This file is indexed.

/usr/lib/swi-prolog/library/sandbox.pl is in swi-prolog-nox 6.6.4-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*  Part of SWI-Prolog

    Author:        Jan Wielemaker
    E-mail:        J.Wielemaker@cs.vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (C): 2009-2013, VU University Amsterdam

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

:- module(sandbox,
	  [ safe_goal/1			% :Goal
	  ]).
:- use_module(library(assoc)).
:- use_module(library(lists)).
:- use_module(library(debug)).
:- use_module(library(apply_macros), [expand_phrase/2]).

:- multifile
	safe_primitive/1,		% Goal
	safe_meta/2.			% Goal, Calls

% :- debug(sandbox).

/** <module> Sandboxed Prolog code

Prolog is a full-featured Turing complete  programming language in which
it is easy to write programs that can   harm your computer. On the other
hand, Prolog is a logic based _query language_ which can be exploited to
query data interactively from, e.g.,  the   web.  This  library provides
safe_goal/1, which determines whether it is safe to call its argument.

@tbd	Handling of ^ and // meta predicates
*/


:- meta_predicate
	safe_goal(0).

%%	safe_goal(:Goal) is det.
%
%	True if calling Goal provides  no   security  risc. This implies
%	that:
%
%	  - The call-graph can be fully expanded. Full expansion *stops*
%	  if a meta-goal is found for   which we cannot determine enough
%	  details to know which predicate will be called.
%
%	  - All predicates  referenced  from   the  fully  expanded  are
%	  whitelisted by the predicate safe_primitive/1 and safe_meta/2.
%
%	@error	instantiation_error if the analysis encounters a term in
%		a callable position that is insufficiently instantiated
%		to determine the predicate called.
%	@error	permission_error(call, sandboxed, Goal) if Goal is in
%		the call-tree and not white-listed.

safe_goal(M:Goal) :-
	empty_assoc(Safe0),
	safe(Goal, M, [], Safe0, _).


%%	safe(+Goal, +Module, +Parents, +Safe0, -Safe) is semidet.
%
%	Is true if Goal can only call safe code.

safe(V, _, Parents, _, _) :-
	var(V), !,
	throw(error(instantiation_error, sandbox(V, Parents))).
safe(M:G, _, Parent, Safe0, Safe) :- !,
	safe(G, M, Parent, Safe0, Safe).
safe(G, _, Parents, _, _) :-
	debugging(sandbox(show)),
	length(Parents, Level),
	debug(sandbox(show), '[~D] SAFE ~q?', [Level, G]),
	fail.
safe(G, _, _, Safe, Safe) :-
	safe_primitive(G),
	predicate_property(G, iso), !.
safe(G, M, _, Safe, Safe) :-
	(   predicate_property(M:G, imported_from(M2))
	->  true
	;   M2 = M
	),
	safe_primitive(M2:G), !.
safe(G, M, Parents, Safe0, Safe) :-
	safe_meta(G, Called),
	predicate_property(G, iso), !,
	safe_list(Called, M, Parents, Safe0, Safe).
safe(G, M, Parents, Safe0, Safe) :-
	expand_phrase(G, Goal), !,
	safe(Goal, M, Parents, Safe0, Safe).
safe(G, M, Parents, Safe0, Safe) :-
	safe_meta(M2:G, Called),
	(   predicate_property(M:G, imported_from(M2))
	->  true
	;   M2 = M
	), !,
	safe_list(Called, M, Parents, Safe0, Safe).
safe(G, M, Parents, Safe0, Safe) :-
	goal_id(M:G, Id, Gen),
	(   get_assoc(Id, Safe0, _)
	->  Safe = Safe0
	;   put_assoc(Id, Safe0, true, Safe1),
	    (	Gen == M:G
	    ->	safe_clauses(Gen, M, [Id|Parents], Safe1, Safe)
	    ;	catch(safe_clauses(Gen, M, [Id|Parents], Safe1, Safe),
		      error(instantiation_error, _),
		      fail)
	    )
	).

safe_clauses(G, M, Parents, Safe0, Safe) :-
	predicate_property(M:G, interpreted), !,
%	\+ predicate_property(M:G, meta_predicate(_)), !,
	def_module(M:G, MD:QG),
	findall(Body, clause(MD:QG, Body), Bodies),
	safe_list(Bodies, MD, Parents, Safe0, Safe).
safe_clauses(G, M, [_|Parents], _, _) :-
	predicate_property(M:G, visible), !,
	throw(error(permission_error(call, sandboxed, G),
		    sandbox(M:G, Parents))).
safe_clauses(_, _, [G|Parents], _, _) :-
	throw(error(existence_error(procedure, G),
		    sandbox(G, Parents))).

safe_list([], _, _, Safe, Safe).
safe_list([H|T], M, Parents, Safe0, Safe) :-
	copy_term(H, H1),
	safe(H1, M, Parents, Safe0, Safe1),
	safe_list(T, M, Parents, Safe1, Safe).


def_module(M:G, MD:QG) :-
	predicate_property(M:G, imported_from(MD)), !,
	meta_qualify(MD:G, M, QG).
def_module(M:G, M:QG) :-
	meta_qualify(M:G, M, QG).

%%	meta_qualify(:G, +M, -QG) is det.
%
%	Perform meta-qualification of the goal-argument

meta_qualify(MD:G, M, QG) :-
	predicate_property(MD:G, meta_predicate(Head)), !,
	G =.. [Name|Args],
	Head =.. [_|Q],
	qualify_args(Q, M, Args, QArgs),
	QG =.. [Name|QArgs].
meta_qualify(_:G, _, G).

qualify_args([], _, [], []).
qualify_args([H|T], M, [A|AT], [Q|QT]) :-
	qualify_arg(H, M, A, Q),
	qualify_args(T, M, AT, QT).

qualify_arg(S, M, A, Q) :-
	q_arg(S), !,
	qualify(A, M, Q).
qualify_arg(_, _, A, A).

q_arg(I) :- integer(I), !.
q_arg(:).

qualify(A, M, MZ:Q) :-
	strip_module(M:A, MZ, Q).

%%	goal_id(:Goal, -Id, -Gen) is nondet.
%
%	Generate an identifier for the goal proven to be safe. We
%	first try to prove the most general form of the goal.  If
%	this fails, we try to prove more specific versions.
%
%	@tbd Do step-by-step generalisation instead of the current
%	two levels (most general and most specific).
%

goal_id(M:Goal, M:Id, Gen) :- !,
	goal_id(Goal, Id, Gen).
goal_id(Term, _, _) :-
	\+ callable(Term), !, fail.
goal_id(Term, Name/Arity, Gen) :-	% most general form
	functor(Term, Name, Arity),
	functor(Gen, Name, Arity).
goal_id(Term, Skolem, Term) :-		% most specific form
	copy_term(Term, Skolem),
	numbervars(Skolem, 0, _).

%%	safe_primitive(?Goal) is nondet.
%
%	True if Goal is safe  to   call  (i.e.,  cannot access dangerous
%	system-resources and cannot upset  other   parts  of  the Prolog
%	process). There are two  types  of   facts.  ISO  built-ins  are
%	declared without a module prefix. This is safe because it is not
%	allowed to (re-)define these  primitives   (i.e.,  give  them an
%	unsafe     implementation)     and     the       way      around
%	(redefine_system_predicate/1) is unsafe.  The   other  group are
%	module-qualified and only match if the   system  infers that the
%	predicate is (or will be) imported from the given module.

% First, all ISO system predicates that are considered safe

safe_primitive(true).
safe_primitive(fail).
safe_primitive(system:false).
safe_primitive(repeat).
safe_primitive(!).
					% types
safe_primitive(var(_)).
safe_primitive(nonvar(_)).
safe_primitive(integer(_)).
safe_primitive(float(_)).
safe_primitive(system:rational(_)).
safe_primitive(system:rational(_,_,_)).
safe_primitive(number(_)).
safe_primitive(atom(_)).
safe_primitive(system:blob(_,_)).
safe_primitive(system:string(_)).
safe_primitive(atomic(_)).
safe_primitive(compound(_)).
safe_primitive(callable(_)).
safe_primitive(ground(_)).
safe_primitive(system:cyclic_term(_)).
safe_primitive(acyclic_term(_)).
safe_primitive(system:is_stream(_)).
					% ordering
safe_primitive(@>(_,_)).
safe_primitive(@>=(_,_)).
safe_primitive(==(_,_)).
safe_primitive(@<(_,_)).
safe_primitive(@=<(_,_)).
safe_primitive(compare(_,_,_)).
safe_primitive(sort(_,_)).
safe_primitive(keysort(_,_)).
					% unification and equivalence
safe_primitive(=(_,_)).
safe_primitive(\==(_,_)).
					% arithmetic
safe_primitive(is(_,_)).
safe_primitive(>(_,_)).
safe_primitive(>=(_,_)).
safe_primitive(=:=(_,_)).
safe_primitive(=\=(_,_)).
safe_primitive(=<(_,_)).
safe_primitive(<(_,_)).
					% term-handling
safe_primitive(arg(_,_,_)).
safe_primitive(system:setarg(_,_,_)).
safe_primitive(functor(_,_,_)).
safe_primitive(_ =.. _).
safe_primitive(copy_term(_,_)).
safe_primitive(numbervars(_,_,_)).
					% atoms
safe_primitive(atom_chars(_, _)).
safe_primitive(atom_codes(_, _)).
safe_primitive(system:atomic_list_concat(_,_,_)).
safe_primitive(system:atom_length(_,_)).
					% Lists
safe_primitive(length(_,_)).
					% exceptions
safe_primitive(throw(_)).
					% misc
safe_primitive(current_prolog_flag(_,_)).

safe_primitive(clause(_,_)).
safe_primitive(asserta(X)) :- safe_assert(X).
safe_primitive(assertz(X)) :- safe_assert(X).
safe_primitive(retract(X)) :- safe_assert(X).
safe_primitive(retractall(X)) :- safe_assert(X).

% The non-ISO system predicates.  These can be redefined, so we must
% be careful to ensure the system ones are used.

safe_primitive(system:false).
safe_primitive(system:cyclic_term(_)).
safe_primitive(system:msort(_,_)).
safe_primitive(system:between(_,_,_)).
safe_primitive(system:succ(_,_)).
safe_primitive(system:plus(_,_,_)).
safe_primitive(system:term_variables(_,_)).
safe_primitive(system:atom_to_term(_,_,_)).
safe_primitive(system:term_to_atom(_,_)).
safe_primitive(system:atomic_list_concat(_,_,_)).
safe_primitive(system:atomic_list_concat(_,_)).
safe_primitive(system:downcase_atom(_,_)).
safe_primitive(system:upcase_atom(_,_)).
safe_primitive(system:is_list(_)).
safe_primitive(system:memberchk(_,_)).
safe_primitive(system:'$skip_list'(_,_,_)).
					% attributes
safe_primitive(system:get_attr(_,_,_)).
safe_primitive(system:del_attr(_,_)).
					% globals
safe_primitive(system:b_getval(_,_)).
safe_primitive(system:b_setval(Var,_)) :-
	safe_global_variable(Var).
safe_primitive(system:nb_getval(_,_)).
safe_primitive(system:nb_setval(Var,_)) :-
	safe_global_variable(Var).
safe_primitive(system:nb_current(_,_)).
					% database
safe_primitive(system:assert(X)) :-
	safe_assert(X).

% use_module/1.  We only allow for .pl files that are loaded from
% relative paths that do not contain /../

safe_primitive(system:use_module(Spec)) :-
	ground(Spec),
	(   atom(Spec)
	->  Path = Spec
	;   Spec =.. [_Alias, Segments],
	    phrase(segments_to_path(Segments), List),
	    atomic_list_concat(List, Path)
	),
	\+ is_absolute_file_name(Path),
	\+ sub_atom(Path, _, _, _, '/../'),
	absolute_file_name(Spec, AbsFile,
			   [ access(read),
			     file_type(prolog),
			     file_errors(fail)
			   ]),
	file_name_extension(_, Ext, AbsFile),
	save_extension(Ext).

% Other library predicates.

					% rdf
safe_primitive(rdf_db:rdf(_,_,_)).
safe_primitive(rdf_db:rdf(_,_,_,_)).
					% http
safe_primitive(http_session:http_session_data(_)).
safe_primitive(http_session:http_session_id(_)).
					% random
safe_primitive(random:random(_)).
					% porter
safe_primitive(porter_stem:porter_stem(_,_)).
safe_primitive(porter_stem:unaccent_atom(_,_)).
safe_primitive(porter_stem:tokenize_atom(_,_)).
safe_primitive(porter_stem:atom_to_stem_list(_,_)).

% support predicates for safe_primitive, validating the safety of
% arguments to certain goals.

segments_to_path(A/B) --> !,
	segments_to_path(A),
	[/],
	segments_to_path(B).
segments_to_path(X) -->
	[X].

save_extension(pl).

%%	safe_assert(+Term) is semidet.
%
%	True if assert(Term) is safe,  which   means  it  asserts in the
%	current module. Cross-module asserts are   considered unsafe. We
%	only allow for adding facts. In theory,  we could also allow for
%	rules if we prove the safety of the body.

safe_assert(C) :- cyclic_term(C), !, fail.
safe_assert(X) :- var(X), !, fail.
safe_assert(_Head:-_Body) :- !, fail.
safe_assert(_:_) :- !, fail.
safe_assert(_).

%%	safe_global_variable(+Name) is semidet.
%
%	True if Name  is  a  global   variable  to  which  assertion  is
%	considered safe.

safe_global_variable(Name) :-
	var(Name), !,
	fail.
safe_global_variable('$clpfd_queue_status').
safe_global_variable('$clpfd_current_propagator').
safe_global_variable('$clpfd_queue').


%%	safe_meta(+Goal, -Called) is semidet.
%
%	True if Goal is a meta-predicate that is considered safe iff all
%	elements in Called are safe.

safe_meta(system:put_attr(_,M,A), [M:attr_unify_hook(A, _)]) :- !,
	(   atom(M)
	->  true
	;   instantiation_error(M)
	).
safe_meta(M:Goal, Called) :- !,
	generic_goal(Goal, Gen),
	safe_meta(M:Gen),
	findall(C, called(Gen, Goal, C), Called).
safe_meta(Goal, Called) :-
	generic_goal(Goal, Gen),
	safe_meta(Gen),
	findall(C, called(Gen, Goal, C), Called).

called(Gen, Goal, Called) :-
	arg(I, Gen, Spec),
	integer(Spec),
	arg(I, Goal, Called0),
	extend(Spec, Called0, Called).

generic_goal(G, Gen) :-
	functor(G, Name, Arity),
	functor(Gen, Name, Arity).

extend(0, G, G) :- !.
extend(I, M:G0, M:G) :- !,
	G0 =.. List,
	length(Extra, I),
	append(List, Extra, All),
	G =.. All.
extend(I, G0, G) :-
	G0 =.. List,
	length(Extra, I),
	append(List, Extra, All),
	G =.. All.

safe_meta((0,0)).
safe_meta((0;0)).
safe_meta((0->0)).
safe_meta(apply:forall(0,0)).
safe_meta(catch(0,_,0)).
safe_meta(findall(_,0,_)).
safe_meta(findall(_,0,_,_)).
safe_meta(setof(_,0,_)).		% TBD
safe_meta(bagof(_,0,_)).
safe_meta(^(_,0)).
safe_meta(\+(0)).
safe_meta(apply:maplist(1, _)).
safe_meta(apply:maplist(2, _, _)).
safe_meta(apply:maplist(3, _, _, _)).
safe_meta(call(0)).
safe_meta(call(1, _)).
safe_meta(call(2, _, _)).
safe_meta(call(3, _, _, _)).
safe_meta(call(4, _, _, _, _)).
safe_meta(call(5, _, _, _, _, _)).
safe_meta(call(6, _, _, _, _, _, _)).


		 /*******************************
		 *    SAFE COMPILATION HOOKS	*
		 *******************************/

:- multifile
	prolog:sandbox_allowed_directive/1,
	prolog:sandbox_allowed_expansion/1.

%%	prolog:sandbox_allowed_directive(:G) is det.
%
%	Throws an exception if G is not considered a safe directive.

prolog:sandbox_allowed_directive(M:PredAttr) :-
	safe_directive(PredAttr),
	(   prolog_load_context(module, M)
	->  PredAttr =.. [Attr, Preds],
	    safe_pattr(Preds, Attr)
	;   permission_error(directive, sandboxed, (:- M:PredAttr))
	).
prolog:sandbox_allowed_directive(G) :-
	safe_goal(G).

safe_directive(dynamic(_)).
safe_directive(thread_local(_)).
safe_directive(discontiguous(_)).
safe_directive(public(_)).

safe_pattr(Var, _) :-
	var(Var), !,
	instantiation_error(Var).
safe_pattr((A,B), Attr) :- !,
	safe_pattr(A, Attr),
	safe_pattr(B, Attr).
safe_pattr(M:G, Attr) :- !,
	(   atom(M),
	    prolog_load_context(module, M)
	->  true
	;   Goal =.. [Attr,M:G],
	    permission_error(directive, sandboxed, (:- Goal))
	).
safe_pattr(_, _).


%%	prolog:sandbox_allowed_expansion(:G) is det.
%
%	Throws an exception if G  is   not  considered  a safe expansion
%	goal. This deals with call-backs from the compiler for
%
%	  - goal_expansion/2
%	  - term_expansion/2
%	  - Quasi quotations.

prolog:sandbox_allowed_expansion(G) :-
	safe_goal(G).


		 /*******************************
		 *	      MESSAGES		*
		 *******************************/

:- multifile
	prolog:message_context//1.

prolog:message_context(sandbox(_G, Parents)) -->
	[ nl, 'Reachable from:'-[] ],
	callers(Parents, 10).

callers([], _) --> !.
callers(_,  0) --> !.
callers([G|Parents], Level) -->
	{ NextLevel is Level-1
	},
	[ nl, '	  ~p'-[G] ],
	callers(Parents, NextLevel).