This file is indexed.

/usr/lib/swi-prolog/doc/Manual/db.html is in swi-prolog-nox 6.6.4-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>SWI-Prolog 7.1.10 Reference Manual: Section 4.13</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="DCG.html">
<link rel="next" href="dynamic.html">

<style type="text/css">

/* Style sheet for SWI-Prolog latex2html
*/

dd.defbody
{ margin-bottom: 1em;
}

dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}

dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }

.bib dd
{ margin-bottom: 1em;
}

.bib dt
{ float: left;
margin-right: 1.3ex;
}

pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}

div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}

div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}

div.author
{ text-align: center;
font-style: italic;
}

div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}

div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}

div.toc-h1
{ font-size: 200%;
font-weight: bold;
}

div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}

div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}

div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}

span.sec-nr
{
}

span.sec-title
{
}

span.pred-ext
{ font-weight: bold;
}

span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}

div.caption
{ width: 80%;
margin: auto;
text-align:center;
}

/* Footnotes */
.fn {
color: red;
font-size: 70%;
}

.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}

sup:hover span.fn-text
{ display: block;
}

/* Lists */

dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}

/* PlDoc Tags */

dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}

dl.tags dd
{ margin-left: 3ex;
}

td.param
{ font-style: italic;
font-weight: bold;
}

/* Index */

dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}

/* Tables */

table.center
{ margin: auto;
}

table.latex
{ border-collapse:collapse;
}

table.latex tr
{ vertical-align: text-top;
}

table.latex td,th
{ padding: 2px 1em;
}

table.latex tr.hline td,th
{ border-top: 1px solid black;
}

table.frame-box
{ border: 2px solid black;
}

</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="DCG.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="dynamic.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:db"><a id="sec:4.13"><span class="sec-nr">4.13</span> <span class="sec-title">Database</span></a></h2>

<a id="sec:db"></a>

<p>SWI-Prolog offers three different database mechanisms. The first one 
is the common assert/retract mechanism for manipulating the clause 
database. As facts and clauses asserted using <a id="idx:assert1:689"></a><a class="pred" href="db.html#assert/1">assert/1</a> 
or one of its derivatives become part of the program, these predicates 
compile the term given to them. <a id="idx:retract1:690"></a><a class="pred" href="db.html#retract/1">retract/1</a> 
and <a id="idx:retractall1:691"></a><a class="pred" href="db.html#retractall/1">retractall/1</a> 
have to unify a term and therefore have to decompile the program. For 
these reasons the assert/retract mechanism is expensive. On the other 
hand, once compiled, queries to the database are faster than querying 
the recorded database discussed below. See also <a id="idx:dynamic1:692"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a>.

<p>The second way of storing arbitrary terms in the database is using 
the `recorded database'. In this database terms are associated with a
<var>key</var>. A key can be an atom, small integer or term. In the last 
case only the functor and arity determine the key. Each key has a chain 
of terms associated with it. New terms can be added either at the head 
or at the tail of this chain.

<p>Following the Edinburgh tradition, SWI-Prolog provides database keys 
to clauses and records in the recorded database. As of 5.9.10, these 
keys are represented by non-textual atoms (`blobs', see <a class="sec" href="foreigninclude.html">section 
9.4.7</a>), which makes accessing the database through references safe.

<p>The third mechanism is a special-purpose one. It associates an 
integer or atom with a key, which is an atom, integer or term. Each key 
can only have one atom or integer associated with it.

<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="abolish/1"><strong>abolish</strong>(<var>:PredicateIndicator</var>)</a></dt>
<dd class="defbody">
Removes all clauses of a predicate with functor <var>Functor</var> and 
arity
<var>Arity</var> from the database. All predicate attributes (dynamic, 
multifile, index, etc.) are reset to their defaults. Abolishing an 
imported predicate only removes the import link; the predicate will keep 
its old definition in its definition module.

<p>According to the ISO standard, <a id="idx:abolish1:693"></a><a class="pred" href="db.html#abolish/1">abolish/1</a> 
can only be applied to dynamic procedures. This is odd, as for dealing 
with dynamic procedures there is already <a id="idx:retract1:694"></a><a class="pred" href="db.html#retract/1">retract/1</a> 
and <a id="idx:retractall1:695"></a><a class="pred" href="db.html#retractall/1">retractall/1</a>. 
The <a id="idx:abolish1:696"></a><a class="pred" href="db.html#abolish/1">abolish/1</a> 
predicate was introduced in DEC-10 Prolog precisely for dealing with 
static procedures. In SWI-Prolog, <a id="idx:abolish1:697"></a><a class="pred" href="db.html#abolish/1">abolish/1</a> 
works on static procedures, unless the Prolog flag <a class="flag" href="flags.html#flag:iso">iso</a> 
is set to <code>true</code>.

<p>It is advised to use <a id="idx:retractall1:698"></a><a class="pred" href="db.html#retractall/1">retractall/1</a> 
for erasing all clauses of a dynamic predicate.</dd>
<dt class="pubdef"><a id="abolish/2"><strong>abolish</strong>(<var>+Name, 
+Arity</var>)</a></dt>
<dd class="defbody">
Same as <code>abolish(Name/Arity)</code>. The predicate <a id="idx:abolish2:699"></a><a class="pred" href="db.html#abolish/2">abolish/2</a> 
conforms to the Edinburgh standard, while <a id="idx:abolish1:700"></a><a class="pred" href="db.html#abolish/1">abolish/1</a> 
is ISO compliant.</dd>
<dt class="pubdef"><a id="copy_predicate_clauses/2"><strong>copy_predicate_clauses</strong>(<var>:From, 
:To</var>)</a></dt>
<dd class="defbody">
Copy all clauses of predicate <var>From</var> to <var>To</var>. The 
predicate
<var>To</var> must be dynamic or undefined. If <var>To</var> is 
undefined, it is created as a dynamic predicate holding a copy of the 
clauses of
<var>From</var>. If <var>To</var> is a dynamic predicate, the clauses of
<var>From</var> are added (as in <a id="idx:assertz1:701"></a><a class="pred" href="db.html#assertz/1">assertz/1</a>) 
to the clauses of <var>To</var>.
<var>To</var> and <var>From</var> must have the same arity. Acts as if 
defined by the program below, but at a much better performance by 
avoiding decompilation and compilation.

<pre class="code">
copy_predicate_clauses(From, To) :-
        head(From, MF:FromHead),
        head(To, MT:ToHead),
        FromHead =.. [_|Args],
        ToHead =.. [_|Args],
        forall(clause(MF:FromHead, Body),
               assertz(MT:ToHead, Body)).

head(From, M:Head) :-
        strip_module(From, M, Name/Arity),
        functor(Head, Name, Arity).
</pre>

</dd>
<dt class="pubdef"><a id="redefine_system_predicate/1"><strong>redefine_system_predicate</strong>(<var>+Head</var>)</a></dt>
<dd class="defbody">
This directive may be used both in module <code>user</code> and in 
normal modules to redefine any system predicate. If the system 
definition is redefined in module <code>user</code>, the new definition 
is the default definition for all sub-modules. Otherwise the 
redefinition is local to the module. The system definition remains in 
the module <code>system</code>.

<p>Redefining system predicate facilitates the definition of 
compatibility packages. Use in other contexts is discouraged.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="retract/1"><strong>retract</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
When <var>Term</var> is an atom or a term it is unified with the first 
unifying fact or clause in the database. The fact or clause is removed 
from the database.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="retractall/1"><strong>retractall</strong>(<var>+Head</var>)</a></dt>
<dd class="defbody">
All facts or clauses in the database for which the <var>head</var> 
unifies with <var>Head</var> are removed. If <var>Head</var> refers to a 
predicate that is not defined, it is implicitly created as a dynamic 
predicate. See also <a id="idx:dynamic1:702"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a>.<sup class="fn">52<span class="fn-text">The 
ISO standard only allows using <a id="idx:dynamic1:703"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a> 
as a <em>directive</em>.</span></sup></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="asserta/1"><strong>asserta</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
Assert a fact or clause in the database. <var>Term</var> is asserted as 
the first fact or clause of the corresponding predicate. Equivalent to
<a id="idx:assert1:704"></a><a class="pred" href="db.html#assert/1">assert/1</a>, 
but <var>Term</var> is asserted as first clause or fact of the 
predicate.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="assertz/1"><strong>assertz</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:asserta1:705"></a><a class="pred" href="db.html#asserta/1">asserta/1</a>, 
but <var>Term</var> is asserted as the last clause or fact of the 
predicate.</dd>
<dt class="pubdef"><a id="assert/1"><strong>assert</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:assertz1:706"></a><a class="pred" href="db.html#assertz/1">assertz/1</a>. 
Deprecated: new code should use <a id="idx:assertz1:707"></a><a class="pred" href="db.html#assertz/1">assertz/1</a>.</dd>
<dt class="pubdef"><a id="asserta/2"><strong>asserta</strong>(<var>+Term, 
-Reference</var>)</a></dt>
<dd class="defbody">
Asserts a clause as <a id="idx:asserta1:708"></a><a class="pred" href="db.html#asserta/1">asserta/1</a> 
and unifies <var>Reference</var> with a handle to this clause. The 
handle can be used to access this specific clause using <a id="idx:clause3:709"></a><a class="pred" href="examineprog.html#clause/3">clause/3</a> 
and <a id="idx:erase1:710"></a><a class="pred" href="db.html#erase/1">erase/1</a>.</dd>
<dt class="pubdef"><a id="assertz/2"><strong>assertz</strong>(<var>+Term, 
-Reference</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:asserta1:711"></a><a class="pred" href="db.html#asserta/1">asserta/1</a>, 
asserting the new clause as the last clause of the predicate.</dd>
<dt class="pubdef"><a id="assert/2"><strong>assert</strong>(<var>+Term, 
-Reference</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:assertz2:712"></a><a class="pred" href="db.html#assertz/2">assertz/2</a>. 
Deprecated: new code should use <a id="idx:assertz2:713"></a><a class="pred" href="db.html#assertz/2">assertz/2</a>.</dd>
<dt class="pubdef"><a id="recorda/3"><strong>recorda</strong>(<var>+Key, 
+Term, -Reference</var>)</a></dt>
<dd class="defbody">
Assert <var>Term</var> in the recorded database under key <var>Key</var>.
<var>Key</var> is a small integer (range <a class="flag" href="flags.html#flag:min_tagged_integer">min_tagged_integer</a> 
...<a class="flag" href="flags.html#flag:max_tagged_integer">max_tagged_integer</a>, 
atom or compound term. If the key is a compound term, only the name and 
arity define the key.
<var>Reference</var> is unified with an opaque handle to the record (see
<a id="idx:erase1:714"></a><a class="pred" href="db.html#erase/1">erase/1</a>).</dd>
<dt class="pubdef"><a id="recorda/2"><strong>recorda</strong>(<var>+Key, 
+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>recorda(<var>Key</var>, <var>Term</var>, _)</code>.</dd>
<dt class="pubdef"><a id="recordz/3"><strong>recordz</strong>(<var>+Key, 
+Term, -Reference</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:recorda3:715"></a><a class="pred" href="db.html#recorda/3">recorda/3</a>, 
but puts the <var>Term</var> at the tail of the terms recorded under <var>Key</var>.</dd>
<dt class="pubdef"><a id="recordz/2"><strong>recordz</strong>(<var>+Key, 
+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>recordz(<var>Key</var>, <var>Term</var>, _)</code>.</dd>
<dt class="pubdef"><a id="recorded/3"><strong>recorded</strong>(<var>?Key, 
?Value, ?Reference</var>)</a></dt>
<dd class="defbody">
True if <var>Value</var> is recorded under <var>Key</var> and has the 
given database <var>Reference</var>. If <var>Reference</var> is given, 
this predicate is semi-deterministic. Otherwise, it must be considered 
non-deterministic. If neither <var>Reference</var> nor <var>Key</var> is 
given, the triples are generated as in the code snippet below.<sup class="fn">53<span class="fn-text">Note 
that, without a given <var>Key</var>, some implementations return 
triples in the order defined by <a id="idx:recorda2:716"></a><a class="pred" href="db.html#recorda/2">recorda/2</a> 
and <a id="idx:recordz2:717"></a><a class="pred" href="db.html#recordz/2">recordz/2</a>.</span></sup> 
See also <a id="idx:currentkey1:718"></a><a class="pred" href="examineprog.html#current_key/1">current_key/1</a>.

<pre class="code">
        current_key(Key),
        recorded(Key, Value, Reference)
</pre>

</dd>
<dt class="pubdef"><a id="recorded/2"><strong>recorded</strong>(<var>+Key, 
-Value</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>recorded(<var>Key</var>, <var>Value</var>, _)</code>.</dd>
<dt class="pubdef"><a id="erase/1"><strong>erase</strong>(<var>+Reference</var>)</a></dt>
<dd class="defbody">
Erase a record or clause from the database. <var>Reference</var> is a 
db-reference returned by <a id="idx:recorda3:719"></a><a class="pred" href="db.html#recorda/3">recorda/3</a>, <a id="idx:recordz3:720"></a><a class="pred" href="db.html#recordz/3">recordz/3</a> 
or <a id="idx:recorded3:721"></a><a class="pred" href="db.html#recorded/3">recorded/3</a>, <a id="idx:clause3:722"></a><a class="pred" href="examineprog.html#clause/3">clause/3</a>,
<a id="idx:assert2:723"></a><a class="pred" href="db.html#assert/2">assert/2</a>, <a id="idx:asserta2:724"></a><a class="pred" href="db.html#asserta/2">asserta/2</a> 
or <a id="idx:assertz2:725"></a><a class="pred" href="db.html#assertz/2">assertz/2</a>. 
Fail silently if the referenced object no longer exists.</dd>
<dt class="pubdef"><a id="instance/2"><strong>instance</strong>(<var>+Reference, 
-Term</var>)</a></dt>
<dd class="defbody">
Unify <var>Term</var> with the referenced clause or database record. 
Unit clauses are represented as <var>Head</var> :- <code>true</code>.</dd>
<dt class="pubdef"><a id="flag/3"><strong>flag</strong>(<var>+Key, -Old, 
+New</var>)</a></dt>
<dd class="defbody">
<var>Key</var> is an atom, integer or term. As with the recorded 
database, if
<var>Key</var> is a term, only the name and arity are used to locate the 
flag. Unify <var>Old</var> with the old value associated with <var>Key</var>. 
If the key is used for the first time <var>Old</var> is unified with the 
integer 0. Then store the value of <var>New</var>, which should be an 
integer, float, atom or arithmetic expression, under <var>Key</var>. <a id="idx:flag3:726"></a><a class="pred" href="db.html#flag/3">flag/3</a> 
is a fast mechanism for storing simple facts in the database. The flag 
database is shared between threads and updates are atomic, making it 
suitable for generating unique integer counters.<sup class="fn">54<span class="fn-text">The <a id="idx:flag3:727"></a><a class="pred" href="db.html#flag/3">flag/3</a> 
predicate is not portable. Non-backtrackable global variables (<a id="idx:nbsetval2:728"></a><a class="pred" href="gvar.html#nb_setval/2">nb_setval/2</a>) 
and non-backtrackable assignment (<a id="idx:nbsetarg3:729"></a><a class="pred" href="manipterm.html#nb_setarg/3">nb_setarg/3</a>) 
are more widely recognised special-purpose alternatives for 
non-backtrackable and/or global states.</span></sup>
</dd>
</dl>

<p><h3 id="sec:update"><a id="sec:4.13.1"><span class="sec-nr">4.13.1</span> <span class="sec-title">Update 
view</span></a></h3>

<a id="sec:update"></a>

<p><a id="idx:logicalupdateview:730"></a><a id="idx:immediateupdateview:731"></a><a id="idx:updateview:732"></a>Traditionally, 
Prolog systems used the <em>immediate update view</em>: new clauses 
became visible to predicates backtracking over dynamic predicates 
immediately, and retracted clauses became invisible immediately.

<p>Starting with SWI-Prolog 3.3.0 we adhere to the <em>logical update 
view</em>, where backtrackable predicates that enter the definition of a 
predicate will not see any changes (either caused by <a id="idx:assert1:733"></a><a class="pred" href="db.html#assert/1">assert/1</a> 
or
<a id="idx:retract1:734"></a><a class="pred" href="db.html#retract/1">retract/1</a>) 
to the predicate. This view is the ISO standard, the most commonly used 
and the most `safe'.<sup class="fn">55<span class="fn-text">For example, 
using the immediate update view, no call to a dynamic predicate is 
deterministic.</span></sup> Logical updates are realised by keeping 
reference counts on predicates and <em>generation</em> information on 
clauses. Each change to the database causes an increment of the 
generation of the database. Each goal is tagged with the generation in 
which it was started. Each clause is flagged with the generation it was 
created in as well as the generation it was erased from. Only clauses 
with a `created' ... `erased' interval that encloses the generation of 
the current goal are considered visible.

<p><h3 id="sec:hashterm"><a id="sec:4.13.2"><span class="sec-nr">4.13.2</span> <span class="sec-title">Indexing 
databases</span></a></h3>

<a id="sec:hashterm"></a>

<p><a id="idx:indexingtermhashes:735"></a>The indexing capabilities of 
SWI-Prolog are described in
<a class="sec" href="jitindex.html">section 2.17</a>. Summarizing, 
SWI-Prolog creates indexes for any applicable argument, but only on one 
argument, and does not index on arguments of compound terms. The 
predicates below provide building blocks to circumvent the limitations 
of the current indexing system.

<p>Programs that aim at portability should consider using <a id="idx:termhash2:736"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a> 
and
<a id="idx:termhash4:737"></a><a class="pred" href="db.html#term_hash/4">term_hash/4</a> 
to design their database such that indexing on constant or functor 
(name/arity reference) on the first argument is sufficient.

<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="term_hash/2"><strong>term_hash</strong>(<var>+Term, 
-HashKey</var>)</a></dt>
<dd class="defbody">
If <var>Term</var> is a ground term (see <a id="idx:ground1:738"></a><a class="pred" href="typetest.html#ground/1">ground/1</a>), <var>HashKey</var> 
is unified with a positive integer value that may be used as a hash key 
to the value. If <var>Term</var> is not ground, the predicate leaves <var>HashKey</var> 
an unbound variable. Hash keys are in the range <var>0 ... 16,777,215</var>, 
the maximal integer that can be stored efficiently on both 32 and 64 bit 
platforms.

<p>This predicate may be used to build hash tables as well as to exploit 
argument indexing to find complex terms more quickly.

<p>The hash key does not rely on temporary information like addresses of 
atoms and may be assumed constant over different invocations and 
versions of SWI-Prolog.<sup class="fn">56<span class="fn-text">Last 
change: version 5.10.4</span></sup> Hashes differ between big and little 
endian machines. The <a id="idx:termhash2:739"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a> 
predicate is cycle-safe.<sup class="fn">bug<span class="fn-text">All 
arguments that (indirectly) lead to a cycle have the same hash key.</span></sup></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="term_hash/4"><strong>term_hash</strong>(<var>+Term, 
+Depth, +Range, -HashKey</var>)</a></dt>
<dd class="defbody">
As <a id="idx:termhash2:740"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a>, 
but only considers <var>Term</var> to the specified
<var>Depth</var>. The top-level term has depth 1, its arguments have 
depth 2, etc. That is, <var><var>Depth</var> = 0</var> hashes nothing; <var><var>Depth</var> 
= 1</var> hashes atomic values or the functor and arity of a compound 
term, not its arguments; <var><var>Depth</var> = 2</var> also indexes 
the immediate arguments, etc.

<p><var>HashKey</var> is in the range <var>[0 ...<var>Range</var>-1]</var>. <var>Range</var> 
must be in the range <var>[1 ... 2147483647]</var></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="variant_sha1/2"><strong>variant_sha1</strong>(<var>+Term, 
-SHA1</var>)</a></dt>
<dd class="defbody">
Compute a SHA1-hash from <var>Term</var>. The hash is represented as a 
40-byte hexadecimal atom. Unlike <a id="idx:termhash2:741"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a> 
and friends, this predicate produces a hash key for non-ground terms. 
The hash is invariant over variable-renaming (see <a class="pred" href="compare.html#=@=/2">=@=/2</a>) 
and constants over different invocations of Prolog.<sup class="fn">bug<span class="fn-text">The 
hash depends on word order (big/little-endian) and the wordsize (32/64 
bits).</span></sup>

<p>This predicate raises an exception when trying to compute the hash on 
a cyclic term or attributed term. Attributed terms are not handled 
because <a id="idx:subsumeschk2:742"></a><span class="pred-ext">subsumes_chk/2</span> 
is not considered well defined for attributed terms. Cyclic terms are 
not supported because this would require establishing a canonical cycle. 
That is, given A=[a|A] and B=[a,a|B],
<var>A</var> and <var>B</var> should produce the same hash. This is not 
(yet) implemented.

<p>This hash was developed for lookup of solutions to a goal stored in a 
table. By using a cryptographic hash, heuristic algorithms can often 
ignore the possibility of hash collisions and thus avoid storing the 
goal term itself as well as testing using <a class="pred" href="compare.html#=@=/2">=@=/2</a>.
</dd>
</dl>

<p></body></html>