xor</strong> <var>+IntExpr2</var></a></dt>
<dd class="defbody">
Bitwise `exclusive or' <var>IntExpr1</var> and <var>IntExpr2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-\/1"><strong>\</strong> <var>+IntExpr</var></a></dt>
<dd class="defbody">
Bitwise negation. The returned value is the one's complement of
<var>IntExpr</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-sqrt/1"><strong>sqrt</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = sqrt(<var>Expr</var>)</var>
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-sin/1"><strong>sin</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = sin(<var>Expr</var>)</var>. <var>Expr</var> is 
the angle in radians.
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-cos/1"><strong>cos</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = cos(<var>Expr</var>)</var>. <var>Expr</var> is 
the angle in radians.
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-tan/1"><strong>tan</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = tan(<var>Expr</var>)</var>. <var>Expr</var> is 
the angle in radians.
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-asin/1"><strong>asin</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = arcsin(<var>Expr</var>)</var>. <var>Result</var> 
is the angle in radians.
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-acos/1"><strong>acos</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = arccos(<var>Expr</var>)</var>. <var>Result</var> 
is the angle in radians.
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-atan/1"><strong>atan</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = arctan(<var>Expr</var>)</var>. <var>Result</var> 
is the angle in radians.
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-atan2/2"><strong>atan2</strong>(<var>+YExpr, 
+XExpr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = arctan(<var>YExpr</var>/<var>XExpr</var>)</var>. <var>Result</var> 
is the angle in radians. The return value is in the range <var>[- pi ... 
pi ]</var>. Used to convert between rectangular and polar coordinate 
system.
</dd>
<dt class="pubdef"><a id="f-atan/2"><strong>atan</strong>(<var>+YExpr, 
+XExpr</var>)</a></dt>
<dd class="defbody">
Same as <a class="function" href="arith.html#f-atan2/2">atan2/2</a> 
(backward compatibility).</dd>
<dt class="pubdef"><a id="f-sinh/1"><strong>sinh</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = sinh(<var>Expr</var>)</var>. The hyperbolic 
sine of <var>X</var> is defined as <var>e ** X - e ** -X / 2</var>.
</dd>
<dt class="pubdef"><a id="f-cosh/1"><strong>cosh</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = cosh(<var>Expr</var>)</var>. The hyperbolic 
cosine of <var>X</var> is defined as <var>e ** X + e ** -X / 2</var>.
</dd>
<dt class="pubdef"><a id="f-tanh/1"><strong>tanh</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = tanh(<var>Expr</var>)</var>. The hyperbolic 
tangent of <var>X</var> is defined as <var>sinh( X ) / cosh( X )</var>.</dd>
<dt class="pubdef"><a id="f-asinh/1"><strong>asinh</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = arcsinh(<var>Expr</var>)</var> (inverse 
hyperbolic sine).
</dd>
<dt class="pubdef"><a id="f-acosh/1"><strong>acosh</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = arccosh(<var>Expr</var>)</var> (inverse 
hyperbolic cosine).
</dd>
<dt class="pubdef"><a id="f-atanh/1"><strong>atanh</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = arctanh(<var>Expr</var>)</var>. (inverse 
hyperbolic tangent).</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-log/1"><strong>log</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Natural logarithm. <var><var>Result</var> = ln(<var>Expr</var>)</var>
</dd>
<dt class="pubdef"><a id="f-log10/1"><strong>log10</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Base-10 logarithm. <var><var>Result</var> = log10(<var>Expr</var>)</var>
</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-exp/1"><strong>exp</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = e **<var>Expr</var></var></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-**/2"><var>+Expr1</var> <strong>**</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
<var><var>Result</var> = <var>Expr1</var>**<var>Expr2</var></var>. The 
result is a float, unless SWI-Prolog is compiled with unbounded integer 
support and the inputs are integers and produce an integer result. The 
integer expressions <var>0 ** I</var>, <var>1 ** I</var> and <var>-1 ** 
I</var> are guaranteed to work for any integer <var>I</var>. Other 
integer base values generate a
<code>resource</code> error if the result does not fit in memory.

<p>The ISO standard demands a float result for all inputs and introduces
<a class="function" href="arith.html#f-^/2">^/2</a> for integer 
exponentiation. The function
<a class="function" href="arith.html#f-float/1">float/1</a> can be used 
on one or both arguments to force a floating point result. Note that 
casting the <em>input</em> result in a floating point computation, while 
casting the <em>output</em> performs integer exponentiation followed by 
a conversion to float.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-^/2"><var>+Expr1</var> <strong>^</strong> <var>+Expr2</var></a></dt>
<dd class="defbody">
In SWI-Prolog, <a class="function" href="arith.html#f-^/2">^/2</a> is 
equivalent to <a class="function" href="arith.html#f-**/2">**/2</a>. The 
ISO version is similar, except that it produces a evaluation error if 
both
<var>Expr1</var> and <var>Expr2</var> are integers and the result is not 
an integer. The table below illustrates the behaviour of the 
exponentiation functions in ISO and SWI.

<p><table class="latex frame-box center">
<tr><td><var>Expr1</var> </td><td><var>Expr2</var> </td><td>Function</td><td>SWI</td><td>ISO </td></tr>
<tr class="hline"><td>Int</td><td>Int</td><td><a class="function" href="arith.html#f-**/2">**/2</a> </td><td>Int 
or Float</td><td>Float </td></tr>
<tr><td>Int</td><td>Float</td><td><a class="function" href="arith.html#f-**/2">**/2</a> </td><td>Float</td><td>Float </td></tr>
<tr><td>Float</td><td>Int</td><td><a class="function" href="arith.html#f-**/2">**/2</a> </td><td>Float</td><td>Float </td></tr>
<tr><td>Float</td><td>Float</td><td><a class="function" href="arith.html#f-**/2">**/2</a> </td><td>Float</td><td>Float </td></tr>
<tr class="hline"><td>Int</td><td>Int</td><td><a class="function" href="arith.html#f-^/2">^/2</a> </td><td>Int 
or Float</td><td>Int or error </td></tr>
<tr><td>Int</td><td>Float</td><td><a class="function" href="arith.html#f-^/2">^/2</a> </td><td>Float</td><td>Float </td></tr>
<tr><td>Float</td><td>Int</td><td><a class="function" href="arith.html#f-^/2">^/2</a> </td><td>Float</td><td>Float </td></tr>
<tr><td>Float</td><td>Float</td><td><a class="function" href="arith.html#f-^/2">^/2</a> </td><td>Float</td><td>Float </td></tr>
</table>
</dd>
<dt class="pubdef"><a id="f-powm/3"><strong>powm</strong>(<var>+IntExprBase, 
+IntExprExp, +IntExprMod</var>)</a></dt>
<dd class="defbody">
<var><var>Result</var> = (<var>IntExprBase</var>**<var>IntExprExp</var>) 
modulo <var>IntExprMod</var></var>. Only available when compiled with 
unbounded integer support. This formula is required for Diffie-Hellman 
key-exchange, a technique where two parties can establish a secret key 
over a public network.</dd>
<dt class="pubdef"><a id="f-lgamma/1"><strong>lgamma</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Return the natural logarithm of the absolute value of the Gamma 
function.<sup class="fn">83<span class="fn-text">Some interfaces also 
provide the sign of the Gamma function. We canot do that in an 
arithmetic function. Future versions may provide a <em>predicate</em> 
lgamma/3 that returns both the value and the sign.</span></sup></dd>
<dt class="pubdef"><a id="f-erf/1"><strong>erf</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<a class="url" href="http://en.wikipedia.org/wiki/Error_function">WikipediA</a>: 
``In mathematics, the error function (also called the Gauss error 
function) is a special function (non-elementary) of sigmoid shape which 
occurs in probability, statistics and partial differential equations.''</dd>
<dt class="pubdef"><a id="f-erfc/1"><strong>erfc</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
<a class="url" href="http://en.wikipedia.org/wiki/Error_function">WikipediA</a>: 
``The complementary error function.''</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="f-pi/0"><strong>pi</strong></a></dt>
<dd class="defbody">
Evaluate to the mathematical constant <var>pi</var> (3.14159 ... ).
</dd>
<dt class="pubdef"><a id="f-e/0"><strong>e</strong></a></dt>
<dd class="defbody">
Evaluate to the mathematical constant <var>e</var> (2.71828 ... ).
</dd>
<dt class="pubdef"><a id="f-epsilon/0"><strong>epsilon</strong></a></dt>
<dd class="defbody">
Evaluate to the difference between the float 1.0 and the first larger 
floating point number.</dd>
<dt class="pubdef"><a id="f-cputime/0"><strong>cputime</strong></a></dt>
<dd class="defbody">
Evaluate to a floating point number expressing the <span style="font-variant:small-caps">CPU</span> 
time (in seconds) used by Prolog up till now. See also <a id="idx:statistics2:1178"></a><a class="pred" href="statistics.html#statistics/2">statistics/2</a> 
and <a id="idx:time1:1179"></a><a class="pred" href="statistics.html#time/1">time/1</a>.</dd>
<dt class="pubdef"><a id="f-eval/1"><strong>eval</strong>(<var>+Expr</var>)</a></dt>
<dd class="defbody">
Evaluate <var>Expr</var>. Although ISO standard dictates that `<var>A</var>=1+2, <var>B</var> 
is
<var>A</var>' works and unifies <var>B</var> to 3, it is widely felt 
that source level variables in arithmetic expressions should have been 
limited to numbers. In this view the eval function can be used to 
evaluate arbitrary expressions.<sup class="fn">84<span class="fn-text">The <a class="function" href="arith.html#f-eval/1">eval/1</a> 
function was first introduced by ECLiPSe and is under consideration for 
YAP.</span></sup>
</dd>
</dl>

<p><b>Bitvector functions</b> 

<p>The functions below are not covered by the standard. The
<a class="function" href="arith.html#f-msb/1">msb/1</a> function is 
compatible with hProlog. The others are private extensions that improve 
handling of ---unbounded--- integers as bit-vectors.

<dl class="latex">
<dt class="pubdef"><a id="f-msb/1"><strong>msb</strong>(<var>+IntExpr</var>)</a></dt>
<dd class="defbody">
Return the largest integer <var>N</var> such that <code>(IntExpr &gt;&gt; N) /\ 1 =:= 1</code>. 
This is the (zero-origin) index of the most significant 1 bit in the 
value of <var>IntExpr</var>, which must evaluate to a positive integer. 
Errors for 0, negative integers, and non-integers.</dd>
<dt class="pubdef"><a id="f-lsb/1"><strong>lsb</strong>(<var>+IntExpr</var>)</a></dt>
<dd class="defbody">
Return the smallest integer <var>N</var> such that <code>(IntExpr &gt;&gt; N) /\ 1 =:= 1</code>. 
This is the (zero-origin) index of the least significant 1 bit in the 
value of <var>IntExpr</var>, which must evaluate to a positive integer. 
Errors for 0, negative integers, and non-integers.</dd>
<dt class="pubdef"><a id="f-popcount/1"><strong>popcount</strong>(<var>+IntExpr</var>)</a></dt>
<dd class="defbody">
Return the number of 1s in the binary representation of the non-negative 
integer <var>IntExpr</var>.
</dd>
</dl>

<p></body></html>